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Preface

Remote Sensing is the science of acquiring information about the Earth’s surface without an
actual contact with it, by sensing and recording scattered, reflected or emitted electromagnetic
energy and processing, interpreting and applying that information. It can be defined as an
applied scientific discipline, comprising and relying on more fundamental domains, as signal
and image processing, electromagnetics and virtually all Earth’s sciences. Nowadays, it is
impossible to envisage the latter ones deprived for a wide spatial coverage of, either objects
present on our planet, or processes and phenomena occurring all over its surface. This makes
remote sensing an indispensable tool in the Earth observation.

The importance of this science and the necessity for its further development are emphasized
by some of the biggest challenges humanity is facing in the modern age: the observed climate
changes, the rapid growth of the world population, the sustainable development etc.

The significant impact of the global warming on the environment, reflected primarily
through the melting of ice on the poles and in the mountainous regions, imposes the surveil-
lance of the cryosphere as one of our top priorities. Aside from this, glaciers and snow cover
represent significant supply of both drinking and industrial water, whose quantity can be ac-
curately estimated only by means of wide spatial assessment. The vegetation, particularly
the forests, being the lungs of out planet, can be preserved only through careful and regular
spatial evaluation of their state. The recognized need for food production upsurge, which
ought to be done by optimizing the existing agricultural regions, requires their constant and
accurate monitoring. Overseeing the oceans’ surface, covering nearly 70% of the Earth, cannot
be performed but by means of remote sensing.

These are just few of many examples, an effort to demonstrate the essentiality of remotely
acquired information in the Earth observation. Generalizing, by saying that everything which
could not be measured locally, by means of spatial sampling, depends upon remote sensing,
should not be an exaggeration.

Depending on frequency of the electromagnetic (EM) waves carrying the information, we
can distinguish between different types of active and passive sensors, which can be either
spaceborne or airborne. Consequently, several remote sensing disciplines exist, among which,
with respect to the current infrastructure, the passive optical remote sensing and the active
Synthetic Aperture Radar (SAR) remote sensing could be considered as the pre-eminent ones.

Optical remote sensing operates in visible and infra-red parts of the electromagnetic spec-
trum. Depending on the spectral resolution i.e. how many different frequencies we use si-
multaneously, we can discriminate between monospectral (panchromatic), multispectral and
hyperspectral optical images. Despite the fact that it can be acquired only during the day
and the constraints concerning the presence of clouds, an optical image, being the "boosted"
photography, represents a vital piece of information.
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The SAR remote sensing, operating in the microwave part of the electromagnetic spectrum,
remains to be particularly attractive due to its all-day and all-weather sensing capabilities.
Aside from these, the advantage of SAR is the deeper penetration of microwaves with respect
to the visible light, allowing us to deduce not just surface but volume properties as well. On
the other side, there are also some disadvantages, among which the principal concerns the
data interpretation. Namely, unlike it is the case with the optical images, due to the different
geometry and peculiar interaction with a target, we can not entirely rely on our intuition,
arising from our vision sense.

Analogously to the optical remote sensing where we simultaneously use several frequencies
in order to get more information about the target, in the SAR remote sensing we rather use
several polarizations of the EM waves at the transmission and at the reception. This sub-
discipline is called Polarimetric SAR (POLSAR) and it results in a multichannel SAR image,
with each channel corresponding to a different combination of the polarizations.

In this thesis we propose mostly the contributions to the analysis and the interpretation of
the SAR images, but however, we do not neglect, but rather use and demonstrate the utility
of multispectral optical images, as well.

The contributions presented in this thesis are divided in two principal parts. The first
part deals with the theoretical advancements and as such, is related to the interpretation of
polarimetric SAR data. More concrete, it concerns the implication of the Blind Source Sepa-
ration (BSS) techniques, having an aim to enhance the interpretation quality by considering
the particular characteristics of the recently acquired data. As the prelude, the methodolog-
ical framework for the statistical assessment of these particularities is provided. The second
part, dealing rather with the application - remote sensing of snow, concerns the role of SAR
remote sensing in the snow mapping and finally, the Snow Water Equivalent (SWE) spa-
tial modelling, performed by means of integrating the optical remote sensing datasets in the
hydrological model, but still, considered in the context of POLSAR.

The particularities of the new data mostly regard the significant improvement of the spa-
tial resolution i.e. the size of the smallest object which can be distinguished on the ground.
This progress has an important influence on the SAR image statistics. Namely, the conven-
tional assumption for the statistical model of the multichannel POLSAR image is multidi-
mensional Gaussian distribution. However, the increase of the spatial resolution compromises
this assumption, leading rather to the heterogeneous clutter, characterized by non-Gaussian
statistics.

The dilemmas raising in the community a propos this issue could be summarized in two
questions:

e Are the newly proposed statistical models truly appropriate for modelling POLSAR and
other multi-dimensional SAR data sets?

e What are we exactly gaining by acknowledging the departure from the Gaussianity
assumption, in terms of interpretation?
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These two questions were a driving force for the research constituting the methodological
context of this thesis.

After introducing the basics of SAR image statistics in the first chapter, in Chapter II
we propose an elaborated statistical analysis, with the aim of quantitatively determining the
necessity and the benefits of the altered statistical hypotheses. That is to say, we provide our
answer to the first question.

The interpretation of POLSAR images principally assumes applying polarimetric decom-
position, with the goal of expressing a total target backscattering as, either coherent or inco-
herent, sum of more elementary backscattering components. Among different decompositions,
introduced along with the SAR polarimetry concept in the first chapter, the algebraic ones,
happen to be the most widely utilized in the community nowadays. Being based on the
eigenvalue analysis, they are intrinsically linked to the assumption of Gaussianity of the po-
larimetric SAR clutter. As it is discussed in the introduction of the methodology part, the
shift from this assumption, leads to the derived eigenvector components not to be statisti-
cally independent, but rather only decorrelated. Therefore, by preferably employing the most
prominent BSS technique - Independent Component Analysis (ICA), introduced in the first
chapter, we propose a new approach in decomposing a polarimetric data in Chapter III. This
decomposition would be our answer to the second question [1].

After introducing the basics of the snow remote sensing in Chapter IV, in the following
chapter we come up with a new, stochastically based snow mapping method. Although ap-
plying the developed ICTD on the POLSAR images of snow regions resulted in interesting
empirical conclusions, we have implicated a bit more electromagnetic properties of a snow in
the context of single polarization SAR images. Namely, the snow dielectric properties depend
significantly on the quantity of liquid water present in the snowpack. Consequently, the re-
mote sensing techniques employed in extracting the snow pack parameters, which would be
the ultimate goal of snow remote sensing, vary upon the type of snow: whether the snow is dry
or wet. Therefore, in the very beginning, it is necessary to identify the type of the snow cover.
In the proposed approach [2], aside from introducing a stochastic decision, we also derive a
new variable backscattering threshold, discriminating the two types of snow, which is based
on the backscattering simulator and the deduced backscattering mechanism, both introduced
in Chapter IV.

Finally, we concentrate on the spatial derivation of SWE. Given the ill-posedness of the
backscattering model inversion problem, which causes a single polarization SAR image not
to be exactly useful in this context, we turn toward a conjunction of the hydrological model
and the remote sensing data. As well, we briefly present the ongoing investigations of the
potentials of SWE spatial modelling using POLSAR data, reinforced by implicating BSS
(PCA) in the analysis of the derived parameters. However, the calibration method of the
Snow Water Equivalent (SWE) hydrological model, based on the optical remote sensing data,
remains the highlight of the last chapter [3]. The referent hydrological model, which required
spatial calibration is introduced in Section IV.2. Chapter VI describes the proposed algorithm,
and even more, serves as the demonstration of the eventual supremacy of remote sensing with
respect to the local in situ measurements.
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CHAPTER 1

POLSAR image and BSS

I.1  SAR Polarimetry . .. ... ... i e 7
[.L1.1 Basicprinciple . . . . . . . .. 8
[.L1.2 Polarimetric decomposition . . . . . .. ... ... 0. 11

I.2 SAR images statistics . . . . . . . . . . . . L e e e 17
[.2.1 Single polarization image statistics . . . . . . . .. .. ... L. 18
[.2.2 Polarimetric image statistics . . . . .. ... ... .. Lo 20

I.3 Blind Source Separation . . ... ... ... ... e 22
[.3.1 Principal Component Analysis . . . . . ... ... ... ... .. ..... 23
[.3.2 Independent Component Analysis . . . . ... ... ... .. ....... 24

This chapter serves as an introduction to the state of the art methods which inspired us to
carry out the research presented in the methodology part of the thesis. We contemplated this
chapter to be their brief but systematic review. The fusion of one portion of these methods
actually forms the basis of the presented theoretical contributions.

First of all, we introduce the concept of SAR polarimetry, with the particular emphasis on
the most representative target decompositions. Further on, we discuss the basics of SAR and
POLSAR image statistics. Finally, we introduce the family of Blind Source Separation tech-
niques, by especially stressing the Principal Component Analysis (PCA) and the Independent
Component Analysis.

I.1 SAR Polarimetry

The concept of radar polarimetry dates back to the early 1950s when George Sinclair,
inspired by the work of Stokes and Poincaré in the XIX century, lay its cornerstone by intro-
ducing the famous scattering matrix [4]. Namely, George Stokes [4] and Henry Poincaré [5]
independently defined an unified formalism for representing electromagnetic waves regardless
their polarization state. Relying on this formalism, the Sinclair’s scattering matrix provides
information about the target "capacity" to change the polarization state of the incident po-
larization waves [6].
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The forthcoming work by Kennaugh [7], Graves [8], Huynen [9] and the others, leaded to
the establishment of radar polarimetry as a new remote sensing discipline. This was followed
by an intensive technical progress, which meant the integration of the radar polarimetry into
the activities of the aerospace agencies all around the world. In the beginning, mostly airborne
polarimetric sensors were developed, as RAMSES (ONERA), ESAR (DLR), AIRSAR (JPL),
PISAR (JAXA), CONVAIR (CCRS) etc. Soon, the space shuttle based instrument SIR-C/X-
SAR (JPL) appeared as well [6]. Naturally, this huge amount of the acquired data induced
significant further advancements in theory.

Further on, numerous contributions concerning the calibration techniques and particularly
concerning the data analysis and interpretation have been introduced by the entire pléiaide
of scientists, including Freeman, Yamaguchi, Cameron, Cloude, Pottier, Touzi etc. making
POLSAR one of the most attractive research domains in the remote sensing community. New
spaceborne instruments have been launched into the orbit, among which most recently: ALOS
(JAXA), TerraSAR-X (DLR) and RADARSAT-2 (CCRS). The last two are still providing us
valuable polarimetric data. The datasets acquired by all of these three "new" instruments,
along with the RAMSES acquisitions, are being used in this thesis.

I.1.1 Basic principle

As already implied, the very purpose or radar polarimetry is to broaden the information about
the target by considering its influence on the polarization of the incident EM waves.

The polarization of the EM wave refers to the spatio-temporal behaviour of the electrical
field (e) i.e. to the projection of the vector’s trajectory onto the plane perpendicular to the
propagation direction kg, defined by unit vectors x and y (Fig. 1.1):

Figure 1.1: EM field propagation
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Figure 1.2: EM polarization: (a) horizontal, (b) vertical.

e(ry2t) = R{Bo/ PN} = eox b gy = (L1)

2 2
= FEy, cos <27rft — Tﬂz + 5m>x + Epy cos <27rft — Tﬂz + 5y>y

with f being the frequency and X\ the wavelength of the wave. It is actually the difference in
phase between e, and e, (6 = 6, —d,), which determines the polarization state. For 6 = {0, 7}
we have linear polarization, 6 = 7/2 means circular one, while all the other values indicate
the general case - eliptical polarization.

Therefore, in the most representative case (full POLSAR), we transmit linearly polarized
waves: horizontal (H) and vertical (V) ones (Fig. 1.2a and Fig. 1.2b). At the reception, we
collect the scattered signals using both horizontal and vertical antennas (Fig. C.1). The most
rudimentary representation of the information acquired this way is the formerly mentioned
scattering matrix:

_ |Shh Sho
S‘[Svh Sw] (12)

with each of the elements being complex i.e. representing the impact of the target on the
amplitude and the phase of the EM waves. It relates the incident and the scattered EM

waves, represented by the Jones vector:

T
j=[E: B))" = |Eoe’ Eoyedv| . (1.3)

Depending on the choice of the coordinate system, it can take form of the Sinclair scattering
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Figure 1.3: Polarimetry principal: (a) schema of the instrument, (b) the pulses at the trans-
mission (T) and at the reception (R).

matrix or the Jones scattering matrix. Former is defined for the back scatterer alignment
(BSA), while latter refers to the forward scatterer alignment (FSA). The difference between
these two concerns the axis z. Namely, in the first case the direction of z stays the same for
both incident and scattered wave, while in the second case z corresponds to kgas (Fig. 1.1).

In the case of monostatic configuration, when the same platform is used both for the trans-
mission and the reception, we can assume reciprocity (Sp, = Syp). Therefore, the scattering
matrix is often replaced by the target vector, obtained by projecting the former onto the Pauli
basis:

1
k = NG [Shi + Suw Shi — Svw 28m]” (L4)

If the target does not depolarize the incident waves, we have coherent scattering, in which
case either the scattering matrix or the target vector are indeed a suitable and sufficient
representation. However, if we have a certain level of depolarization, we ought to rely on
the estimated ((-)) spatial covariance of the target vector, expressed through the coherence
matrix:

T = E[k"]= (L.5)

IShnl® + 27 (ShnSiu) — [Swul®  [Sanl® = 2R(ShaSis) + 1Svol®  2SknSHh, — 2S00 Sk,
2S}wSZh + QS}WS;U QS}wS;:h - QS;WS:U 4‘Shv|2

1 < [|Shh2 + 2R(ShnSpo) + [Swul®  |Skul® = 2§S(ShnSyy) — 1Sue|*  2Shn Sk, + 25vv52v] >
2

Given that a partly polarized EM wave can be represented through the four elements
Stokes Vector:

. * * T
i=([|E.]>+|E)f |E|> — |E,)” 2R{EE;} —23{E.E}}]) (1.6)

the incoherent scattering can be as well represented by 4 x 4 Kenaugh or Mueller matrix,
depending on the backscattering coordinate system convention. FE, and E, would be the
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complex "full" representations of e, and e, from Eq. 1.2.

However, the proper exploitation and interpretation of the polarimetric information re-
quires the appropriate decomposition of the backscattering process, represented either by the
(projection of) scattering matrix or by the coherence matrix. The aim is to portray a target
as a sum of more elementary backscatterers. Therefore, the polarimetric target decomposition
(TD), due to its crucial role, undoubtedly represents the very essence of the SAR polarimetry.

1.1.2 Polarimetric decomposition

Target decomposition (TD), introduced in the first place in [9], aims to interpret polarimet-
ric data by assessing and analysing the components involved in the scattering process [10].
Roughly speaking, the assessing assumes the derivation of the involved backscattering com-

ponents, while the analysis dominantly concerns their parametrization. The former can be
defined as:

N

X => kX, (1.7)

=1

with X being the scattering matrix (S) in case of a coherent target, or the coherence matrix
(T) in case of an incoherent one. Both the means of deriving the components (X;) and their
parametrizations, differ for different types of decompositions. Here, we present the ones we
found to be the most notable with respect to their historical and practical relevance. After-
wards, in the Chapter III, we will elaborate a new decomposition, the principal contribution
of this thesis.

1.1.2.1 Coherent decompositions

The most elementary approach in decomposing a scattering matrix is based on a set of Pauli
matrices, originally used by Wolfgang Pauli in his theory of quantum-mechanical spin. Due to
their numerous interesting mathematical properties (e.g. hermitian, unitary and commutation
properties), these matrices found their applications in many domains, among which, the SAR
polarimetry. In case of monostatic configuration, the scattering matrix is decomposed into
standard mechanisms as:

Shh S}w g 1 0 (6751 1 0 (6% 01
_ 0 =1 < L.
|:Svh Suw \/§ 0 1 * \/§ 0 -1 * \/§ 1 0|’ (I.8)
with the complex parameters:

o Shh + Sw Shh — Sw

(&%)} \/§ , \/§ , Q2 f hvs ( )
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making this approach a "model based" one. The first term in Eq. [.8 represent the odd-
bounce scattering: flat surface, sphere, trihedral. The second one is related to the even-bounce
scattering without polarization change - a dihedral with the axe of symmetry being parallel to
the incident horizontally polarized wave. The third one represent the scatterer which favours
the cross-polarized channel - a dihedral with the axe of symmetry rotated 45° with respect to
the incident horizontally polarized wave [6].

A slightly different model based approach is proposed by Krogager in [11]. The second
component in this case rather represents a dihedral with any orientation, while the third one
represents a helix. The decomposition takes form of a:

Shh Swo| _ jo [ g, |10 cos20  sin20 .y 1 4
[Svh SU’U:| =k 0 1 +ka sin20 —cos20| € Fn +i 1|[ (1.10)

with the angles ¢, ¢, and 6 being respectively the absolute phase, the single (odd) bounce
component phase, the orientation of the dihedral. The real coefficients kg, kg, k;, are the
contributions of single bounce, double bounce and helix scatterer. The latter one represents
the non-symmetrical scattering i.e. the case when the target axe of symmetry doesn’t lie in
the plane perpendicular to the line of sight.

However, this decomposition is usually employed in the circular basis making this a suitable
point for introducing the scattering matrix projected on the circular polarization basis. In the
same way the projection onto the Pauli basis leads to the target vector, the projection onto
the circular polarization ones, gives us the circular scattering matrix, which for the monostatic
configuration takes the following form:

Se = [Szz Szr] _ 1 [Shh +2§Sh + Svw 3(Shn + Sww) (L.11)
Srl ST‘T‘ 2 j(Shh + va) _Shh + 2jShv + va ' .

The lexicographic ordering of the these elements leads to the circular target vector:

T
ke = [Sll \/isl,« Spr| - (1.12)

The most representative algebraic coherent decomposition would be the Cameron decom-
position [12]. In this approach we cannot actually assume reciprocity, meaning that we have to
consider all four elements of the scattering matrix. The decomposing process can be roughly
divided on two steps:

e The first step is related to the target geometrical properties. More precisely, we are
initially trying to isolate the symmetric scattering from the non-symmetric one. By
maximizing the former and consequently, minimizing the latter one, we can express the
scattering matrix as:
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S =SIwr+ Sy (1.13)
with:
10 . 1 0
Stym = 0 [0 1] + (o1 cos 2¢) + g sin 29)) [O _J , (I.14)
and
Snon—sym = (011 sin 21 — g cos 2¢) 1 ol (115)

The o parameters correspond to the ones introduced in Eq. 1.9 and % is the rotation
angle with respect to the reference basis.

The second step would be algebraic, given that it represents one sort of the parametri-
sation of the symmetric part. Namely, if we express the matrix given in Eq. 1.14 as:

maz _ [1 0] . (1.16)

A

we can define a vector:

Az) = \/JW H . (L.17)

Finally, if we define elementary reflectors in terms of z (e.g. z = {1, -1, 3

V5 —%} corre-
spond respectively to sphere, dihedral, cylinder, narrow dihedral), the symmetric target
can be categorized by calculating the closeness to these elementary reflectors:

1 1
- \/1 + |Z|2 \/1 + |Zref’2

A(z) 11+ 2" 2| (1.18)

1.1.2.2 Incoherent decompositions

Unlike it was the case with the coherent decompositions, here we are rather concentrated

either on the already introduced coherence matrix, or on the covariance matrix, derived as

the spatial covariance of the lexicographic target vector k.:

C = E[kk!]= <[Shh V25, SW]T (S V25 S]> = (119)

V2SuSh,  21Swl® V25mS3,

< 1Shrl®> V2SmS5,  ShaSh, >
SwwSt,  V2SuSh,  |Suwl?
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The first incoherent decomposition was proposed by Huynen in [9], and it assumes decom-
posing the scattering as the incoherent sum of the fully polarized mechanisms and the fully
unpolarized ones. Originally, the decomposition is based on Mueller matrix formalism:

M = Mpol + Munpol (120)

but the same reasoning can be equally applied on either covariance or coherence matrix.
The polarized matrix is then parametrized using nine parameters, among which only two are
invariant with respect to the rotation around the line of sight.

The counterpart of formerly presented decompositions on standard mechanisms, in case of
incoherent targets, are Freeman [13] and Yamaguchi [14] decompositions.

Freeman decomposition assumes decomposing the covariance matrix into the sum of first-
order Bragg, double bounce and volume scattering;:

C = C,+Cy+C, = (1.21)
B2 0 p lal? 0 « 1 0 1/3
= fs|0 0 O|+f410 O O|+f, |0 2/3 0
B 0 1 a* 0 1 /3 0 1

Bragg scattering would be a more elaborated odd-bounce backscattering, which can provide
us with some details about the surface dynamics. The real parameters 3, fs, fq and f,, and the
complex parameter «, figuring in Eq. .22 are supposed to be derived from a set of equations:

(1Swl®) = fsB% + falal* + fo (1.22)
<’va‘ ) = fs+fat+ fo

(ShnSpy) = fsB+ faca+ fo/3

(1Sml®) = f./3.

However, there is one more unknown variable than there are equations. Therefore, in order
to make this a well-posed problem, we need to consider the sign of (S,4S%,) — (|Shy|?). If it
is negative, we take o = —1, if not g = 1.

In case of Yamaguchi, there is an additional fourth component, representing non-
symmetric, helix backscattering:

i, 1 +5vV2 -1
Ch=" V2 2 £jV2]. (1.23)
-1 Fjv2 1
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Another difference would be a complex 8 parameter, making Cg,, to be rather *. In this
case, we have a system of five equations:

(Swl) = JolB7 + falaf? + = fo+ 20 (124)

(Swl?) = s=fot 2

([Suwl?) = fﬁfﬁ%f#%

(SSh) =SB+ faot = fu - 2
2SS + (Susi)) = =

Two parameters can be derived from the second and the last equation (Eq. 1.25), while
the rest of the system can be solved using the same hypothesis as in the case of Freeman
decomposition.

The incoherent equivalents of the Cameron algebraic method would be the Cloude and
Pottier [15] and the Touzi [16] decompositions. The particular emphasise will be put on
introducing these two, given that the highlight of this thesis concern one incoherent target
decomposition.

The first step in both of these two decompositions is the eigenvector decomposition of
the target coherence matrix, allowing us to represent the total backscattering as a sum of
three backscattering mechanism. Namely, given the Hermitian nature of positive semi-definite
coherence matrix, the derived eigenvectors are mutually orthogonal and characterized by real
eigenvalues. Each of the derived eigenvectors forms a coherence matrix with unity rank and
therefore happens to be a fully polarized target vector. The corresponding eigenvalue (\)
represents its contribution to the total backscattering.

T = Mk ki 4+ Aokokd! 4 Askski! (1.25)

The principal difference between two decompositions would be, the second step - the
parametrisation of the estimated target vectors i.e. backscattering mechanisms.

The Cloude and Pottier decomposition is based on the o — § — v — § parametrisation of a

target vector [15]:

1 0 0 COS Qup;
k; = |kilexpjf [0 cos2t; —sin2;| |sin oy, cos By expjo; | - (1.26)
0 sin2vy; cos2y; sin avy,; sin By exp jvi

Among the obtained parameters, the very central place has the angle «), used in the
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Figure 1.4: Poincaré sphere representation of TSVM parameters: (a) symmetric scattering
(Tm = 0), (b) non-symmetric scattering (®,, = 0).

derivation of the mean backscattering mechanism (&), conditioned by the probabilities of ayy;
):

m (
to occur in the random sequence of parameters (P;

ap = Proy + Paay + Pyoys (1.27)

Aside from this one, very important polarimetric descriptor would be the entropy, defining
the appropriateness of using polarimetry [6]:

3
by
H=7) —PlogP, P=—g

. (1.28)
i=1 E?:l Ai

The value zero indicates the absolute dominance of one fully polarized mechanism, while
the value one points to the completely depolarizing target.

The third polarimetric descriptor we ought to mention would be the anisotropy:

R IR e I

_ _ , 1.29
A+A3 P+ B (129)

describing the relation of the second and the third estimated mechanisms.

The Touzi decomposition is rather based on the Target Scattering Vector Model (TSVM)
[16].
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Being based on Kennaugh-Huynen condiagonalization |7, 10| projected onto the Pauli
basis, the TSVM [16] allows the parametrization of the target vector in terms of rotation
angle (1), phase (®5), maximum amplitude (m), target helicity (7,,), symmetric scattering
type magnitude () and symmetric scattering type phase (®,,), among which the last four
are roll-invariant:

1 0 0 COS (vg COS 2Ty,
k = m|k|,e’® [0 cos2y —sin2i sin agedPos . (1.30)
0 sin2y cos2y —J €OoS ag Sin 27,

In order to avoid an ambiguity related to the Kennaugh-Huynen condiagonalization, the
range of the orientation angle is reduced to the [—m /4, 7/4], by introducing the identity:

k(®s, 0, T, m, g, @) = k(—=Ps, 0 £ 7/2, =T, m, a5, — Py, ). (1.31)

Using TSVM parameters, it is eventually possible to represent the obtained target vec-
tors on either symmetric or non-symmetric target Poincaré sphere [17, 18|. In the original
decomposition, they necessarily form an orthogonal basis.

Being an integral part of the decomposition we propose in the Chapter III, the Touzi’s
TSVM has a very special place in this thesis.

I.2 SAR images statistics

The complex information characterizing one pixel of the SAR image represents totality of
the backscattering in the corresponding spatial cell. It means that we cannot associate this
value to one scatterer covering the area equivalent to one pixel, but rather to the ensemble of
elementary scatterers distributed all over the same. The EM waves scattered by each of these
elementary scatterers are summed coherently, which causes their either positive, or negative
interference. This phenomena, due to its manifestation in the SAR image, in form of a granular
noise, is called speckle effect, or speckle noise.

Using simplified mathematical formalism (e = Ae/®i) we can illustrate this effect by
representing the total received scattered EM wave as the vectorial sum of the individual
scatterers in the complex space (Fig. 1.5):

Atot€j¢>tot = Z Alej(bz (132)
=1

Different random scattering amplitudes (A) and phases (¢) of the implicated elementary
scatterers cause the formation of the SAR image to be rather a stochastic process. Therefore,
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Figure 1.5: Speckle noise.

in order to properly exploit the information contained in it, we ought to get acquainted with
the statistics of the SAR image.

I[.2.1 Single polarization image statistics

As it is the case with the POLSAR image, the elementary single-look (SLC) SAR image can
provide complex information in each pixel, as well. This complex information can be presented
in the form of amplitude and phase, but however, most commonly it is the single channel image
providing intensity (/) information.

Goodman in [19] defined a fully developed speckle, characterized by the following hypothe-
ses:

the responses of each scatterer are independent,

the amplitude and the phase are mutually independent,

the amplitudes of each scatterer has the same probability density function (PDF),

the phases are distributed uniformly.

By adopting A;oe?®t = x4+ jy, under these assumptions, both the real z and the imaginary
part y of the pixel value, due to the central limit theorem, converge toward the centered
Gaussian (normal) distribution:

1 _v_
N (v|py = 0,04) = \ﬁe%%, v € {z,y}, (1.33)

OpV 2T

2

with o being the standard deviation (0° - variance). The amplitude Ay is distributed ac-

cording to the Rayleigh distribution:
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Agor Aoy
R(Apot|o) = Jt;te 204

(L.34)

In this case, the intensity i.e. the single-channel SAR image, expressed as I =
| Agore?®tt|? = 22 4+ 42, follows the negative exponential distribution:

£(Ilo) = %e—#. (1.35)

o2

Having a multiplicative nature, speckle cannot be neutralized by increasing the intensity.
Therefore, the most elementary approach in speckle reduction would be multi-looking, where
on the expense of deteriorated spatial resolution, we obtain the decrease in speckle noise.
Namely, we incoherently sum the intensities of a set of SLC images, by means of the operation
which can be considered as a low-pass mean filtering (spatial averaging).

The amplitude of the multi-look (MLC) SAR image, obtained by summing N SLC images
is distributed according to the generalized gamma distribution [20]:

2NN IN—1 _NA%QDt
gg(Atotyo'a N) = 2NO'2N(N — 1)!Atot e 207, (136)

while the intensity follows the gamma distribution:

NNIN=-1 N1
G(Ilo,N) = (N—l)'2Na2Ne 202, (1.37)

The presented Rayleigh speckle model performs very well providing homogeneous nature
of the considered POLSAR clutter. However, due to the amelioration of the spatial resolution,
we ought to consider the clutter to be rather heterogeneous and thus, the SAR image to be
textured. The texture model of the SAR image in terms of intensity (I) is given as:

I =r1j, (1.38)

with 7 representing the texture variation, and j the normalized intensity (j = ﬁ) Commonly,
it is assumed for the texture to be a random gamma variable [21]:

k-k—1
kT kT

G(r|k,1/k) = T8 e, (1.39)

with k being the shape factor. Consequently, the intensity of the textured MLC SAR images,
obtained by means of N looks, is distributed according to the K-distribution, using the modified
Bessel function of the second kind (K,(.)) [21]:
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(Nk)(k+N)/2 (k+N) 1

K(I|k,o,N) = (N —1DIT(k)

K- n(2VENI). (1.40)

Analogously, the amplitude, being A = /I, follows [22]:

4(Nk)(k+N)/2

KAk 0. N) = 5 Dy

AFFN=1ge (2VENA). (1.41)

1.2.2 Polarimetric image statistics

In case of a POLSAR image, the statistical analysis gets a bit more sophisticated. Namely,
we cannot stay concentrated exclusively on the amplitude or the intensity of separate chan-
nels. We ought to consider their relations, both in terms of phase and intensity, as well [21].
Therefore, the target vector of a reciprocal target k is supposed to follow multivariate complex
Gaussian distribution [23]:

N(|T) = W‘lT‘ekHle. (1.42)

Both real and imaginary part of each of the elements of k are assumed to have circular
normal distribution [21], which was demonstrated in [24].

The coherence matrix of the multi-look POLSAR image (/N looks) is estimated as a sample
covariance matrix (SCM):

T,, = E [kk"] = Zkk (1.43)

and it follows the complex Wishart distribution, which has a following PDF in case of non-
reciprocal target:

N3N ﬁm |N—3€—NTr(T*1’f‘m)

W) =g

(1.44)

with Tr(.) being a trace operator and K (N, 3) = 73T'(N)['(N — 1)T'\(N — 2).

The previous formulas are equally valid for the covariance matrix (C), in case of considering
the lexicographic target vector (k.) rather than the Pauli one (k).

The K-distribution of the intensity of textured MLC SAR image can be generalized to the
POLSAR image [25]. Firstly, we rewrite Eq. 1.38 in the vectorial form:
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k = /7z, (1.45)

with z being Gaussian multivariate random vector, and 7 the texture defined by the distribu-
tion in Eq. 1.39. Then, we estimate the multi-look SCM:

N
’i‘m =E [kkH] = %anizf{. (1.46)
i=1

Finally, we can represent the multivariate K-distribution of the textured MLC POLSAR
data, or more concretely of the multi-look coherence matrix, as:

2’r’I\m‘N—3<Nk)(k+3N)/2 Ki—sn (2\/kNTr(T_1Tm)>
K(N,3)|T|NT (k) Tr(T-!T,,)-k-3N/2

K(Tp|k, T,N) = (1.47)

where K, (.) and K(N,3) have the same meaning as in the Eq. 1.40 and Eq. 1.44, respectively.

1.2.2.1 Spherically Invariant Random Vector

Spherically Invariant Random Process (SIRP) is the univariate stochastic model. Several spe-
cial cases of univariate stochastic processes (K-compound, Weibull, etc.) have been extensively
studied over the years (for example in coastal radar applications) before being reunited under
the common umbrella of SIRP [26].

Spherically Invariant Random Vector (SIRV) is the multivariate generalization of SIRP. It
is a multiplicative model:

y = Vkx, (1.48)

where x stands for multivariate Gaussian random vector, while random variable k can be
distributed according to several distributions: Gamma, Inverse Gamma, Fisher, and even
as a Dirac pulse. The random vector y is therefore distributed according to, respectively:
K-distribution [27], G-distribution, [28], KummerU distribution [29] and finally, multivariate
Gaussian distribution.

The covariance matrix of the Gaussian random vector is defined as a normalized coherency
(covariance) matrix [30]:

M = E[xx] (1.49)
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Figure 1.6: Overview of presented SAR/POLSAR image statistical models.

The big advantage of SIRV in terms of generality with respect to the texture statistics [31],
assures its privileged place in this thesis when dealing with the POLSAR image statistical

modelling.

1.3 Blind Source Separation

Blind Source Separation (BSS) can be defined as a family of methods which aim to recover
source signals from their mixture, without having any a priori knowledge of the mixing process

[32]. Formally, BSS techniques use a set of observation vectors (x) to retrieve the sources vector

(s) and the mixing matrix (A), which gives the share of the sources in the observed process:
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z1(t) A A - A [s1(d)
zo(t A A cee Agn | | sa(t

T L I L B e (150)
T (1) Ant Apz oo Apn] [5a(t)

where variable t can be related to time, space etc.

However, the criterion for separation varies upon the method being used. The pivotal
classification is related to a degree of separation, in terms of statistics. That is, the sources
are expected to be either mutually uncorrelated, or mutually independent. The most rep-
resentative method of the former criterion would be Principal Component Analysis (PCA),
introduced in this section. The latter criterion is represented by Independent Component
Analysis (ICA). Given the essential role they have in this thesis, ICA methods are presented
in more details.

I.3.1 Principal Component Analysis

The Principal Component Analysis, being a wide spread tool in data analysis [33], found its
application in signal and image processing, as well.

The method itself is entirely based on the eigenvector decomposition of the sample covari-
ance matrix of the observation data (x[nxl] € Xinx N]). Namely, the principal components
(PC) can be represented as rows of matrix Y,y i, derived as:

Y =E’X,, (L51)

with the matrix E having as columns the eigenvectors of the covariance matrix, estimated using
N samples of the observation data (centered with respect to the mean value p - subscript c):

N
1 1
=1

The same formalism can be applied in case of complex observations, by changing trans-
posing (superscript T') with conjugate-transpose (H).

The derived principal components are mutually orthogonal and can be regarded as un-
correlated. In Fig. 1.7 we demonstrate the derivation of PC, in the most simple case of
two-dimensional data (n = 2). The notations of the axes are not random, but however imply
that PC are in fact sources in the equation C.2 (s =y). Therefore, the columns of the mixing
matrix are the eigenvectors of observation data’s sample covariance matrix (A = E).
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(a) (b)

Figure I.7: PCA: (a) observation data (x), (b) uncorrelated sources (s).

Effectively, as demonstrated, the eigenvector decomposition of the observations’ covariance
matrix, is the very simple, but efficient mean of sources separation.

1.3.2 Independent Component Analysis

In terms of statistics, uncorrelation does not necessarily imply independence. Namely, we say
that two random variables are uncorrelated if their covariance equals zero:

¢ =E[(s1 = prs,) (52 = 1)) = Els182) — prsy — s, = 0. (1.53)

This way, we can claim that:

E[s152] = E[s1]Elsa] = fis 101 (154)

which is not necessarily reflected on the relation of their PDFs (p):

p(s1,52) = p(s1)p(s2), (1.55)

being simultaneously the condition of statistical independence. Actually, the condition in Eq.
.54 needs to be satisfied for higher statistical moments, not just the second one (covariance)
in order Eq. 1.55 to be true. The exception are the Gaussian variables, where Eq. 1.54 implies
Eq. 1.55, given that the second moment is the highest non-zero one.

Therefore, the common point for all ICA methods would be the estimation of indepen-
dent components (IC), by relaying on the probability moments higher than two, where the
estimation of IC in fact means, the estimation of the mixing matrix A.
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(a) (b) ()

Figure 1.8: ICA: (a) simulated uniformly distributed independent sources (s”), (b) mixture
(x), (c) whitened mixture (X).

Before proceeding with the detailed elaboration, by means of slightly complicated math-
ematical apparatus, we present a brief geometrical interpretation of the simplified two-
dimensional scenario, given in Fig. 1.8 [34]. At the same time, we present the two most
important pre-processing steps: centering and whitening.

Namely, let us presume having two independent uniformly distributed sources s, with a
joint scatter plot as the one in Fig. [.8a. Multiplying them with a random, non-orthogonal
mixing matrix A, results in a mixture, presented in Fig. 1.8b. We can consider this mixture to
be the set of observation data x, making thus the aim of the algorithm, simply, to transform
the data from the space given in Fig. 1.8b to the one given in Fig. I.8a. The first step would
be centering i.e. subtracting the mean from each of the observations’ channels, the operation
which places the mixture in the centre of the "x space". Second, a bit more complex step,
would be whitening i.e. the decorrelation of the observations’ channels. This is achieved by
multiplying the data by the whitening matrix V:

% = Vx = ED, '/?E"x, (1.56)

where the matrix E correspond to the one used in PCA (Eq. 1.51), and the matrix D, is the
diagonal matrix of eigenvalues. This operation gives us the joint scatter plot, illustrated in the
Fig. 1.8c. As it can be intuitively inferred, the only remaining operation is the rotation. This
operation is, in fact, ICA. In other words, the rotation we need is contained in the demixing
matrix D (inverse of the mixing matrix - D= A_l), and it is to be deduced from the higher
order statistics. As we will demonstrate in this section, there are several means to achieve
this, with most of them being based either on the iterative algorithms, or on the tensorial
calculus.

The very important restriction of ICA methods, would be their unfitness in case of Gaus-
sian observations. This constraint can be easily elucidated using the same intuitive geometrical
approach. Namely, as it is seen in Fig. 1.9, in case of a two-dimensional joint PDF space, Gaus-
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(a) (b)

Figure 1.9: ICA: (a) Gaussian observation data (x), (b) whitened Gaussian observation data

(%)-

sian observations form a circle, the fact which does not change after centering and whitening.
Therefore, estimating the appropriate rotation appears to be impossible.

Finally, in order to elaborate most representative, both iterative and tensorial, ICA meth-
ods, which are employed in this thesis, we ought to start from the common point - exploiting
higher order statistics [35].

The statistical order k of a random variable is characterized by the k** moment py, and
the k" cumulant sy, both derived from the characteristic function ¢(w) of a random variable:

o~ G s
kgo'uk k! - _¢(W)_/—me ps(s)ds (1.57)

kiﬁk Gl iafo)] = 1n [ | eﬂ'ws%(s)ds} |
=0

Equivalent for the random vector, where we are particularly interested in the cumulant
(cumy), would be:

icumk (j:!)k —In [ / h ej”xpx(x)dx} . (L58)
k=0 e

On one side, the most widely spread iterative method, presented in the following subsec-
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tion, is focused on the statistical properties of the source as a random variable. Therefore,
in this case, the higher orders are exploited by means of parameters derived in Eq. 1.58. On
the other side, the tensorial methods are rather based on the higher order cumulants of the
observation data. Them being a set of random vectors, this approach is rather relaying on the
formalism emerging from Eq. 1.58.

1.3.2.1 FastICA

The FastICA algorithm is a fast converging algorithm based on a fixed-point iteration scheme.
Principally, the concept of FastICA is derived from the Central Limit Theorem. It states
that the distribution of the sum of two independent random variables will always be closer
to Gaussian than the original variables. Therefore, the independence of the components is
ensured by maximizing the non-Gaussianity of the sources [36].

There are several criteria of Gaussianity measure (f,4) and therefore several approaches,
used in the FastICA algorithm:

e The kurtosis criterion: Being defined in its excess (normalized) form as the ratio of 4"
and 2"¢ order cumulants, the kurtosis of a Gaussian variable equals zero:

K4 4 — 345

kurt(s) =
(=" =t

(1.59)
Therefore by maximizing the kurtosis of each of the sources, we maximize as well their
independence with respect to the other sources.

e The negentropy criterion: The Gaussian variable has the largest entropy among all
the random variable with the same variance. The approximated negentropy [37], a
quantity being different from zero in case of non-Gaussian variable (v), is defined using
any non-quadratic function G(x) [34]:

J(s) o (E[G(s)] — EIG(v)])? (L.60)

Using FastICA routine [34], we are ensuring the sources independence by maximizing
the negentropy.

e Mutual Information (MI) is a natural measure of the dependence between random
variables:

_n N S_OO...OOSO f(s) S
1(31,52,...571)_;1{(31) H( )_/_OO /_Oof( )1 gf(SI)f(@).“f(sn)d (1.61)

with H(s) being the differential entropy derived from the joint PDF of the sources vector
ast — [7 -+ [7, f(s)log f(s)ds.
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The aim in this case is to achieve zero value, which indicates independence between the
sources.

e Maximum Likelihood Estimation (MLE) [38|: The log-likelihood function in the
noise-free ICA model is given as [39]:

T n

L= E; > log fi(w] %(t)) + Tlog | det W]| (1.62)
t=1 1=1

After estimating the probability density function f; of the sources (sj...sy,), the discrim-
ination between independent sources is achieved through maximizing the log-likelihood
function.

The columns of the mixing (de-mixing) matrix are estimated either separately or simulta-
neously by iteratively searching the maximum of non-Gaussianity of the source using centered
and whitened observation data:

max Jpg(w;) = max E [fng(szi)} , (1.63)

Wi

with w; being the column of the estimated mixing matrix, converging to the column of A.

In case of complex observation data, the criteria of non-Gaussianity are defined analogously
but however slightly differently, as it will be discussed in the Chapter III.

1.3.2.2 Tensorial methods

2nd order

The most intuitive way to introduce tensor would be representing a matrix as a
tensor. Therefore, a covariance matrix represents a second order cumulant tensor, composed
of 2" order cumulants cumsg, while a 4" order cumulant tensor (F) consists of 4" order cu-

4th

mulants cumy. Presented tensorial decomposition could be regarded as the order algebraic

equivalent of the 2"¢ order eigenvector decomposition.

Forth-Order Blind Identification (FOBI) is one of the simplest tensorial ICA methods
[40]. The independent backscattering mechanisms are derived as eigenvectors of the kurtosis
matrix, estimated using a whitened set of observation vectors (%), as the fourth order cumulant
tensor of the identity matrix I:

Ki(%) =F(1I) =E [(x"Ix)xx"| — 2I — tr(DI = E [|%]*%xx" ] — (n + 2)L. (1.64)

The most notable drawback of this method would be the condition that all the sources must
have quite distant kurtosis values, implicating the failure in case of having several mechanisms
characterized with the same distribution.
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Joint Approximate Diagonalization of Eigenmatrices (JADE) is a generalization
of FOBI [41]. Replacing the identity matrix with a set of tuning matrices (eigenmatrices of
the cumulant tensor:{My,...Mp}) results in a set of matrices: {Kn,,...Km,}. The whitened
de-mixing matrix D is estimated by jointly diagonalizing these matrices, which reduces to the
maximization problem:

P
max J (D) = mgxz ||diag <]~DICM1]~)H> I3 (1.65)
b b =

where ||diag(.)||?
the diagonal elements is equivalent to the minimization of the off-diagonal ones, the resulting
de-mixing matrix D jointly diagonalize the set of cumulants. This algorithm overcomes the
mentioned drawback of FOBI, but stays limited to low-dimensional problems.

is the squared £ norm of the diagonal. Given that the maximization of

Second-Order Blind Identification (SOBI) is, sort of, infiltrated in this section, given
that it does not explicitly rely on 4% order statistics. It would be actually the counterpart of
JADE in the 2" order statistics.

In this case, the observation data are divided into several series (X; € X) and each of
them is represented by one covariance matrix (C;).

The mixing matrix is estimated by jointly diagonalizing a set of these sample covariance
matrices of whitened observations [42]:

P
max S(A) = mgxz ||diag (ACZAT> |3 (1.66)
A A S

For all presented tensorial methods, the provided formalism is entirely appropriate in case
of complex observations, after changing the superscript 17" with H, as it was the case with
PCA.
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In this chapter we propose a methodological framework for the statistical evaluation of the
particularities of high-resolution data. It assumes the analysis of three important statistical
parameters: circularity, sphericity and spherical symmetry. All three of them are considered in
the context of the SIRV statistical model. The conclusions drawn after applying this framework
on the POLSAR datasets, are additionally reinforced by implicating high-resolution multi-pass

InSAR data set, as well.

Firstly, we introduce classical circularity and sphericity tests along with their extensions to
the SIRV stochastic model. Then, we present in detail the elaborated method of quantitative
assessment of the conformity of the SIRV model, based on testing spherical symmetry. Finally,
the results obtained using the proposed robust tests with synthetic, POLSAR and multi-pass

InSAR datasets, are presented and appropriately analysed.

31
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II.1  Introduction

As already implied in the preface of this thesis, we could ascertain that there is an ongoing
debate in the SAR remote sensing community, which concerns the necessity to alter from
the conventional multivariate Gaussian model, introduced in the previous chapter, in case
of high and very high resolution POLSAR data. Namely, as indicated in Section 1.2, the
heterogeneous POLSAR clutter, emerging from the amelioration in spatial resolution, implies
textured POLSAR images, characterized by the K-distribution. Furthermore, this statistical
model has been generalized by rather suggesting the SIRV model, a family of distributions,
comprising the K-distribution, as well. This has been done for POLSAR data [30, 29, 43, 44|,
but also for the InSAR data, being a multi-dimensional SAR dataset, as well [31, 45, 46].

This chapter has an aim to answer the first out of two questions portrayed in the preface
as the driving force of this thesis. In fact, at this point, the form of the question is a bit more
concise:

e [s the SIRV model appropriate for modelling POLSAR and other multi-dimensional SAR
datasets (InSAR)?

This question motivated us to propose a general framework which allows a quantitative
evaluation of the particularities of new generation datasets. More concretely, it is a framework
which allows a quantitative evaluation of fitting of SIRV stochastic models, with respect to a
given multi-channel SAR dataset. The illustrated multivariate high-resolution SAR datasets
show that in this case, it can be worth challenging two specific and very important stochastic
properties: the circularity and the sphericity.

Circularity concerns the statistics of a complex element of a target vector i.e. the relation
of its real and imaginary part. Being often assumed in the case of Gaussian multivariate
model, this parameter has been tested by extending the Gaussian circularity test to the SIRV
one. The results indicate that in case of very-high resolution POLSAR dataset quite a bit
non-circular target vectors occur, the phenomena which could be associated to the POLSAR
data calibration performances. Sphericity rather concerns the relation between different target
vector elements and, as it is demonstrated, complements the circularity test. However, its role
becomes crucial when the introduced concept of spherical symmetry is considered. The last
one, under certain constraints, serves to assess the appropriateness of the SIRV model in case
of multivariate SAR datasets. It appears that the SIRV model fails to properly characterise
target vectors in the regions with more explicit deterministic scattering.

The derived test are presented for the m-dimensional case. In case of POLSAR data, the
observed sample is polarimetric target vector, (Eq 1.4 or Eq. 1.20), and therefore m = 3. In
order to generalize the derived conclusion with respect to the type of multivariate SAR data,
we include a multi-pass differential InSAR dataset, for which in the considered case, m = 3,
as well.
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I1.1.1 SAR interferometry

Before proceeding to the very topic of this chapter, we will very briefly introduce the concept
of SAR interferometry, in order to facilitate the interpretation of the results, reinforced using
InSAR data.

SAR interferometry assumes exploiting the phase difference between m SAR images, ac-
quired either from m different positions (across-track), or at m distinct time moments (along-
track). In the case of conventional along-track two-pass InSAR system [47], we have two
channels (m = 2). By denoting with ¢ = pexp(j¢) the complex correlation coefficient be-
tween the EM fields, the target relative displacement dqo between the two acquisitions can be
retrieved from the exact knowledge of SAR antenna phase center positions, terrain height, ac-
quisition geometry, and an estimate of the differential interferometric phase ¢12. p12 is called
interferometric coherence and it describes both the local phase stability and the amplitude
decorrelation of the InNSAR pair. The phase information ¢15 allows phase differences (inter-
ferograms) to be computed in order to measure topography or target displacements between
repeated pass acquisitions. In the general case, the two-dimensional interferometric target
vector k will contain information about the relative displacements between each combination
of two passes.

The correlation coefficient (c¢) is derived from the covariance matrix, whose estimation
strongly depends on the employed statistical model. This fact motivated us to reinforce the
analysis of the considered statistical parameters by implicating InSAR data, as well.

I1.2 Circularity and sphericity

In the context of multivariate SAR data, we introduce two stochastic properties, often taken
as granted in case of a Gaussian model: circularity and sphericity. After adequately defining
the properties, we present the classical tests (Gaussian model) and propose the ones extended
to the SIRV stochastic model.

I1.2.1 Circularity

A complex-valued random variable (s = = + iy) is circular if the joint PDF of real and
imaginary part exhibits circular symmetry. This kind of joint PDF remains invariant to
multiplication with complex numbers on the unity circle, which implies that the real random
vector s = (x,y)” must be spherically symmetric with respect to the origin [48]. In other
words, circularly symmetric PDF can be written as:

ps(s) = 98(’3’2) (IL.1)

with g being a density generator, one dimensional representation of probabilities of absolute
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values of a complex number [49].

Circular random vector would be the one having real and imaginary parts independent.
When extending the concept of circularity to complex random vectors, we ought to rely on
the second order properties [50]. Therefore, we introduce the complex extended target vector:

. . . . . . T
J= [kT, kH]T = [xl +iy1 X9+ iys T3 +iys w1 —iyr X2 —iys X3 — zyg] . (I1.2)

Starting from J, the second-order statistical properties of the complex target vector k =
X + 7y can be analysed using the extended covariance matrix:

(11.3)

R:IE[JJH]:[C P],

P* C*

where C = E[kk"] is already defined covariance matrix and P = E[kk”] is the complex
symmetric pseudo-covariance matrix of the target vector k [51]. The former is also known as
“relation matrix” or "complementary covariance matrix”.

In [52], Schreier et al. proposed the circularity Generalized Likelihood Ratio Test (GLRT)
by employing the previously defined extended covariance matrix. The considered hypotheses
are:

{ Hy: P=0, kis circular, (I1.4)

H,: P#0, kisnot circular

This circularity test is checking for the block-diagonality of the extended covariance matrix
with respect to the covariance and pseudo-covariance matrix. We will firstly introduce this
test for the Gaussian multivariate process and further on, its extension to SIRV.

Before proceeding, we ought to mention that the term covariance matrix and coherence
matrix are to be considered as synonyms in this Chapter, given that the presented statistical
assessment appears to be invariant with respect to the target vector representation (lexico-
graphic or Pauli).

I1.2.1.1 Gaussian multivariate processes

The PDF of a zero-mean complex circular Gaussian target vector k (Eq. 1.42) can be gener-
alized with respect to its associated extended target vector J as [53, 50]:

1 _1Hr" 13

N(kR)=7""(detR)"2e” " 2 . (I1.5)
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The maximum-likelihood (ML) estimator of the extended covariance matrix is the Sample
Extended Covariance Matrix (SECM) obtained by replacing the statistical mean from Eq.
I1.3 with the spatial average:

N ~ A~
~ 1 C P
Rspom = > 1 = JSOM 2 SPM (IL.6)
i=1

* *
PSPM CSCM

where N is the number of samples, J; is the complex extended target vector of the i*” sample,
Csom and Pgpps are the Sample Covariance Matrix (SCM) (Eq. 1.46) and the Sample
Pseudo-covariance Matrix (SPM) estimators, respectively. Under the constraint P = [0],
imposed by Hy, the ML estimator is [52]:

- C 0
Rspom, = | oM 0" (11.7)

07,  Csem

By introducing Eqs. I1.6 and I1.7 into the Likelihood Ratio Test (LRT) associated to Eq.
I1.4, Schreier et al. derived the GLRT for N independent and identically distributed observed
samples [52]:

R H,
det(Rspon) %oy (IL8)

A(kl,kN) - = <
(det(Cscm))? Hi
As it is demonstrated in the Theorem 2 in [54], the asymptotic distribution of the decision

statistics under the null hypothesis is chi-squared (Hp: —NInA — an( . Schreier et al.

m—l—l))
also demonstrated that the GLRT from Eq. II.8 is invariant with respect to invertible linear

transforms.

11.2.1.2 Spherically Invariant Random Vectors

The GLRT makes use of the Gaussian assumption when inserting Cgcopr and Pgpjs estimators
in the LRT. Therefore, it ought to be modified before being applied on SIRV data.

By directly applying Tyler’s Corollary 1 from [55], Ollila and Koivunen demonstrated in
[54] that the GLRT for SIRV can be derived by dividing the logarithm of the GLRT statistics,
given in Eq. I1.8, with the correction factor «, estimated as:

i)

m Elk
S 7 (IL9)
L (ki) + 2 '

=1 v

with respect to the circularity coefficients, representing the "amount of circularity" or target
vector’s elements:
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(I1.10)

Following the same procedure as Ollila and Koivunen, N is replaced by (N —m) from the
Box approximation of the GLRT [56]. Finally, according to Tyler’s Corollary 1, the decision

statistic under the null hypothesis is also chi-squared (Hp: —(N — m)% — an(m +1)).

11.2.2 Sphericity

The sphericity test presented here complements the previously introduced circularity test: the
test for circularity checks that there is no correlation between the real and the imaginary part
of the complex random vector, while the sphericity test checks for equal independence between
the target vector components (independence and homoscedasticity). Hence, circularity is a
requirement before testing for sphericity, as k and k* cannot be independent otherwise.

The sphericity GLRT was introduced by Mauchly for real-valued m-dimensional Gaussian
random processes [57]. If and only if the random process is circular, it can be directly extended
to complex-valued random processes also. The hypotheses are:

{ Hy: C=ql,,, kis spherical, (IL11)

Hy: C+#<I,,, kisnot spherical

where ¢ is an unknown variable.

For the sake of simplicity and without loss of generality, the test is build such that the
normalized covariance matrix, defined in Eq. 1.49, M = 1,,. As a consequence, the derived
sphericity test must be invariant to linear transforms, also.

Given a set of N independent and identically distributed observed target vectors, the
Mauchly’s sphericity LRT is:

(det M)

Ag(ky, .. ky) = s
(k1 N)=m tr M ;0

(11.12)

In [58], A is reported to be invariant with respect to scale and invertible linear transforms
(see Chapter 10.7 on page 431):

Ag(ky, .. ky) = Ay(Vky, ... Vky), (IL.13)

with VMV¥H = 1,,, where V does not necessarily represent the whitening transform intro-
duced in Eq. 1.56.
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A SIRV exhibiting sphericity is a particular case of a SIRV with equal variances of the
differences between all combinations of target vector components.

The sphericity property appears to be particularly important in case of conventional multi-
pass SAR interferometry.

I1.2.2.1 Gaussian random processes

When replacing the covariance matrix by the SCM (ML estimate under Gaussian assumption),
the GLRT is obtained as:

— 1
det Mscar)m H
(det Msea)= (IL14)

As(kl, ...kN) =m
tr Mgonm Hy

Asymptotically, Hy : —NInAg; — X%m—l—?)(m—l) [57, 59].

11.2.2.2 Spherically Invariant Random Vectors

Following Muirhead and Waternaux original studies on the robustness of the GLRT from
Eq. I1.12 when sampling from a SIRV [59], Tyler proposed two different robust approximated
GLRTs for sphericity [60, 55].

The first method (Corollary 1 from [55]) is derived using the same reasoning as in the
case of circularity. However, this approximated GLRT appeared to be inefficient for moderate
departures from Gaussianity.

In this chapter, we adopt the second method for constructing the approximated GLRT for
sphericity (Corollary 4 from [55]):

oM(ky, . ky) = (det Mpp)m < (I.15)

0

where M rp is the iterative Fixed-Point covariance matrix estimator (already employed with
multivariate SAR data in [30]):

N

— m k,kH

Mpp = — E —_t 11.16
N i=1 k?M;}Dki ( )

When originally introducing this estimator, Tyler showed in [61] that M pp is an affine-
invariant covariance matrix M-estimator [62]. It has been demonstrated by Tyler that the
Fixed-Point estimator is an Approximate Maximum Likelihood (AML) estimator for SIRVs
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[63]. Hence, all conditions required to apply Corollary 4 from [55] are now fulfilled and H :
—N 5 IngAs — X%m+2)(m—1) is the distribution. Due to the Theorem V.4 in [64], N is
replaced by N 2.

I1.3 Spherical symmetry

The concept of spherical symmetry, being an essential part of this section, is used as a mean
for assessing the suitability of SIRV model in multivariate SAR data modelling [65].

Before introducing this concept, we ought to define a real derivative of the complex target
vector k. Let us presume that ¢ = [x7,y?]?
where x and y are its real and imaginary parts of k, respectively.

is that augmented m x 1 real random vector,

In order not to alter too much from the formalism introduced in circularity analysis, we
define the augmented real target vector as a function of the complex extended random vector
(3) using the following transform [53, 50]:

1 I, L, T
= - = i I1.17
¢ > |:_jIm jIm] IJ=[z1 220 23 w1 y2 y3) ( )

According to Vershik’s definition [66], complex vector z is spherically invariant if and only
if the characteristic function of the augmented random vector ¢ can be written as ® (%),

with ®(v) being a characteristic generator function:

d(v) = /000 e "p.(T)dr, (I1.18)

where matrix Z is a positive definite characteristic matrix, and p,(7) a PDF on [0, 00). More
intuitively, by applying ¢/ = Z~/2¢ linear transform on the augmented random vector, the
density generator function ®(v) takes the form:

®(¢T¢/2) = FUICTP), (IL.19)

where ||.|| is the Euclidian norm. This implies that the SIRV ¢ is reduced to a new SIRV
¢’ with its new covariance matrix equal to I, (identity matrix of order m). In this case, ¢’
clearly exhibits spherical invariance.

The PDF of a SIRV vector whose characteristic function poses these properties, can be
expressed in terms of normalized covariance matrix M and a texture PDF p.(7) as:

1

- - Y
Prlk) = i, (k M k) , (I1.20)
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with hm(q) = [§° 7 ™ exp (%) p-(7)d7 and det M denoting the determinant of the covari-
ance matrix M. Yao (Lemma 4.1 in [67]) also demonstrated SIRV closure under invertible
linear transform (e.g. as suggested for Eq. 11.19). All target vectors k satisfying these condi-
tions accept a product model stochastic representation [68].

Further on, we ought to note that a random target vector kg has an elliptically symmetric
distribution [69] if it is affinely equivalent in distribution to a spherically symmetric target
vector kg:

kr = Akg + b. (11.21)

Therefore, spherical symmetry represents a particular case of elliptical symmetry when
A =1, and b = [0],,x1. In our case, by identifying in the SIRV whitening transform from
Eq. I1.19, it yields A = C~%/2 and b = [0],,x1 (due to the zero mean).

Hence, on one side, a spherically symmetric white SIRV vector, being characterized with
unity covariance matrix, is necessarily spherical. On the other side, the previously introduced
sphericity test is no longer valid in the absence of the elliptical symmetry, making the last
property a mandatory constraint in testing the sphericity.

The spherical symmetry property in multivariate statistics is defined with respect to a SIRV
with covariance matrix I,,, (white SIRV). The general SIRV case, with unknown covariance
matrix, was studied under the "elliptical symmetry” property. Since the family of spherical
symmetric distributions (SSD) can be considered as the standardized form of the family of
elliptically contoured distributions (ECD) (by employing the whitening transform from Eq.
I1.19), we adopt in this chapter the original Yao’s notation by considering zero mean elliptically
contoured distributions as SIRVs. Hence, we use the term "spherical symmetry" for both SSD
and ECD goodness-of-fit testing. An exhaustive presentation on SSD and ECD can be found
in |70].

Spherical symmetry testing was firstly introduced by Kariya and Eaton [71], using an
alternative form of the Lehmann and Stein lemma [72] with known covariance matrix. In the
common situation where the covariance matrix is estimated from data, several strategies for
robust spherical symmetry testing have been proposed by Beran [73], King [74], Baringhaus
[75], Fang et al. [76], Manzotti et al. [77] and Huffer et al. [78] among the most recent
publications. Li et al. proposed in [79] a graphical method for spherical symmetry testing:
the Q-Q probability plots. This method has been applied in [80] to hyperspectral image
analysis.

According to [78], one of the most powerful spherical symmetry tests was proposed in [81]
for real random vectors. In this section, we have adapted the Schott test for multidimensional
complex SAR data analysis.
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I11.3.1 The Schott test for circular complex random vectors

Assuming the existence of the forth order moment (or quadricovariance) matrix:

M, = k kT @ kkH, (I1.22)

Schott proposed the Wald test [82] for verifying if the structure of My corresponds to a SIRV
(as originally given by Tyler in [55]). This structure holds for circular complex random vectors,
also [69].

With complex random vectors, the first modification is the sample quadricovariance esti-
mator. According to [83|, the sample complex quadricovariance estimator can be expressed in
terms of the Kronecker product ® as:

N

— 1

M= Z;kikf{ ® kik!T, (11.23)
1=

where the transposed operator 1" is replaced by the conjugate and transpose operator H. Its
corresponding standardized form is:

—~~ 1H o~

o~ H o~ o~ —
My, — (M 3 oMl )M4 (M*% ®M*%). (11.24)

According to the Schott’s theorem, the Wald test statistic for spherical symmetry can be
expressed as:

Tsehott = N{pitr (ﬁi) + Bovec (fm)H ﬁi*vec (IAm> (I1.25)
— 381+ (m+2)Ba) m(m + 2)(1 + &)},

where:
Br=(1+6)"/24, (11.26)
By = —3a[24(1 + 0) + 12(m + 4)a(1 4+ 0)] 1, (11.27)

~

a=0+60)+(1+R)?>-200+R)(1+7n), (11.28)
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with the Mardia’s kurtosis k/u\lrtm and the generalized higher order scalar moments é\, 7 given
by:

N
_ 1 _ 2
14 kurty) = ————— [kHM_lkz} , 11.29
(1+6) = L > [kHﬁ*1k~} ’ (11.30)
1 N _ 4
147) = kIM k| . 11.31
(L+7) m(m—i—Q)(m—|—4)(m+6)]\fiz;[Z } ( )
Asymptotically, Tscnott — X2 With Vmoiee = M — 1. This represents

complex

the second modification with respect to the Wald test from [81]. According to Schott, the
degrees of freedom is set according to the number of unknowns of the quadricovariance matrix:

-1
UmcomPlEI = Z(Umreal + 1) o |:7n/(,rn2) + m:| - 17 <1132>

with vy, . =m?+

m(m=1)(m*+7m=-6) _ 1, being as in [81]. The second term in Eq. I1.32 comes
2

24
from the number of real elements of My: elements of the form z; :c? and m elements
of the form z}. It has been proven in [84] that the Wald test and the LRT are asymptotically

equivalent.

m(m—1)
2

I1.4 Results and discussions

To illustrate the proposed tests, we applied them on two different POLSAR datasets: the
synthetic dataset and very high-resolution ONERA RAMSES POLSAR dataset [85]. In order
to reinforce derived conclusions, we include also the application on high-resolution TerraSAR-
X multi-pass InSAR dataset. All of these datasets are shown in Fig. II.1.

This section is dedicated to the analysis of the three data sets in terms of circularity,
sphericity and spherical symmetry. Since the mean equal to zero is a requirement for all
the derived tests, the zero-mean test is firstly applied on the augmented real random vector
¢. This test is valid for both Gaussian and SIRV stochastic models, and its results for real
datasets are illustrated along with the results of the proposed tests.

Under circularity, the zero-mean testing can be performed by using the T?-statistic. When
testing the hypothesis Hy that a mean vector k is equal to zero, the generalized likelihood
ratio criterion for the circular multivariate Gaussian model is:
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(a) ()

Figure II.1: Data sets: (a) Synthetic POLSAR data, intensity color composition of the target
vector elements kj-/3-ko in Pauli basis, (b) Toulouse, RAMSES POLSAR data, intensity
color composition of the target vector elements k;-/3-ko in Pauli basis, (¢) TerraSAR-X 3-pass
InSAR data, amplitude color composition of the complex random vector elements ki-ko-ks.

T? = Nk"Mg}, k. (11.33)

with T? — x2, under Hy (see Theorem 5.2.3 from [58]). In case circularity is not assumed,
this test can be directly applied on the augmented real random vector ¢. This results holds
asymptotically for the SIRV models according to Theorem 5.7.1 from [58|. More details are
provided in [86, 87, 88|.

The GLRT from Eq. I1.33 is not scale invariant like the ones from Sections I1.2.1.2 and
I1.2.2.2. Thus, Tyler’s Corollaries 1 and 4 from [55] cannot be applied directly.

The discussions associated to the results presented in this section, concern only these high-
resolution multivariate SAR data sets. The estimation neighbourhood is the 13 x 13 boxcar
and the false alarm probability threshold is ps, = 0.01.

I1.4.1 Synthetic data

The synthetic dataset is composed out of nine different regions (Fig. II.2a). Six of them
are characterized with the SIRV PolSAR clutter, while for the remaining three the clutter is
Gaussian (clutter covariance matrix for each of the regions is provided in Fig. II.2a). In four
regions the additive thermal noise (circular or non-circular) is present. As well, we introduce a
coherent scattering through the simulated elementary reflectors (two trihedrals, dihedral and
dipole).

In the dataset derivation, we relied on the ML deterministic texture estimator:
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Table II.1: Toulouse, RAMSES POLSAR data, X-band: detection results. A - the percentage
of pixels exhibiting both the row and the column defined property, B - the percentage of
pixels exhibiting both the row and the column defined property with respect to all the pixels
exhibiting the row defined property. Margin of error is calculated for the percentage in A as
1.96 x standard error of a percentage, determining thus, 95% confidence interval.

Non Non Non
zero mean circular Spherical spherically sym.
(45249 pixels) (230104 pixels) (1283 pixels) (373983 pixels)
A B A B A B A B
Non zero mean 4.52% 100% 0.91% 20.13% 0% 0% 2.3% 51%
| Margin of error | +0.041% | +0.019% |  4+0% |  +0.0290% |
| Non circular 091% | 4% | 28.01% | 100% | 0.02% | 0% | 7.18% | 31% |
Margin of error +0.019% +0.083% +0% +0.051%
| ___ Spherical __ | 0% _[ 0% | 002% | _o% [018% | 100% [ 0% [ 0% |
Margin of error +0% +0% +0.007% +0%
| Non spherically sym. 2.3% 6.1% 7.18% J 192% | 0% l 0% | 37.4% | 100% |
Margin of error +0.029% +0.051% +0% +0.095%

Fpp = —— LT (I1.34)

Aside from the assumed detection of the coherent scattering sub-regions (elementary re-
flectors), circularity test rejects successfully the regions corrupted with additive non-circular
thermal noise. The heterogeneity (borders between different regions) does not appear to in-
fluence this test significantly.

Sphericity test detects properly the Gaussian clutter with additive circular thermal noise
as well as the Gaussian clutter without noise. As it is the case with the circularity test, the
influence of non-stationarity is negligible.

However, the spherical symmetry test does not seem to be immune to the heterogeneity,
but still quite successfully rejects the coherent scattering (deterministic target).

11.4.2 Very high resolution POLSAR data

Ilustrated in Fig. II.1b, this data set was acquired over Toulouse, France with a mean
incidence angle of 50°. It represents a fully polarimetric (monostatic mode) X-band acquisition
with a spatial resolution of approximately 0.5m in range and azimuth.

The background image from Fig. II.3a, I1.3b, I1.3c and II.3d is the estimated span of
polarimetric target vectors, equivalent to the fixed point Polarimetric Whitening Filter (PWF)
[30]. We have used here the same representation and the same color coding as in the previous
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Figure I1.2: Synthetic data set, 200x200 pixels: (a) description of the regions, (b) circularity
rejection map superposed on the span, (c¢) sphericity map superposed on the span, (d) spherical
symmetry rejection map superposed on the span.



I1.4. Results and discussions 45

Figure I1.3: Toulouse, RAMSES POLSAR data, X-band, 1000 x 1000 pixels: (a) zero-mean
rejection map superposed on the PWF span in Db, (b) circularity rejection map superposed

on the PWF span in Db, (c) sphericity map superposed on the PWF span in Db, (d) spherical
symmetry rejection map superposed on the PWF span in Db.
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section, while Table II.1 sums up the POLSAR results. It can be observed that this dataset
is globally zero-mean and not spherical: the corresponding percentages are less than the
imposed significance level. The SIRV model (spherical symmetry) holds in about two thirds
of all realizations, while the non-sphericity confirms that multivariate statistical modelling is
correctly employed since the clutter is not spherical.

In other words, Fig. I1.3d indicated that the spherical symmetry is rejected over the urban
areas exhibiting strong deterministic scattering. Quantitatively, one can deduce in Table
I1.1 that the Schott test for spherical symmetric circular complex random vectors rejects
non circular pixels in about 31% of all cases, only (7.18% rejected, out of 23.01%). Hence,
circularity testing is mandatory prior to testing the SIRV model conformity.

Finally, both Fig. I1.3c and Table II.1 indicate a relatively high percentage of noncircular
pixels in this POLSAR dataset. These pixels are mainly located in the weak backscattering
image areas (shadowing). Since the data are zero-mean, this effect is not induced by any non-
centered thermal noise additive component. However, it may be introduced by the specific
calibration of this airborne very high resolution POLSAR data: the motion compensation
module tracks and rectifies the signature of specific calibrated point targets on the ground.

I1.4.3 High-resolution multi-pass InNSAR data

The 3-pass interferometric stripmap HH images were acquired in 2009, at 11-day interval,
over the Argentiére village, France with a mean incidence angle of 5°, an azimuth-resolution
of 3.3m and a slant-range resolution of 1.8m. This data set has been used for SAR tomography
over this area as it exhibits a high coherence level over the main buildings from Fig. II.1c [89).
The background image from Fig. I[.4a, b, ¢, d is the estimated span, equivalent to the fixed
point Interferometric Whitening Filter (IWF).

The pixels illustrated in magenta on Fig.II.4a indicate where the zero-mean test is rejected.
It can be observed from Table II.2 that this dataset is zero-mean: the percentage of rejected
pixels is much less than the significance level a priori set (1% in all cases).

Fig. II.4b shows in red the pixels where the adjusted circularity test is rejected. These
pixels should be processed as 2m real random vectors. The percentage of rejected non circular
pixels (cf. Table I1.2) is, although larger than the significance level, still small enough (3.14%)
for us to conclude that this dataset is circular.

Fig. II.4c and Fig.Il.4d illustrate in blue the pixels where the sphericity test from Eq.
I1.15 is accepted, and in green the pixels where the spherical symmetry test from Eq. 11.26
is rejected. The quantitative results summed up in Table I1.2 indicate that both sphericity
and spherical symmetry properties are significant for this dataset. Qualitatively, it can be
observed that:

e localized mainly in regions with high density of strong scatterers, the nonspherical pixels
should be treated as a fully multivariate process inside the local neighborhood when
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Figure 11.4: Argéntiere, TerraSAR-X 3-pass InSAR data, X-band, 1024 x 1024 pixels: (a)
zero-mean rejection map superposed on the IWF span in Db, (b) circularity rejection map
superposed on the IWF span in Db, (c) sphericity map superposed on the IWF span in Db,
(d) spherical symmetry rejection map superposed on the IWF-FP span in Db.
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Table I1.2: Argeéntiere, TerraSAR-X 3-pass InSAR data, X-band: detection results. A -
the percentage of pixels exhibiting both the row and the column defined property, B - the
percentage of pixels exhibiting both the row and the column defined property with respect
to all the pixels exhibiting the row defined property. Margin of error is calculated for the
percentage in A as 1.96 x standard error of a percentage, determining thus, 95% confidence

interval.
Non Non Non
zero mean circular Spherical spherically sym.
(3751 pixels) (32882 pixels) (424856 pixels) (328125 pixels)
A B A B A B A B
Non zero mean 0.36% 100% | 0.01% 2.8% 0.02% 5.6% | 0.18% 50%
| Margin of error | +0.012% | 0% | - +0% | +0.008% |
| Non circular 0.01% | 0% | 814% | 100% | 127% | 40% | 0.55% | 17.6% |
Margin of error +0% +0.033% +0.02% +0.014%
| Spherical 0.02% | 0% | 123% | 3% | 4052% | 100% | 3.14% | 7.8% |
Margin of error +0% +0.021% +0.094% +0.033%
| Non spherically sym. | 018% | 0% [ 0.6% | 2% [ 3.14% [ 10% | 313% [ 100% |
Margin of error +0.008% +0.015% +0.033% +0.089%

estimating the InSAR coherence and phase parameters;

e mostly located in the same areas of the image, the nonspherically symmetric pixels
indicate where the SIRV (and consequently the compound Gaussian) model fails to
properly describe the multivariate clutter.

This specific behavior may be linked with the presence of strong deterministic scattering
in urban areas: the analyzed target is not distributed but deterministic. Nevertheless, the
proposed tests build a methodological framework to study this effect with respect to the SIRV
model.

Spherical symmetry is a prerequisite for sphericity. For quantitatively validating the ob-
tained results, the percentage pixels detected as spherical and rejected for spherical symmetry
was computed in Table I1.2: the value is quite small considering the significance level. This
condition is met for non circular and non-zero mean pixels, also.

Additionally, about 18% of non circular pixels are rejected by the Schott test for spher-
ical symmetric circular complex random vectors. This reinforces the previously established
conslusion that circularity should be tested before testing for spherical symmetry.

II.5 Analysis

When dealing with multivariate high-resolution SAR data, it is crucial to decide if a specific
stochastic model is properly fitting the experimental dataset inside the estimation neighbor-
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hood. The accepted stochastic process with the smallest number of parameters should be
selected. In other words, if both the SIRV model and the Gaussian model are fitting the data,
the latter will have better estimation performances with a finite number of samples. Based
on the results presented in this chapter, we provide the methodological framework to asses
multivariate SAR data conformity, based on the following tests:

1. Zero-mean test,
2. Circularity test,
3. Sphericity test,
4. Spherical symmetry test,

5. non-Gaussianity test.

The algorithmic representation of proposed methodological framework is provided in Fig.

IT.5.

By successively performing the proposed tests for a specific multivariate SAR dataset, it is
possible to asymptotically evaluate the pertinence of various model-based statistical processing
schemes (filtering, segmentation or detection).

In terms of theoretical performance analysis, the adjusted generalized LRT is asymptot-
ically uniformly most powerful according to the Neyman-Pearson lemma. This "optimality"
holds provided the estimators plugged into the LRT (or the Wald test) are consistent and
unbiased, which is the case for our study.

Special care must be taken when applying the tests with multivariate SAR data. In theory,
the proposed conformity testing holds as long as the observed number of samples (estimation
neighborhood) is large enough with respect to the dimension of the target vector, especially
for the spherical symmetry test (based on the specific structure of the quadricovariance).

Finally, it is important to stress that no predefined analytical form was imposed on the
texture probability function when establishing the conformity tests. Therefore, they can be di-
rectly applied for a wide class of stochastic processes currently used for describing multivariate
high-resolution SAR data.

I1.6 Conclusions

In this chapter we have presented a new methodological framework to asymptotically asses
the conformity of multivariate high-resolution SAR data. The proposed approach consist of
applying successively three statistical hypotheses tests for verifying three important statistical
properties: circularity, sphericity and spherical symmetry, briefly summarized in Fig. II.6.
The latter is asymptotically equivalent, under certain hypotheses, to the conformity of the
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Figure I1.5: Methodological framework
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experimental data with respect to the SIRV product model. In addition, the zero-mean and the
non-Gausiannity [44] tests can be used to decide which model is better suited to asymptotically
fit the experimental data.

The proposed framework, aside from the fact that it is gathering the most notable advances
in the field of signal processing, is introducing the extension of both the sphericity and the
spherical symmetry tests with zero-mean complex circular SIRV assumption.

The effectiveness of the proposed detection schemes was illustrated by synthetic and
very high resolution ONERA RAMSES POLSAR data. Additionally, the analysis has been
strengthened by high-resolution TerraSAR-X multi-pass InSAR. The conclusions driven from
the analysis of the obtained results are important with respect to the two tested real datasets:
circularity is important for very-high resolution POLSAR data, while non-sphericity can be
an important issue for high-resolution multi-pass InSAR.

It has been illustrated that in strong heterogeneous clutter, such as the urban environment,
the SIRV model can fail. The bottom line is that characterization of urban regions is much
more complex (and difficult) - since a more complex model, with more parameters, may
be required. In the light of the results shown in this chapter, SIRV models may be less
appropriate for urban areas characterization. However, alternative explanations are possible.
As an example, the root of this inappropriateness might as well be the assumed ergodicity /
stationarity (in spatial sense) for the backscattered signal and, also, even in the hypothesis of
randomness: targets exhibit a deterministic behavior.

First, the very use of a sliding analysis window for estimating the stochastic parameters
of the scattered signal may be questioned, as it implicitly assume that the considered signal
is ergodic / stationary in spatial sense (homogeneous). While this hypothesis holds for dis-
tributed and uniform targets, where the physical parameters (and, thus, the electromagnetic
scattering behavior) differs very little from one resolution cell to another, in urban areas the
physical structure (and, as such, its electromagnetic behavior) may change considerably from
one resolution cell to the next. This makes the hypothesis of ergodicity / stationarity less
applicable.

Second, one should note that even the randomness of the radar echo is not given, but
assumed. This is mainly a way to deal with the inherent complexity of the signal. Anyway,
for identical measuring conditions, the recorded radar data is perfectly identical. Even if small
differences in measuring conditions lead to strong discrepancies in the recorded data, this is
not an evidence for randomness, as such behaviour can be fully explain under a deterministic
paradigm - the chaotic models. Various parameters, such as meteorological conditions and,
even more important, the changes that the target suffers in time (between two succeeding
acquisitions, for example), account for the observed randomness of the recorded data. How-
ever, these changes of the target are more significant for green targets (such as forests and
agricultural fields), where humidity and wind modify both their physical structure and their
electromagnetic behavior. On the other hand, those changes are less significant for urban
targets and, as such, randomness is less likely for the latter.
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Figure I1.6: Brief summary of the analysed statistical properties.

In perspective, applying chaotic (or pseudo-chaotic) [90, 91, 92] models to POLSAR /
InSAR data from urban areas can be a possible solution. These models should be able to take
into account the deterministic features of those areas (presence of dihedral angles, straight
edges, cavities, etc.), while still leaving room for some unpredictability (orientation of those
elements). Using chaotic models in POLSAR and multi-pass InSAR data will make the object
of our future work.

This work has many interesting perspectives. We believe that it contributes toward the de-
scription and the analysis of heterogeneous clutter over scenes exhibiting complex polarimetric
signatures. Firstly, the exact texture normalization condition for the PWF-SCM estimator has
been derived under the SIRV clutter hypothesis. A novel estimation / detection strategy has
been proposed which can be used with conventional boxcar neighborhoods directly. Finally,
the proposed estimation scheme can be extended to other multidimensional SAR techniques
using the covariance matrix descriptor, such as the following: repeat-pass interferometry, po-
larimetric interferometry, or multifrequency polarimetry.
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This chapter represents the focal point of the thesis. Here, we generalize Incoherent Target
Decomposition concept to the level of BSS, by replacing conventional eigenvector decompo-
sition with ICA algorithm. The proposed decomposition exploits the higher order statistical
information, emerging from POLSAR clutter heterogeneity [1]. The result is a set of mutually
independent, non-orthogonal target vectors, characterizing dominant scatterers over a station-
ary set of observed target vectors. The most dominant component appears to be quite similar
to the ones obtained by means of conventional methods, but the second ones carries a new
information.

Firstly, relying on Section 1.3, we discuss the role of BSS in ICTD. The description of the
method, comprising the elaborated comparison of applied ICA algorithms, is provided there-
after. The roll-invariance properties are as well discussed at this point. Finally, we present the
application of the decomposition on two real data-sets, followed by corresponding discussion.
The last contains an application on a synthetic data set as well, used to demonstrate the ca-
pability of retrieving non-orthogonal mechanisms. The polarization basis invariance analysis
is demonstrated using one of the real data sets.

93
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III.1 Introduction

As already stated in Section 1.3, under certain constraints, the eigenvector decomposition
of the scattering coherence matrix, provides the same results as the Principal Component
Analysis (PCA) of the corresponding representative target vector [93]. Thus, the conventional
approach in POLSAR images incoherent target decomposition, elaborated in Section 1.1.2.2,
results in deriving uncorrelated components. This is adequate if we consider the conventional
statistical model assuming Gaussian homogeneous clutter [94]. However, as being elaborated
in the previous two chapters, the high and very high POLSAR data can be characterised by
Non-Gaussian heterogeneous clutter [30]. In this case decorrelation cannot be considered as
the most meticulous way for separating the scattering sources present in the scene. It appears
that more advantageous solutions, capable of deriving independent components, are needed.
Applying the Independent Component Analysis (ICA) seems to be one of such solutions.

The research presented in this chapter would be our effort to answer the second question
posed in the preface of this thesis. Namely, by accepting the altered statistical models we are
accessing in a different manner to the target decompositions, trying to exploit the information
contained in the higher statistical orders. This information allows different characterization of
POLSAR data, which could prove to be advantageous with respect to the conventional one.

The ICA methods have been already successfully employed on SAR data: in speckle re-
duction, feature extraction and data fusion [95, 96]. The application on polarimetric data was,
however, either restricted to the analysis of two-components polarimetric target vector [97],
either rather related to the POL-InSAR data analysis [98].

The main idea of this chapter is to propose a generalization of the polarimetric decom-
positions to the level of blind source separation techniques by introducing the ICA method
instead of the eigenvector decomposition. Essentially, our motivation is the possibility to
exploit higher order statistics of the non-Gaussian target vector in order to recover a set of in-
dependent dominant scatterers. The recovered linearly independent scattering target vectors
are not necessarily mutually orthogonal, which is demonstrated using a synthetic data set.
At first, we apply the statistical classification algorithm (for example [43]) in order to obtain
stationary sets of polarimetric observations - scattering matrices projected onto the Pauli ba-
sis. Then, the target vectors of the single scatterers are estimated by applying comparatively
the representative ICA algorithms, introduced in Section 1.3.2, on each of the sets derived in
the previous step. They are parametrised using the TSVM, allowing the adapted Poincaré
sphere representation with direct physical interpretation [99]. The share of the component in
the total backscattering is computed by the squared ¢ norm of the single scatterer target
vector.

The proposed method, based on the particular version of the FastICA algorithm [100] is
invariant both under the rotation of the line of sight and under the change of polarization basis.
The latter is demonstrated using the projection of the observations onto the circular basis,
coupled with the Circular Polarization Scattering Vector (CPSV) model [101] and furthermore,
by additionally employing o — 8 — v — § model in Pauli basis [15].
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The method particularities with respect to the conventional approach are demonstrated
using RAMSES X-band and ALOS L-band data sets. Comparative analysis points out strong
similarity when dealing with the first most dominant components. However, there is a remark-
able difference in the behaviour of the second components. It appears that on the expense
of a negligible increase in entropy, the second most dominant component contains some valu-
able information. In the first data set, acquired over urban area, while analysing the class
which corresponds to the elementary trihedral placed in the scene, we detect the diffraction
scattering by identifying dipole as the second most dominant component. On the other side,
when dealing with the distributed targets (mountainous region), we are able to rely on the
symmetry of the second most dominant component in discriminating between different types
of snow cover and the bare ground. In terms of the second component, we as well, demonstrate
and discuss the advantage of the "global" (classification) over the "local" approach (sliding
window) in selecting observation datasets.

I11.2 PCA and ICA

Relaying on Section 1.3, where we have elaborated the concept of BSS by emphasizing PCA
and ICA, we are reinforcing here the link between these two, in order to better position the
proposed decomposition with respect to the conventional ones.

If we introduce the spatially averaged covariance matrix of the observation vector x as C,,
the mixing matrices, A’ and A”, corresponding respectively to PCA (') and ICA ("), can be
represented as factorizations of the covariance matrix [93]:

C,=AAH = A"A"H (I11.1)

and they are mutually related by an unitary matrix P:

A"=A'P. (IT1.2)

Choosing the columns of A’ to be denormalized eigenvectors of C,, ensures decorrelation
between the elements of s’. The denormalization assumes multiplying by the square root
of eigenvalue and it is emphasized since it is the denormalized eigenvector which forms a
coherence matrix of a single scatterer in a conventional approach. Even though multiplication
of A’ with an arbitrary unitary matrix (rotation) preserves decorrelation, maximum energies
for the components of s’ are achieved with the matrix of eigenvectors. For this reason, we are
identifying the first step of the conventional approach in ICTD (eigenvector decomposition)
with the PCA [93].

On the other side, the matrix A” cannot be retrieved using only second-order statistics,
unless we treat Gaussian observations, only. Even though it is intrinsically linked to the
matrix C,, the mixing matrix of independent sources cannot be estimated using this matrix
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only. Namely, considering the equation III.2, it appears that the estimation of the unitary
"floating" matrix P requires knowledge of the higher order statistics.

Therefore, it is necessary to apply a method capable of exploiting higher order statistical
moments - ICA. The ICDT method, proposed thereafter, has been molded by comparatively
testing both the fixed-point iterative algorithm (FastICA) [34, 100], and the most representa-
tive tensorial methods [40, 41, 42].

II1.3 Method

The proposed incoherent polarimetric decomposition method consists in three main steps:

1. Data selection - the observation data sets are selected using statistical classification of
the POLSAR image (named "global approach"). This choice, rather than a sliding
window (named "local approach") is discussed in the following section, dealing with the
performance analysis.

2. Estimation of the independent components - the most appropriate among analyzed ICA
algorithms is applied on each of the formerly derived data sets in order to estimate the
most dominant single scatterers.

3. Parametrization - derived target vectors are parametrized using the Touzi’s Target Scat-
tering Vector Model (TSVM) [16].

After the first step, we can assume having defined stationary sets of observed target vectors.
The novelty with respect to both the Cloude and Pottier [15] and the Touzi [16] decompositions
is introduced mostly in the second stage.

I11.3.1 Estimation of the independent components

The core of the novel ICA based polarimetric decomposition is the estimation of the mixing
matrix A¢, for each of the derived classes (¢). In the first chapter we introduced several criteria
for determining the elements of A¢ in order to ensure the mutual independence of the sources
in 8. The common factor for all of them is the assumption of high-resolution polarimetric
SAR images [102] - at most one of the sources is Gaussian and thus their mixture or the
observation data prove to be Non-Gaussian [34]:

Afy Afy Al 5§(, )
ke(i,j) = | A5, ASy ASg| - [s5(4,5) | = A°s(4, ]). (I11.3)
AS A5y Ajg 55(4,7)
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Initial target vector

Class

Figure I11.1: RAMSES POLSAR X-band, Brétigny, France: (a) Pauli RGB coded image; (b)
Statistical classification performed in the first step.

In our case, the observation data are the Pauli target vectors corresponding to the a priori
defined class (k. € K.), meaning that we finally obtain one mixing matrix A¢ for each of the
classes c. In the particular case of ICDT, we are facing the complex nature of the observation
data.

By applying different criteria in the Complex FastICA algorithm, followed by the most
representative tensorial methods, we compare, in the framework of ICTD, the performances
of several strategies used in the estimation of the complex independent components [103|. The
constraint we introduce at this point would be that the selected approach has to be adapted
to the scenario where sources may eventually exhibit non-circular distributions i.e. non-
circularity. Given the potential for circularity rejection demonstrated in the second chapter,
it appears reasonable to stay restrained to the ICA methods with this particular property.

The observed target vectors are centered and whitened. The later is the orthogonalization
transform V (Eq. 1.56) applied on a set of vectors k¢ and therefore on the mixing matrix A°¢
as well:

k = VK® = VA®s® = As®, (I11.4)

However, at this stage, the components are not scrupulously decorrelated, which can be
deduced from non-diagonalized pseudo-covariance matrix E{kk”} [100].

The first among tested ICA algorithms would be the version of the FastICA, introduced in
Section 1.3, but adapted to the complex nature of the observation data and thus, the mixing
matrix. Rather than relying on one of the four introduced conventional measures of non-
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Gaussianity, we use as a measure a set of non-linear functions f,4(s). As well, the contrast
function given in Eq. 1.63, is slightly modified by inserting a squared module operator:

max Jy(w) = max E [ fng(|wa<\2)} : (IIL.5)

with w being a whitened mixing matrix column, converging toward a column of A, as in
Section 1.3.2.1.

The performances of the algorithm strongly depend on the choice of the specific nonlinear
function f,4(s), which is supposed to be suited to the particular application. Therefore, we
use here three different functions, leading to different criteria (C') in deriving the independent
target vectors:

o kurtosis (C1):

fng1(s) = %32; (I11.6)
e logarithm (C2):
fng2(s) =1log (0.05 + s); (I11.7)

o square root (C3):

fnga(s) = v0.05 + s; (I11.8)

In the first case, the contrast functions approximately matches one of the criteria intro-
duced in Section 1.3.2.1, becoming essentially a measure of the fourth statistical moment of
the source, e.g. a non-normalized kurtosis. As its value in case of the Gaussian variable equals
E{s*} =3 (IE{SQ})2 = 3, by maximizing the kurtosis of each of the sources, we ensure their
independence. Being slowly growing non-linear functions (Fig. IIL.2), fn42(s) and frg3(s)
allow more robust estimation with respect to the presence of outliers. However, in case of all
three functions, super-Gaussian (leptokurtic) distributions are favoured.

In this version of FastICA, by including the pseudo-covariance matrix of the observation
target vectors in maximizing the contrast function (Eq. IIL.5), the applied algorithm is gener-
alized to the case of complex sources having a non-circular distribution [100]. This way, despite
the modulus in equation II1.5, the phase information is preserved.

The other means for mixing matrix estimation, satisfying our constraint, are the introduced
tensorial decompositions: FOBI, JADE and SOBI. As indicated in Section 1.3.2.2, the only
necessary adaptation with respect to the already introduced methodology, would be changing
the operation transpose with conjugate-transpose [104].

Finally, the estimated mixing matrix is de-whitened using the inverse orthogonalisation
transform V1

A=V W, (I11.9)
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Figure II1.2: Nonlinear functions used in the Complex Non-Circular FastICA algorithm, along
with the tangents in the point 1, indicating the difference in the monotony. Function f,g2 is
translated for value n for the purpose of monotony comparison.

The result of the incoherent target decomposition is the set of target vectors representing
elementary scatterers and a set of scalars, providing their proportion in the total scattering.
In our case, the target vectors of the independent scatterers are the columns of the estimated
de-whitened mixing matrix A¢.

The contributions to the total backscattering are computed as the squared ¢? complex
norms of the mixing matrix columns - the energies of the single scatterers [105]:

A3 = [Avl? + | Agi|* + | Azl (I11.10)

In the framework of the formalism introduced in section III.2, the contributions summed
up in equation II1.10 could be defined as diagonal elements of the matrix A”TA”. In the
same way, eigenvalues are diagonal elements of A’TA’. Even though the matrix A” is not
orthogonal and therefore some information contained in the non-diagonal elements of A”tA”
is lost, the entropy estimated in these two cases is significantly similar. In the earlier attempt
of introducing the ICA into the POLSAR data analysis [98], the contributions were estimated

1

by rather relying on the derived sources (P; = £s(i)s(i)), which doesn’t appear to be an

appropriate choice, given the variances of the estimated sources being set to the unit value.

Finally, we parametrise the estimated target vectors by applying Target Scattering Vector
Model, introduced in the Section 1.1.2.2.

I11.3.2 Roll-Invariance

One of the major conveniences of the conventional approach is the roll-invariance of the co-
herence matrix constructed from a linear combination of the eigenvectors [106]. Even though
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Figure I11.3: RAMSES POLSAR X-band, Brétigny, France: entropy estimation using (a) PCA
- Pauli basis, (b) PCA - circular basis, (c) ICA - Pauli basis (C2 criterion), (d) ICA - circular
basis (C2 criterion), (e) ICA - Pauli basis (C3 criterion), (f) ICA - Pauli basis (FOBI), (f)
ICA - Pauli basis (JADE), (h) ICA - Pauli basis (C1 criterion), (i) ICA - Pauli basis (SOBI),
(g) Entropy estimated for the trihedral class (Class 8).

the proposed method does not directly conserve the roll-invariance through the reconstruction
from a linear combination of the eigenvectors, it appears as well to be invariant to the rotation
R () of the observed target vectors (Table II1.2):

10 0
kY =R(A)k°= |0 cos(20) —sin(26)]| k°. (ITL.11)
0 sin(20) cos(26)

In order to prove and justify this, we ought to get back to the "geometrical" interpre-
tation of the ICA, introduced in Section 1.3.2, but now considered in the appropriate three
dimensions. Let us presume having three uniformly distributed real sources s (Fig. IIl.4a).
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| |
(a) (b) (a)

Figure II1.4: The joint probability density functions of: (a) three uniformly distributed real
sources, (b) the mixture, (c) the mixture rotated about the line of sight (x1 axis) for § = 30°.

By multiplying them by a non-orthogonal mixing matrix A, we get the set of observations x
(Fig. III.4b). Given that the whitening and de-whitening deal with the form (transforming
data in Fig. II1.4b into "the cube"), the estimated mixing matrix actually accounts for the
orientation of "the cube", representing a 3D rotation, defined with three angles corresponding
to three degrees of freedom.

Switching to the complex domain does not change the essence of the presented "geomet-
rical" interpretation. In the context of our application (x = k¢), with implicitly assumed
whitening and de-whitening, the rotation around the line of sight R(0) affects only one of the
angles defining A (¢, &, x):

kS = R(0)k® = R(O)A (1, &, X)s = A, (¢ + 0,€, Y)s. (I11.12)

T

The other rotation angles (£ and y) remain the same, which does not change with the
performed inversions and they provide us the roll-invariant parameters in the estimated mixing
matrix A;:

B=A,'=RA)'=A"TR!, (I11.13)

A, =B ! =RA. (IT1.14)

The columns of the estimated mixing matrix A, are the estimated backscattering com-
ponents and, as the derived TVSM parameters are invariant with respect to change of the 1
of the component, they are equally invariant with respect to the change introduced by the
rotation applied on the observation target vectors ¢ + . Therefore, even though the FastICA
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algorithm itself is not invariant under the rotations of the observation data (A, # A), the
TSVM parameters derived in our case are indeed invariant.

For the purpose of comparison, in this case we have neglected the identity in Eq. 1.31,
which however, does not by any means compromise the validity of the derived conclusions.

II1.4 Performance analysis

After discussing the data selection criteria, we demonstrate the particularities of the proposed
method through the application on two real POLSAR data sets: RAMSES X-band image
acquired over Brétigny, France and ALOS L-band images acquired over Chamonix, Mont
Blanc, France. Aside from that, using a synthetically generated data set, we emphasise the
difference with respect to the conventional approach (PCA).

I11.4.1 Data selection

The principal drawback of the proposed method is the size of the observation dataset, which
has to be somewhat larger than the size of the sliding window used in the well established
methods. The inevitable consequence is the bigger number of the independent components
out of which not more that the most dominant three can be estimated [98|. In view of this,
rather than using a very large sliding window, we rather rely on a classification algorithm in
the data selection. The influence of the size of the window is demonstrated and discussed at
the end of the chapter.

The first step is the classification of the POLSAR image. At this stage of research, we
choose to classify the input image using the statistical classifier developed for highly textured
POLSAR data [43]. Unlike the classical H/a/A unsupervised classification [106], assuming
Gaussian homogeneous clutter and therefore relying on the Sample Covariance Matrix (SCM)
estimate, classical mean and Wishart distance [107, 108], the Non-Gaussian heterogeneous
clutter is taken into account.

Under the Spherically Invariant Random Vector (SIRV) model assumption of the POLSAR
clutter [67, 30|, the initialization is performed through the H/« unsupervised classification
based on the Fixed Point (FP) Covariance Matrix estimator [109]. The barycenters of the
initialized classes are calculated iteratively using the Riemannian metric corresponding to the
geometric mean [43]. At the end, pixels are assigned using the Wishart criterion.

In this phase, we obtain the set of representative target vectors for each of the classes.
These vector sets represent the observation data for the BSS, while the selection method
assures relevance in the case of incoherent targets.
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II1.4.2 Synthetic data set

In this section, we demonstrate the capability of retrieving orthogonal mechanisms using
synthetic POLSAR data [93]. The observation data set is created using the non-orthogonal
complex mixing matrix:

—0.4840 — 0.4105¢ 0.0505 + 0.2020¢ 0.1556 — 0.2645¢
A= |0.0645 — 0.3043: —0.0155 + 0.2180: 0.0546 — 0.3471:|, (IIL.15)
0.00561 + 0.0015¢ 0.6174 — 0.15037 0.4683 + 0.2601%

and three independent sources characterized by the Gamma distribution, each of them having
different parameters k and 6:

G(s|k,0) = ekl}(k)sk_le_z' (I11.16)

The components retrieved in case of applying the ICA algorithm (Eq. II1.17) correspond
approximately to the components in Eq. III1.15. On the other side, because the mixing matrix
A is not orthogonal, the PCA (Eq. II1.18) is not capable of retrieving the original matrix:

—0.4458 — 0.4016; —0.0181 + 0.1954i —0.1720 — 0.2288i
ATCA = | 00592 — 0.2847i —0.0919 + 0.1947; —0.2751 — 0.1703i]| , (IIL.17)
0.0070 + 0.0223; 0.5987 + 0.1189 0.3953 — 0.3058i

—0.4625 + 0.2230i 0.5624 + 0.5072i —0.2665 — 0.3030i
APCA = 108393 + 0.1568 0.0443 + 0.4372i —0.1068 — 0.2577i| . (IIL.18)
0.0854 0.4831 0.8714

This is confirmed through the analysis of their 2D cross-correlations [110] illustrated in
Fig. I1L5:

M—-1N-1
Crrve (6,1 = > Y My (m,n)Ma'(m — k,n —1). (I11.19)

m=0 n=0

This section demonstrated that the ICA, aside from being able to assure the independence
of the components, identifies the second component without any constrain of orthogonality.
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Figure II1.5: Synthetic data set analysis: (a) matrix A autocorrelation; (b) cross-correlation
of A and AC4; (c) cross-correlation of A and A4,

111.4.3 Data set I: Urban area

The results presented in this section are obtained by applying the proposed ICTD on the
RAMSES POLSAR X-band image acquired over Brétigny, France. Fig. III.1 illustrates the
Pauli RGB coded image and shows the classification map used to define the observation data
sets for the ICA algorithm.

I11.4.3.1 The criterion selection

In the first place, the goal is to compare the ICA methods and choose the appropriate in the
context of ICDT.

The first point of comparison between the proposed methods in complex independent
components derivation is the possibility of identifying the class of trihedral reflectors present
in the scene (Class 8 in Fig. III.1). The mask derived from the classification map allowed us
to select the observation data set containing only target vectors from the regions in the image
where the reflectors were placed. Further, one mixing matrix is estimated using each of the
three criteria. In each case, the first and the second dominant components are presented on the
symmetric scattering target adapted Poincaré sphere (Fig. II1.6) [16]. The third component
parameters are provided in the Table V.1 but, due to the values of helicity and symmetric
scattering type phase, the illustration using a sphere is not possible for each of the applied
methods.

All the methods are able to identify the class corresponding to the trihedral reflectors
placed in the scene. A curious fact is that the second dominant component in each case
appears to be symmetric as well. Concerning the FastICA, kurtosis criterion results however
in both first and second components almost matching trihedral. This indicates apparent
"splitting" of the trihedral on the two dominant components, which cannot be granted as a
good estimation. On the other side, in case of the logarithm and the square root criteria, the
second component, although symmetric, rather represents weaker dipole backscattering. In
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Figure II1.6: RAMSES POLSAR X-band, Brétigny, France: Adapted Poincaré sphere repre-

sentation of the trihedral class (Class 8) single scatteres (first component,
, trihedral) using (a) PCA, (b) ICA - C2 criterion, (c¢) ICA - C3 criterion, (d)

)

ICA - FOBI, (e) ICA - JADE, (f) ICA - C1 criterion, (g) ICA - SOBI.

Table III.1: RAMSES X-band POLSAR data over Brétigny, France: roll-invariant parameters
of the single scatterers in the trihedral class (Class 8). Trihedral expected values are: 7, =

0%, cs = 0°, B, = [—90, +90].

Comp. | PCA | ICA-C2 | ICA-C3 | FOBI | JADE | ICA-C1 | SOBI

Ist 023 | -0.28 028 | -032 | -033 | -0.33 0.32

Tl 3715 | -0.24 036 | 050 | 043 | -042 | -1.18

36.15 | 19.84 577 | -1.80 | -167 | 7.11 1.45

1st 0.50 0.53 0.53 090 | 1.14 1.49 3.09

sl 89.21 | 39.91 4120 | 1354 | 1025 | 7.34 2.23
87.90 | 58.49 5497 | 36.19 | 3443 | 24.82 | 21.84
1st | -51.25 | -2742 | -27.70 | 593 | 7.01 754 | -77.67
D, [°] -18.64 |  2.56 333 | 1249 | 11.09 | -9.60 | -80.66
68.86 | 77.92 | -68.60 | 34.38 | 60.93 | -83.22 | -34.70
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case of tensorial methods the third component appears to be symmetric, as well. However, with
respect to established criterion, FOBI and JADE are placed behind the FastICA logarithm
and square root criteria, although the trihedral "splitting" appears to be less conspicuous than
in the case of kurtosis. SOBI completely fails to separate two dominant components.

The second point of comparison is the entropy estimation [106] (Fig. I11.3). Having PCA
based classic decomposition as a reference, we have compared the overall estimation of entropy
(all classes), paying particular attention to the trihedral class. The entropy estimation scheme
appears to be by far the best with the criteria (C2 and C3). Actually, the gradation of
methods corresponds exactly to the one obtained at the first point of comparison. This is
however, not surprising, given that the inability to concentrate the energy of trihedral in the
first component implies the "splitting" of the same and thus the inevitable increase of entropy.

The overall performance of the analysed ICA criteria in the frame of ICTD, seems to
depend directly on the growth rate of the employed nonlinear function. The ICA based on
slowly growing nonlinear functions (logarithm and square root) are more efficient in both
identifying trihedral as the most dominant backscattering mechanism and, although it is an
implication, in estimating entropy. The poor performances of selected tensorial decompositions
rise from the fact elaborated in section 1.3.2 - they depend too much on the particularities of
the data 2nd and 4rd order structures. On the other side, FastICA is far more adaptive.

After choosing the second criterion (C2) of the NC FastICA as the most appropriate one,
we have compared the ICA based ICDT with the PCA classic counterpart. The estimated
first dominant component is nearly equivalent in both cases (Fig. I11.8). It was this fact which
inclined us toward the comparison of the estimated entropy as one of the criteria for selecting
the appropriate non-linearity.

The second component, however, appears to be significantly different (Fig. II1.8). This
is both due to the constraint of mutual orthogonality present in the conventional approach
and due to the useful information contained in the higher order statistical moments. The
same class used in comparing the different criteria (Class 8) happens to be favourable for
demonstrating the utility of the second dominant component. Namely, dipole as the second
strongest single scatterer indicates the capability of recognizing the trihedral’s edge diffraction,
eventually.

I11.4.3.2 Polarisation basis invariance

The same dataset was used to demonstrate the invariance with respect to more complex
uniform transform - the change of the polarization basis. The observed scattering matrices
are projected on the circular polarization basis and the obtained components parametrized
using Circular Polarization Scattering Vector (CPSV) [111, 112]:
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Figure III.7: RAMSES POLSAR X-band, Brétigny, France: comparison between the TSVM
parameters obtained by means of PCA (first most dominant component (i) and second most
dominant component (iii) and by means of ICA (first most dominant component (ii) and
second most dominant component (iv)): (a) T, (b) as, (¢) Pq,.
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sin ar. cos f, expj(—%TC — 2)
k. = VSPANexp j® COS ¢ expj%T . (II1.20)
— sin a, sin G, expj(—%TC + 2¢)

Among four parameters invariant to the rotation around the LOS (¢) and to the tar-
get absolute phase (®): energy (SPAN), angle Y., angle a. and helicity defined as Hel. =
sin? o, [cos2 B, — sin? 5(3], we have compared the last three with their counterparts derived
from TSVM parametrisation in the Pauli basis. The angles T, and «, if the target is sym-
metric (7, = 0), correspond, respectively, to Trysm = (7/2 — ®4,)/4 and . Helicity
Helpysy is defined as a function of 7, and the Huynen con-eigenvalues polarizability v |7,
10

€Oos 27y sin 27,
cost vy (1 + tantyy)

HelT\/SM = (111.21)

On one side, as it is demonstrated in Fig. I11.8 and in Table II1.3, we obtain the perfect
matching in terms of Hel (if we do not apply Eq. 1.31). On the other side, even for the
symmetric classes (7, ~ 0), we don’t have a perfect matching of Y, which is justified by the
values of «, which converge either to 0 or 7/2, when this parameters becomes meaningless
[101]. The angle «. agrees perfectly with g in case of symmetric target. However, in order
to reinforce this robustness proof, we have as well implicated o — 8 — v — § parametrization,
given in Eq. 1.26 [15].

As it can be seen in Table II1.3 and Fig. IIL.9, the derived oy, parameter, as expected,
matches perfectly a., regardless of symmetry. Aside from this we compared the « — § —~vy — 0
parameters derived conventionally (using PCA) with the ones obtained using our approach.
It is the angle o, (or ;) which fortifies the conclusion arising from the TSVM parameters -
the first dominant components are quite similar, but the second (non-orthogonal in our case)
contains undoubtedly different information. This difference is certainly related to the removal
of orthogonality constraint, which imposes conventionally a1 + ape ~ /2.

I11.4.4 Data set II: Mountainous region

In order to analyse the performances in case of a distributed target, the proposed ICDT is
applied on POLSAR images acquired over mountainous regions. Two ALOS L-band images
of Chamonix, Mont Blanc in France, are used for this purpose. Their classification is given in
Fig. II1.10.

Based on a priori known ground truth provided by the Electricité de France (EDF), we
have labelled the classes (Table I11.4) in two images with one of the four labels (dry snow,
wet snow, bare ground and foldover) [99]. Using both the PCA based method (the first and
the second component) and the first component of the ICA based method, we didn’t manage
to characterize the labelled classes with any of the derived roll-invariant parameters from Eq.
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(e)()

Figure I11.8: RAMSES POLSAR X-band, Brétigny, France: comparison between the CPSV
parameters obtained by means of PCA (first most dominant component (i) and second most
dominant component (iii)) and by means of ICA (first most dominant component (ii) and
second most dominant component (iv)): (a) Hel., (b) Helrsym, (¢) ae, (d) Ye, (€) Trsym.
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(g)(ii) (h)(ii)

Figure 111.9: RAMSES POLSAR X-band, Brétigny, France: comparison between the first (i
and the second (ii) most dominant components in terms of a — 8 — 7y — ¢ parameters: (a) «
(PCA), (b) B mod w/2 (PCA), (c) v (PCA), (d) § (PCA), (e) a (ICA), (f) S mod 7/2 (ICA),
(2) 7 (ICA), () 5 (ICA);
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Table 111.3: RAMSES X-band POLSAR data over Brétigny, France: comparison of the derived TSVM, Cloude-Pottier and CPSV

parameters.
Parameter Method Class 11 Class IV Class VI Class VIII
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
o PCA 0.04 43.25 42.21 -0.22 2.71 -42.84 -6.71 1.7 -42.87 -0.23 -37.15 36.15
7m[°] ICA -0.15 -25.12 42.73 -0.64 1.27 2.92 -4.71 6.15 -29.42 -0.28 -0.24 19.84
B, [°] PCA -34 20.19 -24.89 -38.39 38.36 -84.16 6.02 -5.72 69.01 -51.25 -18.64 68.86
s ICA 9.6 -11.65 -34.12 -38.92 39.32 -34.23 -1.83 26.25 -74.18 -27.42 2.56 77.92
o PCA 1.35 78.48 78.02 39.9 49.95 64.49 68.3 20.85 73.19 0.5 89.21 87.9
as[°] ICA 5.03 71.48 18.74 41.7 47.1 84.59 62.19 58.22 33.23 0.53 39.91 58.49
Yrsynl] PCA 14 17.45 16.28 12.9 12.91 43.54 24.01 23.93 5.25 35.31 17.84 39.71
ICA 20.1 19.59 13.97 12.77 12.67 31.06 22.04 15.94 3.96 29.35 23.14 3.02
Helpsya PCA 0 0.37 -0.37 0.01 0.07 -0.08 0.16 0.04 -0.2 0 0.03 -0.03
ICA 0 0.45 -0.5 0.02 0.03 0.02 0.14 0.17 0.21 0 0.01 0.12
PCA 31.02 -17.25 -61.03 32.1 -12.87 1.19 20.98 -23.97 -4.84 50.37 27.16 -39.72
ICA -20.09 25.61 -45.8 32.23 -12.66 -31.06 22.96 -15.84 43.55 52.13 21.86 -47.63
Hel, PCA 0 0.37 -0.37 0.01 0.07 -0.08 0.16 0.04 -0.2 0 0.03 -0.03
ICA 0 0.45 -0.5 0.02 0.03 0.02 0.14 0.17 0.21 0 0.01 0.12
acl] PCA 1.35 89.3 88.84 39.9 50.16 88.14 68.93 21.11 88.77 0.67 89.78 89.36
ICA 5.04 78.28 85.69 41.72 47.15 84.62 62.6 59.03 64.36 0.77 39.91 66.28
ap[°] PCA 1.35 89.3 88.84 39.9 50.16 88.14 68.93 21.11 88.77 0.67 89.78 89.36
ICA 5.04 78.28 85.69 41.72 47.15 84.62 62.6 59.03 64.36 0.77 39.91 66.28
° PCA 76.06 20.19 69.8 1.12 4.74 86.79 7.66 10.88 81.95 70.71 0.81 89.19
Bol’] ICA 6.61 22.51 66.92 1.41 3.58 88.91 7.25 8.99 53.49 57.56 2.4 76.58
° PCA 33.4 -127.96 -150.67 59.79 -92.94 94.85 36.97 -132.16 71.22 111.26 81.9 -68.88
(%] ICA 158.49 49.66 -88.08 91.17 -109.95 -34.24 44.57 -105.09 89.8 111.33 11.32 -101.44
5,[°] PCA -134.2 17.55 174.86 -141.61 38.34 49.92 173.41 -6.87 25.73 19.77 -161.36 -132.05
P ICA 9.98 -172.32 -132.54 -141.08 39.27 -9.49 -178.62 25.94 -106.17 9.6 177.42 -83.09
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Figure II1.10: ALOS L-band image acquired over Chamonix, Mont Blanc, France: (a) clas-
sification of image I; (b) 7,,(2) (ICA-C2, image I); (c) as(2) (ICA-C2, image I); (d) ®n,(2)
(ICA-C2, image I); (e) classification of image II; (f) 7,,(2) (ICA-C2, image II); (g) as(2)
(ICA-C2, image II); (h) ®,,(2) (ICA-C2, image II).

1.30. However, the second most dominant component of the ICA based ICDT proves to be
useful. As it is demonstrated in Table I11.4, the bare ground can be characterized with helicity
parameter close to zero (symmetric target), the dry snow appears to have positive helicity,
while the negative values can be associated to the wet snow.

The same data set serves to demonstrate the advantage of the "global approach" (observa-
tion data selected using classification) with respect to the "local" one (sliding window based
selection). As it can be seen in Figure I11.11, the local approach cannot be used to discrimi-
nate between the labelled classes. The reason is the insufficient size of the observation dataset,
selected by a sliding window. On the other side, as it is demonstrated in Fig. 111.12, augment-
ing the size of the same window causes the blurring effect. However, it improves the overall
estimation of entropy, the remark emerging from the comparison with PCA counterpart.

I11.5 Conclusion

In this chapter we presented a novel method for Polarimetric Incoherent Target Decomposi-
tion, based on the Independent Component Analysis [113]. Motivated by the Non-Gaussian
nature of the clutter in high resolution POLSAR images, we aimed to exploit higher order sta-
tistical moments in retrieving single scatterers present in a scene. Given the stated equivalence
between the Principal Component Analysis and the eigenvector decomposition (conventional
approach), we generalized ICTD to the level of Blind Source Separation techniques (which
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Figure II1.11: ALOS L-band image acquired over Chamonix, Mont Blanc, France: Adapted
Poincaré sphere representation of the "locally" derived 2nd dominant components: (a) bare
ground class (I/1); (b) wet snow class (I/2); (c¢) wet snow class (II/1); (d) dry snow class
(I1/2); (e) dry snow class (II/3).

Table I11.4: ALOS L-band POLSAR data over Chamonix, Mont Blanc, France: comparison

of TSVM parameters of the 2nd dominant component, obtained either by means of PCA or
ICA, for the labelled classes.

Image/Class | Class description T[] a[’] Do [
PCA ICA PCA | ICA | PCA ICA
I/1 bare ground 6.41 -2.42 | 12.64 | 20.33 | 1845 | -58.20
1/2 wet snow -5.83 | -14.83 | 68.77 | 72.50 | -22.73 | 8.87
II/1 wet snow 0.84 -7.72 5.95 3.45 25.96 | -48.09
11/2 dry snow -6.96 6.59 20.22 | 1849 | -32.46 | 12.17
11/3 dry snow -6.47 | 9.30 10.27 | 5.50 | -85.02 | -62.80
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Figure II1.12: The entropy estimated using sliding window (local approach): (i) PCA based
method, (ii) ICA based method. Sliding window size: (a) 11x11, (b) 21x21, (c) 31x31;

comprise both PCA and ICA). After comparing several criteria, the Non-Circular FastICA
algorithm [100] based on maximizing the logarithmic non-linear function in order to achieve
mutual independence of sources, proved to be the best approach in the framework of ICTD.

The proposed method is able to retrieve non-orthogonal single scatterers, which was il-
lustrated using a synthetic POLSAR data set. It is invariant both under rotations of the
observed target vectors and to the change of the polarization basis.

The results obtained by applying the proposed method on airborne POLSAR data over
Brétigny anticipate the potential of the additional information provided by the second
dominant component. This was possible by properly taking advantage of both the non-
orthogonality property and the higher order statistical moments.

Finally, when dealing with distributed targets, the second dominant component appears
to be of great interest, also. This was illustrated using Touzi’s roll-invariant parameters, by
achieving a better discrimination between the a priori labelled classes in mountainous regions.

Future work concerning this part of the thesis will enrol in two main directions. Firstly,
we will try to explore as much as possible all the benefits of the new information contained
in the second dominant component. Secondly, we will continue with applying and comparing
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different ICA methods in order to achieve the optimal decomposition with respect to the class
of stochastic processes under study. The approach which seems to be particularly interesting
is to achieve BSS using Maximum Likelihood Estimation.



Methodology: Conclusions

The methodological context of this thesis is devoted to the analysis of high and very
high resolution SAR multichannel data, with a particular emphasis on polarimetric data. In
one part, it concerns the assessment of statistical properties, which are in some way altered
with respect to the conventional assumptions, the latter being founded on the hypothesis of
Gaussianity. However, the focal point of this part, and the entire thesis, would be the accord-
ingly proposed approach in polarimetric target decomposition, motivated by contemporary
statistical hypotheses.

As indicated in the preface, the research presented in Chapters II and III, represents
genuinely our efforts to answer two questions, which appear to be, at the moment, quite
intriguing for a SAR community:

e Are the newly proposed statistical models truly appropriate for modelling POLSAR and
other multi-dimensional SAR data sets?

e In terms of interpretation, what are we exactly gaining by acknowledging the departure
from the Gaussianity assumption?

In Chapter I we have presented a brief but systematic review of most representative po-
larimetric target decompositions as well as the overview of statistical models, conventionally
characterizing POLSAR datasets. The latter was reinforced by introducing the SIRV statisti-
cal model, named above as contemporary statistical hypothesis. This was done by generalizing
a model related to the highly textured SAR image, occurring in case of heterogeneous SAR
clutter. Finally, we introduced the family of selected BSS techniques, whose implication in
the processing of POLSAR images, would represent the major contribution of this thesis.

The opinion on the first posed question constitutes Chapter II. Namely, here we introduced
the test of spherical symmetry, which can be, under certain defined constraints, considered
as a measure of fitness of the SIRV statistical model in the multi-dimensional POLSAR, data
characterization. At the same time, the circularity and the sphericity tests, originally defined
for Gaussian multi-variate data, were extended to the SIRV model. The results and conse-
quently, conclusions, obtained for a three-dimensional POLSAR dataset, were reinforced by
applying the derived tests on a three-dimensional InSAR dataset.

It appears that the circularity property, often assumed in case of homogeneous clutter,
can not be taken as granted in a SIRV case. The remarked circularity rejection can point out
the defects in the calibration. At the same time, the circularity would be one of the defined
constraints for a spherical symmetry test to be used for the SIRV conformity assessment.
However, given that the latter does not necessarily reject non-circular pixels, the circularity
test must be employed before. The sphericity property is analysed in order to grant legitimacy
to the spherical symmetry test, given that the spherical pixels do not require multivariate
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modelling. Finally, with all the constrained respected, the spherical symmetry i.e. the SIRV
model conformity test, leaded us to the conclusion that SIRV model fits rather well, except in
case of urban area, where the deterministic scattering occurs dominantly.

The second question motivated us to propose a novel method for incoherent polarimetric
target decomposition, which is founded on the previously stated non-Gaussianity hypothesis.
Namely, by replacing the eigenvector decomposition, an equivalent to PCA, comprised in the
conventional algebraic ICTD, with ICA method, in a certain manner, we generalize ICTD to
the level of BSS. The new method provides mutually non-orthogonal and independent, rather
than decorrelated, target vectors, parametrised by means of Touzi’s TSVM. Given that they
have been derived by exploiting higher-order statistical information, non-existent in case of
Gaussian clutter, we consider this decomposition to be a contribution in the discussion related
to the second posed question.

The first most dominant component appears to be equal as in the case of conventional
approach, as well as the entropy estimation. However, the second most dominant components
contains different information which, as we anticipate, can be useful in interpreting polari-
metric datasets. To justify this anticipation we provide two examples. Firstly, in the case of
application on urban target, when applied on pixels corresponding to the elementary trihe-
dral, the second estimated component appears to be dipole, which can be associated to the
trihedral edge diffraction. Secondly, in the case of distributed target i.e. snow in the moun-
tainous region, using parametrised second component, we manage to distinguish bare ground,
dry snow and wet snow.
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Remote sensing of snow
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This chapter serves as an introduction to the applied context of the thesis. Namely, as stated
in the preface, remote sensing is an applied scientific discipline, often intrinsically linked to
Earth’s sciences. Therefore, aside from the contributions, presented in Part A, which could
be designed as rather methodological, we present in this part more concrete environmental
problem, approached by means of SAR remote sensing, with the important incorporation of
optical imagery.

Firstly we briefly introduce the snow cover properties, particularly emphasizing the pa-
rameter of special interest - Snow Water Equivalent (SWE). Then, the interaction of the snow
cover with EM waves is discussed i.e. the employed simulator and the consequently assumed
snow cover backscattering mechanism are presented. Finally, we discuss the aspect of spatial
hydrological modelling, complementing remote sensing techniques in the context of particular
problematic - SWE spatial estimation.

IV.1 Snow pack properties

Snow pack represents a mixture of ice crystals, liquid water and air. The proportion of these
materials is a function of many factors, the most dominant one being the temperature. For
temperatures below 0°, the proportion of liquid water is negligible so we consider that type
of snow to be the dry snow. Above this temperature, certain quantity of liquid water can
be present, in which case snow is characterized as the wet one [114]. As it will be elaborated
in this chapter, the backscattering properties and therefore the methods employed in snow
parameters extraction, differ significantly for these two types of snow.
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IV.1.1 Basic physical properties

The most basic physical parameter of a snow pack is the snow density ps(kg/m?):

m; + My

= Pili wJws V.1
v pifi+ puwf (Iv.1)

Ps =

with m; and m,, being the mass of ice and water respectively, and V; the volume of snow.
Further, p; is the density of ice (=~ 917kg/m?), py is the density of water (= 1000kg/m?), and
fi and f,, their volumetric fractions.

In the mountainous regions, snow pack represents a significant water resource, used in
agriculture, power production, as a drinking water supply etc. The exact amount of liquid
water contained in the snow pack is given through the physical quantity - Snow Water Equiv-
alent (SWE). It would be a function of two independent snow physical properties [115]: snow
density (Eq. IV.1), and the second basic snow cover property - the depth of a snow pack (d):

1
SWE = — [ pdz (IV.2)

In other words, SWE is defined as the depth of the layer of liquid water that would
be produced if all the ice in the snow pack were melted [114]. Due to numerous difficulties
in performing in situ measurements (high altitudes, global coverage), the estimation of this
quantity turns out to be suitable for remote sensing application. The advantages evoked in
the preface, as significant snow pack penetration, along with the high spatial resolution and

the clouds penetration capability, candidate SAR remote sensing for this kind of application
[116, 117].

Estimating SWE by means of remote sensing implies estimating independently density
and depth, where knowing density, in fact means, knowing ice volumetric fraction - dry snow
density (pgs) and the water volumetric fraction, or the third basic snow property - wetness
w(%). However, either the target vector in the POLSAR image, or the intensity pixel in the
single channel SAR image, depend on many more, both sensor and snow cover parameters
[115].

On one side, we can consider sensor parameters i.e. local incident angle (LIA), frequency
and polarization, as known. On the other side, snow pack parameters which influence radar
response, as the three introduced snow parameters, along with the snow and the underlying
ground dielectric permeabilities and the surface roughness properties, are generally not a priori
known.
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IV.1.2 Dielectric and surface roughness properties

Snow dielectric permittivity depends upon the type of snow. Namely, in the context of their
dielectric properties, above defined dry and wet snow behave like two different materials. Dry
snow cover is characterized by a dielectric constant, which is a function of dry snow density
only (pgs) [114, 118|:

el =1+ 1.9p45 = 1+ 1.9pjce fices (IV.3)

where pgs depends on ice volume fraction (fic), with pice having a value 917kg/m3. In this
case, the dielectric constant is purely real, indicating the absence of medium dielectric losses.

On the other side, wet snow dielectric constant is a complex quantity, function of wetness
and of frequency (f), as well. For the frequency range of 3GHz — 15GH z it is [114, 119]:

0.073w31  0.07355-w!3!
j ;
L+ G2 1 Gl

fws = 1+ 1.83pgs + 0.02w119 + : (IV.4)

Unlike the dry snow one, wet snow dielectric constant, being a complex quantity, has its
imaginary part, indicating the presence of the medium absorption losses.

Finally, surface roughness is described using surface root mean square (RMS) height de-
viation and surface correlation length.

The root mean square height deviation ogprg is given by:

ohs = (e, y) — (h(z,))*) = (B*(z,y)) — (h(z,y))* (IV.5)

where h(z,y) represents a surface height at given coordinates z,y.

Surface correlation length I, is defined using the autocorrelation function for one dimension
(), which shows how the surface profile is similar to itself when it is displaced for £ in z or
any other direction in general:

((h(z + &) = (=) (h(x) = (h(x))))

o2

(&) = (IV.6)

with I, being a value of £ for which function drops to p(0)/e. If we assume the autocorrelation
function to be the same for each direction, we have isotropic surface roughness.

In case of natural surfaces the exponential autocorrelation function is adopted [114]. There-
fore, for snow pack surface, but also for the underlying ground, the most commonly employed
function would be the isotropic exponential correlation function:
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p(€) = exp (—'f‘) (v.7)

At the end, it would be important to mention the liquid water distribution, which can be
very important for the wet snow characterization, although estimating it appears to be quite
difficult [120].

Therefore, one can deduce that the estimation of the snow basic properties represents an
underdetermined problem, which at first, requires a sophisticated electromagnetic modelling
i.e. an appropriate backscattering model. At this point, we ought to remark that any effort
toward inverting that model and estimating these parameters, appears to be conditioned by the
proper identification of a snow type. Following this remark, in Chapter V we propose a method
for wet snow detection, and here we turn to introducing a snow microwave backscattering
mechanism. The latter represents a base for both the mentioned detection method and all our
efforts undertaken in estimating the snow cover basic physical parameters constituting SWE
by means of SAR remote sensing.

IV.2 Snow backscattering mechanism

In [120], we have implemented a simulator which was, in its refurbished version, used in
deriving hypotheses about the snow backscattering mechanism, employed in Chapters V and
VI. Furthermore, the calibrated version of this simulator is an integral component of the
method forming Chapter V.

Here, we present the concept of the simulator, which is based on the fundamental scattering
theories: Integral Equation Model (IEM-B) and Dense Media Radiative Transfer (DMRT). At
the end, we provide the most important conclusions deduced from the snow cover backscat-
tering simulations [121, 122], granted as above voiced hypotheses.

The intensity value of a single channel SAR image represents the appropriate measure of
backscattering coefficient. For the purpose of simplification, the snow cover backscattering
mechanism and the employed simulator in this section will be presented in the context of this
parameter, although an extension to the Mueller matrix is provided in the Appendix A.

Therefore, particularly used for distributed target characterization, the backscattering
coefficient (o) is a dimensionless variable, representing a ratio between the backscattering
cross-section to physical area (A) in the monostatic radar equation:

=———0A V.8
" (R Ve
where P, and P, represent, respectively, received and transmitted power, GG is antenna gain,
7 - efficiency, A - wavelength, and R would be a distance between antenna and the target.
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Figure IV.1: Single-layer snow cover backscattering sub-components.

IV.2.1 Single-layer backscattering simulator

Total backscattering (o¢) of the single-layer snow pack can be decomposed as the sum of the
four components [123],[124] (Fig. IV.1):

1. Snow pack surface component (o),

\]

. Underlying ground surface component(cygy),
3. Snow volume component (oy),

4. Ground-volume interaction component(ogy).

00 =05+ 0gr +0p+0go (IV.9)

The backscattering components for co-polarized channels (pp = hh V vv), are given as
[123]:

Os 20(6070i79i7¢s _¢az_(s)va-i2MS7lg)a (IV].O)
i —2ked €
Ogr = ;Tgp(eraez)e( Br )0(55a0r79Ta¢s - ¢75_zvagRMSalg)a (IVll)

—2Ked

ov = a5 T2 (6, 00)[1 = T Py (e, —pir, 6 — 6), (1V.12)
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d (=2redy_ s
Oy = HiaRpy (B, 0, 2g) el T TR s (IV.13)
by
TI?P(QT’ Hi)PPP(_:U'Tv —Hr, ¢s — ¢),
d —2ked\ __ ol
ng = uiaRpp(Gr,Gi,eg)%e( )R (IV.14)
T

Tp2p(0r7 ai)Ppp(Mra Hr, ¢S - QZ))

Snow pack surface backscattering coefficient (Eq.IV.10) is calculated using IEM-B) [123], as
a function of local incidence elevation angle (6;), azimuth angle (¢s), snow dielectric constant,
surface root mean square hight (0%,,¢) and its correlation length (I7).

For better comprehension of the underlying ground backscattering component (Eq. IV.11),
three different impacts on backscattering coefficient can be distinguished:

e Air-snow interface direct impact, represented through the incident and refracted angle
(6,), cosines ratio (%) and squared Fresnel transmission coefficient (T, (6r,6;)),

—2Ked
e Snow medium propagation impact, meaning the extinction impact (e( pr )),

e Ground surface backscattering in the presence of snow, derived by applying the same
model as in the case of snow surface. The presence of snow, through the snow dielec-
tric constant, defines the refracted angle (behaving as an incidence one at the ground
surface), refracted wave wavelength and ground-snow dielectric contrast (z—‘j)

Figuring in the last three sub-components and being the most important volume scattering
parameter, the extinction coefficient k. is defined through the radiative transfer equation:

I
d SS ) d(es) + [ P(r.s)I(x,8) A, (IV.15)
47

which models electromagnetic waves propagation through a particular medium. It is computed
by employing the Dense Media Radiative Theory (DMRT) [125].

In case of the dry snow, an ensemble of spherical ice particles with radius 7;.. and dielectric
permittivity €;ce, placed in the air as a host medium, has been assumed. Appropriately, the
Quasi Crystalline Approximation (QCA) was employed [126], implying that the influence of the
scattered waves on other particles’ scattering was not neglected. The extinction is estimated by
means of effective permittivity (e¢/f "and e¢/f N), by neglecting the electromagnetic absorption
(real ice dielectric constant):
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ke = 2k {\/seff’ +jgeff”} ’

Eeff/ _ n 3fice(5ice - 1) ’
3+ (1= fice)(Eice — 1)
V3 (e —1)2(1 = £ )4
el 2(krice)” fice(€ice — 1)*(1 — fice) (IV.16)

B+ (1 — fice)(gice — D21 + fice)?

On the other side, wet snow rather required Quasi Crystalline Approximation with Co-
herent Potentials (QCA-CP) [126], capable of accounting for larger variations in dielectric
permittivity between the particles and the host media. The former one appeared as suitable
given that the water inclusions were modelled through the mixed ice-water spherical particles:

Tpart = Tice(1 + fp“}_f)é (IV.17)
ce
T4 3
Epart — 1 . (8lw B 1>(8ice + 26[11)) + <sz::t> (6iC€ - 6lw)(l + 25lw)
1 N3 .
ot T (e 4 2) e+ 2000) +2 (£5) (e — ) e — 1)

In this case, the effective permittivity has slightly different form:

3fpa'rt (Epa'rt - 1)5€ff0
3Eeff0 + (1 - fpart)(gpart - 1)’
ceff” 2(kpartrv 56ff0)33fpart(5part - 1)2(1 - fpart)456ff0

= [3€€ff0 + (1 _ fpart)(gpart _ 1)]2(1 + fpart)2 ; (IV18)

el — 14

The wet snow electromagnetic absorption is not negligible and therefore it is necessary to
introduce the albedo coefficient a as the ratio of the scattering and the extinction coefficient
[125]:

23 f K (epare D0 |2 (1 fpare)?
Ks part/Part | 3eefT04 (1—fpart)(epart—1) | (I+fpart)”

Ke Re

(IV.19)

At this point we ought to mention the most important deficiency of this simulator, which
would be non-sensitivity to the shape of water distribution.

The volume backscattering component (Eq. IV.12) is as well affected by air-snow bound-
ary transmission, but importantly, it is the consequence of the extinction phenomena. It
is a function of normalized (relative to the scattering coefficient) Rayleigh phase coefficient
(Ppp(pors —pir, ¢s — ¢)) [124], giving the amount of energy scattered in the backward direction.
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Component named ground-volume interaction is related to the waves directed by the vol-
ume and then specularly reflected toward the antenna (Eq. IV.14) and the waves specularly
reflected of the ground and then redirected toward the direction of interest by the volume
(Eq. IV.14). Specular reflection is introduced through Fresnel reflection power coefficient
Ry (0,0, €4) corrected with a factor 4k20f%MS,u,%, which brings the terrain roughness into the
account. The change of the waves direction caused by volume is modelled via the normalized
Rayleigh phase matrix.

IV.2.2 Multi-layer backscattering simulator

The developed multi-layer simulator assumes three out of four presented subcomponents. The
fourth one, the ground-volume interaction component has been neglected for simplification,
given its minor contribution to the total backscattering.

The first backscattering component in this case accounts not only for the snow pack surface
( =0), but as well for the interfaces between different layers. Therefore it is defined for a n-
layer snow cover as:

n—1
; . Es. , . .
Os = Z ﬁAttdown(])U(Esj ) 97"]» Qr]-7 ¢s — ¢, ;]Jrl ) U}SQJJJ\F/;Sa 2J+1)Attupp(])a (IV.20)

j=0 M’I‘j Sj

with Attgown(j) and Att,pp(j) being the downwards and upwards attenuations, respectively:

J
Attaown(7) =[] exp(—2ke,di/pir)Tim1i, (IV.21)

i=1

J
Attupp(j) = H T%,ifl exp(_2/€eidi/ﬂn)-
=1

The parameters indexed with ¢ correspond to the parameters provided in the previous
section, but here characterizing the ith layer of snow, T; ;1 would be the Fresnel transmission
between ith and (¢ — 1)th layer. In case of j = 0, pr,,€s,,0r,, correspond respectively to
Wiy €0, Os-

The underlying ground component would be an addend of Eq. IV.20 for j = n [127], in

which case €5, ,, 0 s, le"t, correspond respectively to €4, 0%, 0.

Volume scattering components is modelled as:
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1 — exp(—2ke,d; / fir;)
2Ke;

n

oy = dmpi ) Attaown (i — DTi-1
=1

Ppp(:uh‘v iy s — ¢)Ti,i71Attupp(i -1)

(IV.22)

After simulating snow cover in [121] and [122|, the most important conclusions, taken as
the founding hypotheses for the method presented in the following chapter, would be the
dominance of underlying ground component in case of the dry snow and the dominance of the
snow pack surface components for the wet snow. As well, the sensitivity studies performed
with respect to the change of density and depth, indicated far more encouraging results when
the density estimation is concerned.

IV.3 SWE hydrological modelling

Given the underdetermination of the SWE estimation problem using single channel SAR
image, we have complemented the remote sensing techniques with the hydrological model
developed by EDF for our study area. This way, we have rather managed to integrate the
remote sensing into the SWE estimation.

Therefore, as an introductory to the approach presented in Chapter VI, here we present
the SWE sub-model of the internally developed hydrological model MOdéle a Réservoirs de
Détermination Objective du Ruissellement (MORDOR) [128], used by EDF, for the estimation
of the contribution of the melted snow to their water accumulations.

The MORDOR model principally covers five hydrological processes [129]: evapotranspira-
tion, surface runoff, infiltration, dewatering and snow accumulation and melting. Basically,
it assumes five different reservoirs and models their mutual exchange. They represent: snow-
pack, surface supply (absorption), stock of water which transforms to vapour, intermediary
supply and deep supply (rivers).

Our particular interest is the sub-model dealing with the snow accumulation and melting.

Two versions of this snow sub-model exist:

e The historical version, which is lumped and represents the snowpack with only a single
reservoir, impossible to compare with Moderate-Resolution Imaging Spectroradiometer
(MODIS) data or local in situ measurements,

e The distributed version, named SWEEP (Snow Water Equivalent Estimation at the
Pixel scale), where comparison with distributed and in situ measurements are able.

SWEEP is a distributed degree-day model, taking into account snowpack temper-
ature, liquid water content and ground melt. For each pixel, daily air temperature
(Timin(2), Tinean(7), Tmax (7)) and precipitation P(i) are available.



90 Chapter IV. Remote sensing of snow

The phase of the precipitation, a S-shape function, allows to discriminate between rain
and snow:

1
Op(i) =1— - , (Iv.23)
1+ exp 10*(Tmea£(z)—T50)
with A=4 and T50=1. Rain R(7) and snow S(i) are further derived as:
R(i) = P(i)®p(i), (Iv.24)
S(i) = cpP(i)(1 — ®p(7)). (IV.25)
with ¢, being the snow accumulation coefficient.
The temperature of the snow pack evolves with minimal temperature Th,n (%) as:
TS(Z) = TSOTmin(i) + (1 - TSO)TS (Z)v (IV26)
with Tgg = 0.04, and constraint Tg < 0.
The snowmelt process is modeled with a degree-day factor:
M (i) = ki * (Tynean(2) + T5(7)) (IV.27)

where k¢ is the degree-day factor, defined as the snow melting coefficient.

The snow water equivalent evolves respect with the snow accumulation and the snow melt:

SWE(i) = SWE(i — 1) + S(i) — M (i) — gm, (IV.28)

with gm = 0.6 mm/day being the ground melting. The snowpack is able to store liquid water
until liquid water content of 10%. After the liquid water flows.

Namely, based on the precipitation and the air temperature measurements, this sub-model
estimates the quantity of water contained in the snowpack (one of the assumed reservoirs).
Aside from these meteorological parameters, the two coefficients characterizing the accumula-
tion and the melting processes ¢, and k¢), define the SWE as well.

The accumulation during one day is estimated rather commonly, using both precipitation
and air temperature, where the later one defines the ice fraction in the former. However, the
melting estimation, being more sophisticated, is performed by simultaneously assessing the
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superficial melting, melting due to the rain and the one caused by the geothermal flux. The
first of them is modelled using a degree day model which relies on both the air temperature
and the temperature of the snow. Only this summand is corrected by the coefficient k.

Unlike the precipitation and the air temperature, which can be measured [130] at the
distributed meteorological ground stations and then interpolated [131], the coefficients ¢, and
ks have to be either assumed or determined based on some reliable measurements. The later
is the point where we integrate remote sensing techniques and the topic of Chapter VI -
proposing a method which exploits remote sensing measurements in order to derive the snow
accumulation and melting correction coeflicients.
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As we stated in Chapter IV any effort in inverting snow backscattering model in order to
estimate snow pack parameters, appears to be conditioned by the formerly performed discrim-
ination between the dry snow and the wet one. Therefore, using the introduced single-layer
and multi-layer backscattering simulator and above all, using the asserted conclusions, we de-
veloped a change detection method carrying out this indispensable step in remote semsing of
snow [2, 132]. Furthermore, relaying on the single SAR image statistics, elaborated in Chapter
I, the method presented in this chapter, estimates wet snow probability by accounting for the
local speckle statistics, which makes it stochastic.

The chapter is organized as follows. Section II briefly introduced the required input data.
The analysis of the wet/dry backscattering ratio relying on the backscattering simulator,
along with its calibration, are given in Section III. The stochastic approach is introduced in
the following section. In Section V, we present the results obtained with two TerraSAR-X
dual-pol stripmap images acquired in the French Alps. This section provides the performance
analyses, and therefore serves as the overture to the conclusion of this chapter.

93
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V.1 Introduction

As indicated in the preceding chapter the dry and the wet snow behave like two completely
different materials with respect to their dielectric properties: the wet snow contains liquid
water with a dielectric constant differing significantly from the one of the ice. This fact is
pointing out to a difference in backscattering mechanisms [133|, and consequently that different
feature extraction methods should be applied. Therefore, the estimation of any snow pack
parameter by means of SAR remote sensing, requires firstly the proper identification of the
snow cover type [134].

Although studies on snow mapping by polarimetric SAR existed already [135], it was not
before the ERS-1 started providing repeat pass images that the idea of snow mapping based
on SAR multitemporal data appeared [136]. Further refinement on the initial change detection
method leaded eventually to the compact algorithm based on the ratio of two C band SAR
images introduced in [137|. The Nagler and Rott method requires as inputs the SAR wet
snow image and the reference SAR image of the dry snow (or the snow free terrain). After
corregistration, either mutilooking or speckle filtering is applied on the two SAR intensities
before constructing the backscattering ratio image. This ratio image is then georeferenced and
an unique threshold of -3 dB is used to discriminate the wet snow from other surfaces. The
expected difference in backscattering is justified by the increased electromagnetic absorption
of the wet snow. The resulting maps are successfully validated by using snow terrain optical
images. Subsequently, constraints concerning both sensor and target parameters with respect
to the validity of the defined threshold have been introduced [138].

We propose in this chapter an alternative change detection method with X-band SAR data
for wet snow detection. The goal is to introduce an algorithm which is eventually more suited
to the presence of the speckle noise and is based on, to some degree modified hypothesis on
wet /dry snow backscattering ratio behaviour. The first novelty is related the choice of the
reference image. It is supposed to be the image acquired in the accumulation (winter) season,
when the dry snow assumption is valid.

The state of the art backscattering measurements [139] indicate the complex relationship
in terms of backscattering between the two types of snow, which cannot be simplified by
assuming increased absorption and therefore lower backscattering of the wet snow, for all
values of LIA. In order to account for this fact, we employ simultaneously the single-layer
and the multi-layer snow backscattering simulator, introduced in the precedent chapter. The
simulators are calibrated with the scatterometer measurements in C band, before being used
to analyse a wet/dry snow backscattering ratio as a function of LIA, in X band. Thereupon,
we determine the range of ratio values, pointing to the presence of the wet snow. The derived
range slightly differs with respect to the conventional assumption used in the C band.

Further, the speckle noise statistics is introduced through the local estimation of the in-
tensity ratio probability. This allows additional enhancement of the discrimination accuracy,
which is illustrated through the matching of the independently obtained HH and VV maps.
Finally, we analyse the performances by comparing snow maps obtained using TerraSAR-X
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Figure V.1: Algorithmic representation of the wet snow detection method

data with interpolated temperature map.

V.2 The preamble of the detection algorithm

As illustrated in Fig. V.1, the wet snow detection algorithm consist of four principal parts,
among which the first two assume the selection of data and the appropriate pre-processing.

V.2.1 Input data

The approximate equivalence between the bare ground and the dry snow backscattering,
perceived in the C band, does not appear to be true for higher frequencies [140|. Therefore,
in order to assure applicability in a wider range of frequencies, we compare directly the dry
snow cover image with the mixed dry/wet snow cover one.

The following data are required as input:
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Figure V.2: Calibration of the backscattering simulator using scatterometer measurements in

C band [139]: (a) VV, (b) HH.

e Winter SAR image, slant range geometry - image acquired during the winter season,
when the dry snow assumption is fairly valid due to the air temperature at ground level,

e Melting season SAR image, slant range geometry - image acquired at the end of the
winter season, when the increase in the air temperature causes melting to occur;

e Digital Elevation Model (DEM) and Sensor & Orbit parameters (georeferencing and
derivation of LIA map);

e Approximate information about the snow cover in the region (verifying the appropriate-
ness of the proposed method);

V.2.2 SAR image processing

In this part, the input images are calibrated and corregistrated using the resampled SAR

geometry intensity simulation. The slant range LIA is also derived.

V.3 Wet/Dry snow backscattering ratio

Given the fundamental role of both the snow surface and the underlying layer in snow backscat-
tering, the local incidence angle (LIA) appears to be the most appropriate choice of the inde-
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pendent variable for the analysis of the wet /dry snow backscattering ratio - ratio of backscat-
tering coefficients (Eq. IV.8). In order to both qualitatively and quantitatively analyse the
backscattering ratio, we rely on the backscattering simulator introduced in Section IV.2.

In the region of particular interest - the French Alps, the large multilayer snow cover occurs
both in the accumulation and in the melting season, containing, in the former case, inevitably
present ice crust.

The analysis performed using the derived simulator pointed out that the most significant
portion of the backscattered energy, in case of an ice crust present in a dry snow pack, comes
from the ice crust, not from the "real" underlying ground. Namely, refreezing, by forming a
snow crust, leads to a very strong volume scattering (big grains representing strong scatterers)
[140]. However, if the ice crust (a continuous layer of ice) is formed, it should rather be
associated with a strong surface scattering. That is why we have decided to rather ignore the
contribution of the underlying layer in deriving the backscattering difference. The support for
this conclusion was found as well in the literature dealing with the passive microwave sensing
of a snow cover. Namely, the formation of the crust significantly decreases the measured
emissivity, by decreasing the influence of the underlying layers, causing the latter to be ignored
in the modelling [141].

Therefore, we assumed the dominance of this underlying ice crust backscattering compo-
nent in case of the dry snow [121]. Consequently, the layers above the ice crust are considered
to be the effective snow cover. We adopt the parameters of these layers as the multi-layer
(ML) simulator input data.

In case of the wet snow, the surface layer is considered as the most contributory [122]. Thus,
the wet snow backscattering is simulated using a single-layer (SL) approach, by adopting the
parameters of the surface layer.

V.3.1 Simulator calibration

The derived backscattering simulator is calibrated in C band (5.3 GH z) using the scatterome-
ter measurements from [140] (Fig. V.2). The applied calibration is essentially the optimization
with respect to both the underlying ice crust and the snow surface parameters.

We have selected two sets of measurements performed in the C band, by Strozzi and
Matzler in Weissfluhjoch (Davos, Switzerland) [139]: first one (M1) corresponding to the dry
snow (27 January 1994) and the second one (M2) to the wet snow (24 March 1995). The
latter have been specifically chosen because of the wetness value characterizing the upper
layer (0.73%).

The calibration we apply is basically the optimization with respect to the both ice crust
(ic) and snow surface (ss) parameters. After introducing the input parameters measured in
situ (p = p,d,e,w), we derive the surface parameters by applying the optimization algorithm
[142] based on minimizing the MSE between the simulator output in the C band and the
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Figure V.3: Wet/dry snow backscattering ratio for input parameters in Table I (a) and
backscattering ratio values indicating wet snow (grey) and dry snow (black) (b): (i) VV, (ii)
HH. Grey lines are backscattering curves for different roughness parameters (Table V.1), red
lines represent defined thresholds (Table V.2). Dashed grey lines are extrapolated backscat-
tering curves, correcting the observed anomaly of the IEM-B (HH) for high incidence angle,
occurred due to the dielectric permittivity value (modified calibrated simulator in Fig. V.2).
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The details concerning the Nelder-Mead simplex optimization algorithm ( f,,) are provided
in Appendix B.

The HH simulation results have been modified by extrapolating the backscattering curves
after LIA = 50°. This is due to the observed anomaly of the IEM-B, related to the low
values of dielectric permittivity, causing quite a radical increase of the surface backscattering
for higher incidence angles, which is not fully consistent neither with the ground truth data,
nor with the theoretical expectations.

V.3.2 Variable threshold derivation

The simulator is then applied in the X band (10 GHz), using the extended set of parameters,
reinforced by the derived surface parameters (Table I). By slightly varying the surface rough-
ness parameters (RMS height and correlation length) we obtain the wet/dry snow backscat-
tering ratio (Fig. V.3a), allowing us foremost the following qualitative interpretation: the wet
snow backscattering is not necessarily inferior in the X band, neither.

Using the derived wet /dry snow backscattering ratio, we identify the ranges of values which
should point to the wet snow presence in the ratio image - variable threshold (Fig. V.3b).
Given that the dry snow image is used as the reference, regions around 0 dB indicate dry
snow presence (no change). Further, assuming this result not to be a "universal case” (the
low value of the wetness - 0.73%), we have additionally employed the standard hypothesis of
higher wet snow absorption for big wetness values and thus associated the negative regions
(below —1.5 dB) to the wet snow presence. However, believing that the positive backscattering
difference for lower local incidence angles should as well indicate the wet snow, sooner than

the dry one, we assign wet snow as well to the positive regions corresponding to the lower
LIA.

The latest is justified by the fact that the melting process which occurs in the upper layer
gives rise to the snow pack surface backscattering, which augments total snow backscattering
at lower LIA. Of course, this assumption is conditioned by the choice of input data (winter and
melting season images). The support for this claim was found in the remarks of Strozzi and
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Matzler [140], which say that liquid water presence in the upper layer leads to the domination
of surface backscattering, and that, which appears as logical, wet snow backscattering can be
characterized by decreased backscattering at high incidence angles. Even though originally
derived using measurements at higher frequencies, these conclusion should stay valid also in
the X band [122].

Table V.1: Input parameters for the snow backscattering simulation, used in thresholds deriva-
tion. different shades of grey represent different dry snow layers.

H Input parameter Dry snow (ML) ‘Wet snow (SL) H
Snow density 315 kg/m?
Wetness 0.73 %
Snow depth 1.77 m
Frequency 53GHz (C), 10GHz (X)

Particles effective radius (0 0), Teff =225 pm
Water dielectric constant 55 + 740 (C), 38 + 740 (X)
Snow layers RMS height 4.5 - 6.5 mm

Snow layers correlation length 42 - 82 mm

Ice crust dielectric constant 3.2

Ice crust RMS height 8.4 mm

Ice crust correlation length 24 mm

V.4 Stochastic approach

As already indicated in Section 1.2, assuming the gaussianity of the SAR clutter, the intensity
over homogeneous regions can be modelled by Gamma probability density function (PDF),
according to the fully developed speckle model [19]:

e () v

with p being the texture intensity mean, v - shape factor providing deviation with respect
to the corresponding Gaussian distribution and I' - the Gamma function. If the intensity
is expressed as 4 X, the random variable X follows chi-squared distribution x?(2v) with 2v
degrees of freedom. The ratio of two chi-squared random variables, normalized with respect
to the degrees of freedom, follows the Fisher-Snedecor distribution F(v1, v2) [29]. This implies
that the ratio of two Gamma random variables, having different shape factors but the same
mean value is modelled using the Fisher-Snedecor distribution:
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The proposed stochastic approach is exactly based on the probability estimation relaying
on the previously elaborated assumption. The algorithm uses the boxcar neighbourhood,
coupled with approximate maximum likelihood estimator (MLE), in order to obtain local
statistics for each of the areas in the image. Due to the poor performances of the Fisher-
Snedecor MLE, the estimation is performed rather on the normalized ratio intensity (£) than
the ratio intensity itself (r = p&). If the ratio intensity (r) follows the Fisher-Snedecor
distribution, the normalized ratio intensity (§) is modelled by the Beta prime distribution:

F(I/l + 1/2) 5”1_1
L(v1)D(v2) (1+ &t

B'(&|v1,v0) = (V.5)

For each local neighbourhood, we derive the mean value (1), normalize the texture locally
and estimate v; and v parameters. This way, we define the probability density function
(Bzi,j)) for every region in the image. By integrating the obtained PDF with respect to
the normalized texture, we are getting the cumulative distribution function <B£i,j)) for the
normalized threshold of the central pixel:

iout(i,j) = Bl (ﬁ?;ﬁ) ~ Bliy) (f(?jf) -

T (4,5)
w(i,5) ,

_ / B, (€)de. (V.6)

This value is the probability that the ratio fits the predefined range of values or exactly
the wet snow probability.

Table V.2: Thresholds determining the range of values pointing to: wet snow (white), dry
snow (gray).

HH VvV

Angle (°) | 0-25 26+ |0-35 36+
2(dB) | 15 -15]|15 -15
1(dB) | -15 -00 | 1.5 -c0

The thresholds T and T5, given in the Table V.2, are functions of the local incidence angle
(Fig. V.3). The grey coloured fields in Table V.2 indicate dry snow, in which case we compute
the wet snow probability as the complement to one (i.e. for LIA = 10°, wet snow probability
equals to 1 — igue (4, 7))-
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V.4.1 Confidence level

98.03%

95.35% 95.57% 95.51%

94.15%

(d)

Figure V.4: The comparison between HH (left) and VV (right) polarization maps obtained
after: (a) filtering the thresholded ratio of input images, (b) thresholding the ratio of speckle
filtered input images, (c) thresholding the probability map with 70%, 72% and 99% confidence
level. (d) HH-VV matching.

The obtained wet snow probability map is transformed into the wet snow binary map by
applying the confidence level C, which reflects the level of certainty that the derived map
indeed represents wet snow regions:

1 if iout(i7j) > Cja

Lo (i, ) = { 0 i dow(i,f) < C. (V.7)

V.5 Performance analyses

The proposed algorithm is illustrated by the results obtained using two X-band TerraSAR-X
stripmap images acquired over the Grandes Rousses massif near Grenoble, France: the winter
image, acquired on the 8th of February 2009, holding for the dry snow assumption (according
to the local meteorological data and the DEM - 88% of the area is at the altitude > 1500m;
and the melting season image, acquired on the 2nd of March 2009, in the presence of wet
snow, according to the same source. The local incidence angle map is computed using the
DEM (Datum: WGS-84, UL Geo: 5°57'3.64"F,45°24’15.21” N).
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For comparison, we provide in Fig. V.4 three pairs of binary maps (HH and VV) derived
using different change detection methods. Firstly, we present the results obtained by using
the criteria illustrated in Fig. V.3b on the filtered ratio of original input images (Fig. V.4a).
Further, the same criteria is applied on the ratio of formerly speckle filtered (7 x 7 mean filter)
input images (Fig. V.4b). Finally, we include the proposed stochastic approach, and therefore
present the results obtained with the proposed method, using very high confidence level - 99%
(Fig. V.4c).

The quantitative correspondence between the independently obtained HH and VV maps
(Fig. V.4) significantly augments in case of the proposed stochastic approach. By applying an
unconstrained optimization technique (Appendix B), we estimate that the maps in Fig. V.4a
and Fig. V.4b approximately correspond to the probability maps thresholded with (70%) and
(72%) confidence level, respectively. Increase of confidence level decreases the fraction of wet
snow, but augments the certainty.

The verification of the obtained results is performed using the local temperature measure-
ments at the ground level. The measurements data, provided by the EDF are related to the
area of interest (Grandes Rousses massif) at the same date (03 March 2009), meaning that
comparison with the available SAR images was possible.

The temperature used in the validation is the air temperature measured at the ground
level. The single point measurements are acquired at 36 stations in the wider region. Among
them, there are seven measurement stations in the region which corresponds to the acquired
TerraSAR-X images:

e Five belonging to Eléctricité de France (EDF): Agnelin, Lac Noir, Montfroid, Chancel
and Rif Puy Vacher.

e Two belonging to Centre d’Etudes de la Neige (CEN): Col du Lac Blanc and Lac Carrelet.

The acquired single point measurements are spatially interpolated using the kriging
method.

The procedure is based on the stated fact that wet snow presence is characteristic for
the local ground temperature above 0°C, while dry snow can be found below 0°C. The tem-
perature measurements are compared to the obtained wet snow probability map (Fig. V.5).
Quantitative evaluation of the comparison is done by calculating a spatial cross-correlation,
using sliding window (Fig. V.5d). The approximate matching between the high temperature
regions and the high probability regions, two information sources which could be considered
as independent, is pointing to the validity of the obtained results.

In the absence of the appropriate optical remote sensing data, we cannot be entirely sure
that the whole region is snow covered. However, we can rely on the DEM (Fig. V.5c) in
deducing some conclusions. Namely, according to the consulted meteorological reports, we
can reasonably assume that the "snow line" in this region of the French Alps, at the beginning
of the month of March, varies between 1000m and 1500m. Therefore, in Figures V.5e and
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Figure V.5: Georeferenced maps: (a) HH wet snow probability map; (b) interpolated ground
level temperature map, (¢) DEM, (d) Coefficient of correlation between the HH wet snow
probability map and the ground level temperature map. Wet snow binary maps (confidence
level set at 99%) superposed with the altitude masks: (e) Altitude > 1000m, (f) Altitude
> 1500m. Class 1 - no wet snow below the defined altitude, Class II - wet snow below the
defined altitude, Class III - no wet snow above the defined altitude, Class IV - wet snow above
the defined altitude.
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V.5f we superpose the derived wet snow binary maps (for confidence level of 99%) with two
altitude masks derived using the DEM: Altitude > 1000m and Altitude > 1500m. In the first
case percentage of the estimated wet snow falling out of > 1000m region is negligible (0.05%).
In the second case as well, only 10.7% of the detected wet snows risks to be misestimated by
being confounded with a potential bare ground.

V.6 Conclusions

Snow backscattering simulations, reinforced by the state of art measurements, resulted in the
conclusion that the difference in backscattering of wet and dry snow occurs to be significantly
dependent on the local incidence angle and on the operating frequency. Consequently, we have
proposed an alternative version of the conventionally used wet snow detection method, by
analysing a wet/dry snow backscattering ratio in X band and moderately modifying the range
of values in the ratio image pointing to the presence of wet snow. As well, we chose preferably
the winter image as the reference, avoiding constraints related to the frequency dependent
relation between dry snow and bare ground backscattering and therefore allowing application
in wider frequency range. Finally, instead of directly thresholding the ratio of multitemporal
images, by considering the spatial correlation, we rather estimated the probability of the wet
snow occurrence, making the approach stochastic.

The plausibly modified assumption of the wet /dry snow backscattering ratio, the implicitly
introduced spatial correlation between the wet snow areas, and the possibility to vary the level
of confidence of the wet snow binary maps by thresholding the obtained probability map, are
altogether the supplements brought by the introduced stochastic approach to the ensemble of
change detection techniques in snow mapping.

Further refinements of the proposed detection method are going in two main directions.
In the first, the quantitative interpretation of the wet/dry snow backscattering ratio will be
improved, which should allow more accurate discrimination between different regions in Figure
V.3b, in terms of LIA. Concerning the second direction, further work will mostly consist in
adjusting the proposed method to polarimetric SAR input data [143|. The idea is to exploit
the dual-pol images in the probability derivation.
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As specified in Chapter IV, the derivation of snow pack parameters by means of single chan-
nel SAR image, represents an under-determined problem. However, in the preceding chapter
we have developed a snow classification method based on multitemporal single channel SAR
images. In this chapter, in order to derive spatial distribution of SWE, we turn toward the
optical remote sensing accompanied the hydrological model, introduced in Section IV.3 [3]. As
well, we briefly present the ongoing efforts in employing POLSAR methods, reinforced by a
BSS technique (PCA), in monitoring the snow pack parameters forming SWE [144].

We commence by briefly introducing the ongoing study on the potential of POLSAR
methods backed by PCA in spatial SWE modelling. Further on, as we pass on the major
topic of this chapter, the comparative calibration of MORDOR hydrological model using
three different optimization methods, based on the in situ measurements, is presented. In
Section IV we describe the highlight of this chapter - calibration strategy based on the optical
remote sensing dataset. Section V contains the results and the corresponding discussions, a
preamble to the conclusion of this chapter.
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VI.1 Introduction

The estimation of SWE in mountainous regions appears to be very important for the hy-
droelectric power supply, since it allows anticipating the water resources available during the
snow melting season [145]. Using thirty-six meteorological stations distributed around the ac-
cumulation reservoir of the Serre-Pongon dam, the MORDOR forecasting hydrological model,
introduced in Section IV.3, currently provides, among other parameters, the SWE used to
evaluate the potential intakes to this reservoir and to optimize the operation of the corre-
sponding power plant. The sub-model, providing the SWE, uses the available precipitation
and air temperature measurements as input parameters. Aside from those, each station is sup-
posed to be characterized with the appropriate accumulation (c,) and melting (k) correction
coefficients.

Ongoing efforts in bypassing hydrologicals model and directly using POLSAR data are
based on applying a conventional ICTD on C band RADARSAT-2 images, and applying
PCA, the most widespread BSS technique, for performing one sort of de-noising of the derived
polarimetric descriptors. A promising inverse correlation between de-noised entropy and the
depth of the snow above the ice crust, was observed in case of the dry snow. For the wet snow,
a weak link between the wetness and the second Yamaguchi component, is remarked. This
study could eventually come up with a mean for spatial monitoring of snow pack parameters
constituting SWE, but at the time being the possibilities for the autonomous estimation of
this parameter appear to be quite limited.

Therefore, the topic of this chapter would be rather a novel calibration strategy of the
SWE sub-model of MORDOR based on a multi-temporal set of fractional snow cover maps
[146]. In fact, we are deriving a mean to properly establish the spatially varying accumula-
tion and melting correction coefficients, required by the MORDOR model. These parameters
represent a mean to account for the strong influence of the topology and mountain winds on
the hydrological model [147, 148]. The MODIS data (providing fractional snow cover maps)
were already, despite the ever-present issue with the cloud coverage, successfully used in cali-
brating and validating hydrological models [149, 150]. Here we propose a suitable calibration
procedure, reduced to the estimation of the spatially varying correction coefficients and, by
comparing it with the one performed using in situ measurements, we demonstrate the utility
of the remote sensing data in the context of the calibration of distributed hydrological models.

As a case study for the derivation and the demonstration of the proposed method, we
use the formerly introduced Serre-Pongon dam. Out of the existing thirty-six stations, local
in situ measurements are available for four of them. These data sets are initially used for
comparative optimization aiming both to derive representative coefficients (cp,k¢) at these
four locations and to select the most appropriate optimization method. Still being restricted
to these four stations, we employ the formerly selected method in defining the parameters
of the continuous activation function. Further, we derive the spatially varying coefficients
characterizing the entire region, including the remaining stations, by rather relying on the
MODIS multi-temporal set of snow cover maps. This is done through the optimization of the
continuously thresholded (by means of the continuous activation function) SWE model, using
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the available remote sensing data acquired over the entire region. The final comparison with
the in situ measurements indicates significantly increased accuracy with respect to the initial
case, where the ¢, and the k; are considered as fixed for the entire region. Moreover, the

proposed method based on the MODIS data, eventually appears to be superior with respect
to the calibration using in situ measurements.
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Figure VI.1: SWE measurements, acquired in situ at four different stations, during the season
2001-2002.

VI.2 POLSAR potential in SWE monitoring

The study is based on the RADARSAT-2 dataset acquired over the region of Northern French

Alps between 2009 and 2011. The in situ snow measurements were simultaneously performed
at 15 different sites in the covered area.
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Figure VI.2: Entropy vs. depth of the snow above the first ice crust: temporal correlation.

After applying conventional Cloude and Pottier ICTD (Section 1.1.2.2), the derived stan-
dard polarimetric descriptors: a1 (Eq. 1.26), @, (Eq. 1.27) and H (Eq. 1.28), are georefer-

enced and assigned to the measurements sites. They are reinforced by two new descriptors
[151]:

e Single bounce Eigenvalue Relative Difference (SERD):
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Ms g < /4
SERD={ Ny T om ST/, (VL1)
e for a, > m/4,

with A being the eigenvalue defined in Eq. C.1, and,

e Double bounce Eigenvalue Relative Difference (DERD), obtained when the conditions
related to o, in Eq. VL1 switch places.

The de-noising by means of PCA is performed by calculating principal components of
n-dimensional dataset X, containing values of five polarimetric descriptors for d different
dates (N = 5d in total - each descriptor estimated at d dates), with n being the number of
measurements sites.

If we rely on the formalism introduced in Section 1.3.1, de-noised polarimetric descriptors
for different dates X, could be represented as:

X,=EY =EE"X, (VI.2)

with the apostrophe signifying that not the entire eigenvector matrix was taken, but rather
just the first eigenvector (the first column of E in Eq. 1.51). Given that all the descriptors
together constitute the observation dataset for one dimension, the de-noising is performed on
account of the information "exchanged" between them.

The de-noised or let us say "enriched" entropy parameter, compared with the depth of the
dry snow above the first formed ice crust, indicate the inverse correlation (Fig. VI.2), with a
coefficient of determination for a deduced linear regression R? = 0.8439 (Fig. VI1.3a).

80F

Snow depth (cm)

IS o

N

Figure VL.3: Entropy vs. depth of the snow above the first ice crust: (a) scatter plot (b)
physical hypothesis.

We propose the following hypothesis as a physical justification [144]|. At the considered
frequency (C band), given the unavoidable presence of ice crust inside the snow pack due to
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the metamorphism of the snow during the winter season, the reflection of the layer of ice under
a pack of dry fresh snow will dominate over the underlying ground backscattering.

The reasoning here is quite similar to the one applied in Section V.3 [140, 141], with
an important difference brought by the change of frequency. Namely, at C band EM waves
are much more probable to penetrate the ice crust than at X band. However, if we recall the
dominance of the surface scattering (or reflection), stated in case of a wet snow (Section IV.2),
and consider an inevitable liquid water presence in the underlying snow layer (the last being
as rough as the ice crust), the hypothesis still stands.

The inferior roughness of the ice crust surface should rather cause specular reflection of the
incident electromagnetic waves than their scattering. This fact, along with the insignificance
of the snow surface and volume backscattering components in case of the dry snow, indicates
the dominance of the ground (ice crust)-volume interaction component.

As it is seen in Fig. VIL.3b, bigger depth of a snow layer (d) means bigger propagation
distance (p) of the reflected electromagnetic wave, which is to be rescattered by the volume.
This implies bigger probability of interaction with snow particles, therefore bigger probability
of recovering the most dominant mechanism.

Concerning the wet snow, given the very small number of points, the correlation between
the wetness and the second component of Yamaguchi ICTD does not deserve any detailed
elaboration at this point.

Waiting for some more promising results in terms of autonomous SWE estimation by
means of POLSAR backed by BSS, we have to turn to the trade-off obtained by using the
external input - distributed hydrological model.

VI.3 Calibration of MORDOR using in situ measurements

The in situ measurements are acquired at some ground meteorological stations by cosmic-
ray snow gauges. Conventionally used in the characterization of the soil moisture [152], this
technique proved to be an efficient method for the SWE estimation, as well [153].

These, available in situ measurements, were used both to determine the representative
optimal coefficients at the corresponding sites and to select the most appropriate optimization
method. Firstly, we are identifying the characteristic periods (accumulation and melting)
over one year. Later, we perform the comparative analyses by applying simultaneously three
different optimization algorithms.

In order to identify the accumulation and the melting periods, we have to determine three
dates: accumulation start date, melting start and melting end dates.

This is done using the smoothed gradient operator: positive gradient values correspond to
snow accumulation, while negative indicate melting. Therefore, the radical change in gradient
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value points to the melting start. The other two dates are related to the first and the last
non-zero values during the year of study (1 October 2000 to 30 September 2001).

We use the MSE as optimization criterion. The goal is to find the values of the accumu-
lation (cp) and the melting (kf) coeflicients which lead to the smallest difference between the
model output (given the local meteorological data) and the measurements. Actually, it is the
minimum of the MSE function we are searching for:

[cp, kp] = fopt (MSE{Q(CIN kg, t),m(t)}, [C?N k?‘]) : (VL3)

with fo,¢ signifying the function of optimization, g being the model output as a function of

0
p

of the coefficients used in the original model, derived statistically using several meteorological

time (¢) and m representing the acquired in situ measurements. ¢, and k?c are the fixed values

stations.

Three unconstrained non-linear optimization algorithms [154] are compared using the avail-
able measurements:

e M1 - fmin search: the Nelder-Mead simplex function minimization. The algorithm
creates a simplex around the initial guesses (02 and k?) which is further modified in the
iterative process [142, 155] (Appendix B).

e M2 - pattern search: the generalized pattern search (GPS). It relies on positive spanning
directions by assuming the treated function (model output) is continuously differentiable

[156].

e M3 - genetic algorithm: natural selection process that mimics biological evolution. The
only of the three used algorithms that doesn’t require any initial guess, but rather creates
random solutions, which are evolving toward the optimal ones [157].

By relying on previously derived characteristic periods, the optimization procedure was
performed using the values acquired during:

the whole year (all),

the accumulation (A) and melting (M) period (winter+spring),

the accumulation period (winter),

the melting period (spring).

At the end of this section, we have both the most suitable optimization method and
the representative optimal coefficients, which were due to be considered as the reference in
analysing the performances of the proposed method.
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Figure VI.4: The MODIS fractional snow maps: (a) interpolated "SWE binary" curves (four

stations with in situ measurements); (b) comparison with the optimally binarized in situ
measurements (station IIT).

VI.4 Calibration of MORDOR using MODIS remote sensing
data

Due to its accuracy and daily availability, MODIS remote sensing data represent a valuable
tool in snow cover monitoring [158|. Despite the necessity to perform spatial and temporal

filtering in order to decrease cloud obscuration, the overall accuracy of the derived snow cover
maps stays above 90% [149].

Therefore, MODIS snow cover maps happen to be particularly useful in calibrating and
validating semi-distributed hydrological models [159]. The standard procedure assumes com-
paring the SWE output of the hydrological model with the observed maps.

Obviously, the previously introduced calibration relying on the in situ measurements can-
not be applied to the entire region of interest, unless the measurements are spatially interpo-
lated. Even though both the air temperature and the precipitation are interpolated by means
of kriging (Gaussian random regression), the same type of spatial continuity cannot be ex-
pected in case of correction coefficients. Therefore, in order to account for their strong spatial

variability, we have developed a new strategy for exploiting the MODIS fractional snow maps,
instead. This method allows the calibration of the distributed hydrological model.

The proposed method consists in the following three steps.
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VI1.4.1 MODIS data preprocessing

Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, being in the orbit since
1999, has sensors in 36 wavelength bands, ranging from 620nm to 14.385 um. The set of
multitemporal fractional snow maps is derived out of geo-referenced MODIS images, acquired
in 2000/2001. Their resolution has been decreased to 1 x 1km in order to fit the resolution
of spatially interpolated temperature and precipitation maps.

The temporal curves derived for each pixel were then linearly interpolated in order to
compensate for the eventual lack of the data during the year. Among them, four correspond
to the meteorological stations characterized with in situ measurements (Fig. VI.4(a)).

VI1.4.2 Continuous thresholding of the SWE sub-model

The conventional "hard” thresholding with respect to the predefined threshold 7 (values less
than 7" labelled by "0" and greater than 7" by "1"), did not appear to be appropriate, given
that a non-continuous function does not suit any of the formerly introduced optimization
methods (Fig. VI.5). Therefore, we turned toward a continuous thresholding strategy, based
on the continuous activation function:

tanh (£=2) 4 1

Ty = 2U ’ (VI4)

where o reflects the uncertainty in the SWE sub-model, while h depends on the value order of
SWE, here called x. The later value was selected ad hoc, while the derivation of the o value
assumed the optimization (algorithm M1) of the binarized in situ measurements (my(o, h,t))
with respect to the corresponding MODIS temporal binary curve (M(t)) (Fig. VI.4 (b)):

[0] = fopt (MSE{my (0, h,t), M(t)}, [0°]), (VL5)

with o being the initial, assumed value of o.

The completely defined linear binarization function was further to be applied on the SWE
sub-model. Binarized this way, the SWE sub-model is ready for the comparison with the
MODIS snow temporal curves i.e. "SWE binary" curves.

VI1.4.3 The derivation of the correction coefficients

Finally, we derive the correction coefficients (¢, and ky) by minimizing MSE between: (1) the
product of the binarized SWE sub-model output (gp) with the model itself (g), and (2) the
product of the smooth MODIS binary curves M with the SWE sub-model.
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Figure VL.5: Thresholding: (a) discontinuous ("hard"), (b) continuous.

Empirically, we established that the optimization at the ground stations characterized by
large SWE values, should be performed using the a priori assumed SWE sub-model (based
on the initially assumed coefficients) paired with the MODIS measurements. Namely, in these
cases, the SWE sub-model multiplying the smooth MODIS binary curves, is not the subject
of the optimization:

[CP7 kf] = fopt (MSE{gb(CP7 kf? t)g(cp’ kf’ t)v M(t)g(cz(;? k?”a t)}a [027 k?‘]) : (VI'G)

However, in other cases, where SWE values are not perceived as large (station IV), the
optimization is to be performed by considering all the (¢, and k) coefficients as optimizable
variables:

[va kf] = fopt (MSE{gb(va kfa t)g(cp’ kfv t)v M(t)g(cp, kf’ t)}’ [Cgv k?]) . (VI'7)

V1.5 Results

Firstly, we present the optimization results obtained using the in situ measurements. The
comparison between three optimization algorithms indicates the best overall performances of
the M1 method. This method, elaborated in Appendix B, is therefore adopted as the standard
optimization procedure in this chapter. Concerning the characteristic periods, it appears that
the most suitable one is "accumulation+melting (A+M)" period (Fig. VIL.6).

As expected, the SWE sub-model, optimized this way, exhibits significantly increased
accuracy with respect to the in situ ground measurements. This can be noticed in Table VI.1.
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Figure VI.6: Qualitative and quantitive (in terms of MSE x 10~%) comparison of SWE model
calibrated using in situ measurements, with the measurements from: (a) station I, (b) station
I, (c) station III, (d) station IV. OM - optimization method, OI - optimization interval, MO
- non-calibrated model (based on the initial values of the correction coefficients), A - the

accumulation period, M - the melting period, all - the whole year.
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Table VI.1: Calibration results using both the in situ measurements and the MODIS snow
cover binary maps: MSE./MSEj - ratio between (1) the mean square error (MSE) of the
calibrated model and the measurements, and (2) the MSE of the model before calibration and
the measurements.

Calibration method Station MSE./MSEqy | Time (s) cp k¢
_ ) , Station I 0.6476 18.678 1.4077 | 2.5994
Calibration using -
Station II 0.2375 34.640 0.9581 | 6.0304
m situ Station III 0.2672 17.873 1.1898 | 2.3090
Station IV 0.0094 26.655 1.4345 | 8.0675
measurements
Average 0.2904 24.462
, ) , Station I 0.3578 52.116 1.3406 | 4.1960
Calibration using -
Station II 0.9946 65.782 1.5492 6.2212
MODIS Station IIT 0.4071 48.683 1.3692 | 3.9532
dat Station IV 0.0067 123.87 0.7738 | 10.4578
ata
Average 0.4415 72.613

Further, we present the optimization results obtained using the MODIS binary snow maps
(Fig. VL.7) for the four stations with the in situ measurements. Even though this optimization
appears to be slightly more time consuming, the overall results (Table VI.1) indicate far better
performances with respect to the original ones. Curiously, in case of two stations (I and IV) the
obtained results are even better than the ones achieved using in situ measurements, which are
considered as representative optimal solutions. This can be considered both as the validation
of the proposed calibration procedure and the demonstration of the utility of remote sensing
data in terms of calibration.

As anticipated, the proposed optimization in temporal domain results in spatially opti-
mized maps. It can be seen in Figure VI.8 that the newly obtained SWE maps match far
better the MODIS snow maps in terms of the presence/absence of snow. This is particularly
true for the melting season, where the proposed optimization exhibits better performances,
which can be analogously deduced from the comparison with the ground measurements (Fig.
VI.7). The matching was calculated as:

B (M M
= 2=t MZD;S © MyopEL) g9, (VL8)
142

with Myopis being the snow map (column (i) in Fig. VI.8), and Myopgr the map obtained
by thresholding the model (> 0) either before (column (ii) Fig. VI.8) or after the calibration
(column (iii) in Fig. VI.8). Finally, d; and ds are the dimensions of the maps.
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Figure VI.7: Qualitative compariso
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n with in situ ground measurements of the SWE model

calibration scheme based on MODIS data: (a) Station I, (b) Station II, (c¢) Station III, (d)

Station IV.

V1.6 Conclusion

Before passing on the highlight of this chapter, we have introduced the ongoing study on

potential of POLSAR backed by BS
SWE. The first results can be taken

S, in monitoring the snow pack parameters constituting
as promising, but are still far from the results obtained

by relying on the external input - distributed hydrological model, making the most of this

chapter.

Namely, due to their role in introducing the influences of topology and mountain winds, the
SWE sub-model of the MORDOR hydrological model appears to be quite sensitive with respect

to the accumulation and melting cor

rection coefficients. Because of the spatial discontinuity

of these coefficients, interpolating locally estimated values, like it is the case with the air
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Figure VI.8: Matching of the obtained SWE maps for: (a) the 26 October 2000, (b) the 4

February 2001, (c)

the 1 June 2001. Part (i) shows the MODIS map, part (ii) the SWE

map before calibration, part (iii) the SWE map after calibration and part (iv) the matching

percentages.

(d) The (spline) interpolated matching curves covering the one year period

(2000-2001). Geographical coordinates of the provided maps are 44°16’N, 06°13’E (bottom-

left corner).
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temperature or the precipitation, doesn’t appear as a proper solution. Therefore, we proposed
a new strategy for their derivation using multi-temporal MODIS binary snow cover maps and
i situ ground measurements. Firstly, we compared several optimization methods in deducing
the representative optimal coefficients for each of the four stations with in situ measurements.
Further on, using the method which proved as the most appropriate, we presented the strategy
for deriving the accumulation and melting coefficients using the MODIS binary snow maps.
This method allows covering the entire region of interest, by characterizing each spatial cell
(pixel of the MODIS image) with a pair of coefficients. In the same time, it assures better
accuracy with respect to the original SWE sub-model, which assumes global values for these
two coefficients. Using only MODIS data, the obtained optimized results are comparable to
the representative optimal coefficients, derived by the in situ data based optimization.

Finally, the spatial SWE estimation is achieved, by with the help of distributed hydrological
model and the interpolated temperature and precipitation measurements, which is however
still far from our long-term aim in the context of this problem - to autonomously estimate
SWE by means of remote sensing data.

Future work aims to investigate the potential role of spaceborne multi-temporal Synthetic
Aperture Radar data in improving the accuracy of the SWE sub-model of the MORDOR.



Application: Conclusions

The applied context of this thesis is dedicated to the remote sensing of snow pack. In the
preceding three chapters we have elaborated this particular problem (Chapter IV) and offered
our contributions in resolving some aspects of it (Chapters V and VI).

Firstly, in Chapter IV we set forth, although obvious, difficulties in estimating snow pack
parameters by means of single-polarization SAR remote sensing data. The reasons could be
summed up in the ill-posedness we are facing when trying to invert a snow backscattering
model. Although numerous empirical and semi-empirical (e.g. [115, 124]|) were proposed in
resolving this issue, we have rather chosen pursuing and investigating the alternative possibil-
ities, anticipated in Chapter VI. We introduced the backscattering simulator of a single-layer
snow pack, expanded to a multi-layer case and stated derived elementary hypotheses about
the snow backscattering mechanism. Finally, an external hydrological model, being an integral
part of above mentioned alternative possibilities was presented.

The fact arising from these elementary hypotheses about the snow backscattering, affirmed
in Chapter IV, is that the dry and the wet snow, in the context of microwaves, represent
two distinct materials. Consequently, the choice of the techniques which are to employed in
extracting snow parameters, should be conditioned by the identification of the snow type.
Therefore, in Chapter V we proposed a mean to achieve this first step, based on exploiting
single channel SAR remote sensing datasets, which was the first contribution in the applied
context of this thesis. The proposed change detection method compares winter and melting
season image and makes a decision, by relying on a priori defined ranges of backscattering
difference pointing to the wet snow presence. These ranges, named "variable threshold",
are derived by the appropriate calibration of the single-layer and multi-layer backscattering
simulator from Chapter IV, through the process which was as well founded on the qualitative
conclusions constituting above voiced hypothesis. Additionally, the local speckle statistic is
considered not before nor after, but directly in the decision process. The last made this
approach a stochastic method, which yields at the output a wet snow probability map.

The benefits of the novelty which assumes introducing speckle statistics directly in the
change detection, were illustrated by comparing the correspondence between wet snow maps
derived using two co-polarized channels (HH and VV). The comparison was performed with
respect to the scenario where speckle filtering is applied before the ratio and the one which
assumes speckle filtering of the ratio image. Aside from higher matching in case of proposed
approach, we established that the other two wet snow binary maps correspond to the wet
snow probability map threshold with a confidence level 70% and 72%, respectively. The
overall validity of the approach is demonstrated by computing a quite good spatial correlation
with the interpolated temperature map.

The above cited alternative possibilities presented in the last chapter firstly assume allud-
ing to our ongoing efforts to promote POLSAR, backed by BSS techniques, in anticipating
spatial distribution of snow parameters constituting SWE, the parameter of general interest.
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However, the highlight of this chapter is not the autonomous remote sensing method, but
rather the integration of multitemporal remote sensing datasets in the external hydrologi-
cal model. Namely, in Chapter VI we present an calibration method for distributed SWE
hydrological model, based on optical remote sensing data.

The (inverse) correlations between polarimetric descriptors, processed by means of PCA,
and snow pack parameters, seem to be promising, but however cannot still be considered as
decisive in resolving snow parameters derivation issue. On the other side, the role of remote
sensing in the existing spatial models can be crucial, as demonstrated in this chapter. Namely,
the comparison pointed out that the SWE model calibrated by means of optical remote sensing
data, at some of the measurement stations, even outperforms its counterpart calibrated using
local in situ measurements. Given the obvious advantage of remote sensing data in terms of
spatial coverage, this approach, although not autonomous, has an interesting potential.



Overall remarks and perspectives

This thesis was contemplated to reflect in a credible way everything we have done in the
frame of remote sensing during the last three years, and which could be granted as contributory
to the remote sensing scientific community. The idea was to try facing some of the open
questions in the POLSAR community, but as well to try providing the less abstract solutions
to some of the "palpable" environmental problems, which should be, in fact, the very purpose
of remote sensing. Given our affinity and tendency in our working environment, the former
one is tightly related to the implantation of very efficient statistical signal processing tools
into the POLSAR data analysis and interpretation. The latter, rather due to the geographic
position of this working environment, concerns estimation of an important derived snow pack
parameter - Snow Water Equivalent.

As the detailed conclusions were already provided at the end of, both methodological and
applied context of this thesis, here we tried to briefly, but very concisely, get together and
illustrate its four major contributions:

e The statistical tests for assessing the circularity and the sphericity in case of the al-
ternative statistical modelling of highly textured POLSAR data, followed by a method
founded on the spherical symmetry test, used for the evaluation of the suitability of the
Spherically Invariant Random Vector, being the above voiced contemporary model [160].

e The incoherent polarimetric target decomposition, based on the Independent Component
Analysis, rather than the eigenvector decomposition of the observed polarimetric data,
providing non-orthogonal and mutually independent target vectors, on account of the
information stored in higher statistical orders [1].

e The stochastic approach for wet snow mapping, based on a change detection method,
with a decision being a function of the local incidence angle through the variable thresh-
old, and local speckle statistics introduced implicitly in the decision making [2].

e The method for SWE model calibration, based on multitemporal optical remote sensing
datasets, allowing non-autonomous but still very effective implication of remote sensing
in SWE spatial derivation [3].

Fortunately, at this point we can not see any insurmountable obstacle, but rather an open
horizon for further development and exploitation of these contributions. The most evident
perspectives of the presented work would be the following:

e Adapting the interpretation of highly textured POLSAR and InSAR data to the as-
serted statistical properties. Proposing new alternative models for statistical modelling
of targets which do not fit neither multivariate Gaussian nor SIRV model.
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Overall remarks and perspectives

e Applying the developed ICTD in case of different targets and exploiting the informa-

tion contained in the second most dominant component, unconstrained by the imposed
orthogonality and influenced by higher order statistical information. Instead of relying
on the iterative and adaptive FastICA algorithm, proposing a particular ICA method,
eventually based on Maximum Likelihood Estimation, suited to the particular structure
of the observed polarimetric data.

Extending the single channel based method to its polarimetric variant and deriving a
variable threshold which appears to be more adaptable to the spatial diversity of snow
pack parameters.

Exploiting the possibilities of SWE monitoring by means of either conventional or con-
temporary POLSAR decomposition methods, with the implication of PCA in terms of
de-noising. Using SAR data i.e. derived wet snow probability maps, in a sort of a fu-
sion with optical datasets, to ameliorate the calibration of SWE spatial models, and to
ultimately demonstrate the indispensability of remote sensing in monitoring distributed
natural targets.



APPENDIX A

The polarimetric model of snow
backscattering

Snow backscattering can be represented in terms of polarimetric descriptors using Mueller
matrix [124].

Mueller matrix (M), evoked in Section I.1 is the 4 x 4 matrix relating the Stokes vector
of the incident i; and the scattered is partly polarized EM wave:

i, = Mi;, (A.1)
where Stokes vector is the 4 x 1 vector given in Eq. 1.6, completely describing the polarization
state of the partly polarized wave [6].

Mueller matrix correspond to FSA hypothesis, and its counterpart for BSA hypothesis
would be Kennaugh matrix.

Snow cover backscattering components, illustrated in Fig. IV.1, using the polarimetric
counterpart to the backscattering coefficient can be represented as [124]:

e snow pack surface component (M;):

Ms - SS(Miv — M, ¢S - ¢)7 (AQ)

with S being the snow surface backscattering matrix (formed of co-polarized and cross-
polarized backscattering coefficients).

e underlying ground component (M, ):

—2Ked
Mg?" = T(eTa ei)sg(/jﬂ“) —Hr, Qbs - ¢)T(917 01“) exXp 1 ) (AB)

with S, being the ground surface backscattering matrix and T the Fresnel transmission
coefficients 4 x 4 matrix.
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e volume component (M,):

M, = (0, 09 e = (12 22 ) (a)

where P if the Rayleigh 4 x 4 matrix.

e ground-volume interaction component (Mg, ):

M,, = ;T(er,ei>T<9i,ar)exp _fgedR(er,eT) (A.5)
P(—um—umqﬁs—qb)lexg,QW,

M,, = ;Twr,ei)T(@,er)exp _iiedR(er,eﬁ
Pty 1r, 65 — ) 2]

where R is the Fresnel reflection coefficients 4 x 4 matrix, and k¥’ = k. (ﬁ — #), p' and

1" being cosines of volume indicent and scattered angle.



APPENDIX B

The Nelder-Mead simplex
optimization method

The Nelder-Mead simplex optimization method can be considered as one of the most pop-
ular non-linear unconstrained optimization algorithm [155|. It minimizes the scalar function
value by relying only on the function values, without taking into the account the derivative
information.

The algorithm is defined with four characteristic coefficients:

e reflection (p)
e expansion (x)
e contraction (7)

e shrinkage (o)

whose standard values would be p=1,x =2,y =0 = %

We define the optimization problem as the minimization of f(x) for x € R", where n would
be the dimension of the simplex. Point x; is "the best" vertex, while point x,+; would be
"the worst" one of the simplex, meaning that f(z1) is the minimal value we have and f(z,41)
the maximal one. After each iteration we get a new simplex, defined with a set of vertices
Z1,%2,...Tpr1. The aim would be to find the best among "the best" vertices, which gives
"the global minimum" for f(z).

The algorithm steps during one iteration would be the following [142, 155]:

1. Ordering the vertices of the n-dimensional simplex so that:

f(x1) < fxe) < < f@ng)- (B.1)

2. Computing the reflection point (Fig. B.1la):

2r = (L+ )T = pass, (B2)
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X3 X3

X3

X3
A Xee Y
EA

=1

1

Bl

(a) (b) (c) (d) (e)

Figure B.1: Two dimensional simplex (triangle) through different steps of the algorithm, for
standard value of the characteristic coefficients.

with T = "' | @;/n. At this point, if f(z1) < f(z,) < f(xn), the iteration is terminated
by accepting x,.

3. If f(xr) < f(z1), the expansion point x. is derived as (Fig. B.1b):

ze =T+ x(z, — 7). (B.3)
If f(ze) < f(x,), the iteration is terminated by accepting x., if not x, is accepted.

4. However, if f(z,) > f(x,), contraction is needed:

o if f(x,) < f(zy) < f(2n41), it is the outside contraction (Fig. B.1c):

Te =T+ y(x, — T). (B.4)
If f(z.) < f(x,), accept x.. If not, go to step 5.
e on the other side, if f(x,) > f(zn4+1), it would be the inside contraction (Fig.

B.1d): N

Tee =T — V(T — Tpt1)- (B.5)
If f(xee) < f(xn41), accept xee. If not, go to step 5.

5. The last step is shrinking (Fig. B.1le). The function value is computed for n points v; =
x; + o(x; — x1), and the vertices of the simplex at the next iteration are x1, v, ... Upt1.



APPENDIX C

Résumé étendu (fr)

Séparation aveugle des sources polarimétriques en
télédétection RSO satellitaire a trés haute résolution
spatiale

Introduction

La télédétection désigne la science de 'acquisition d’information sur la surface de la Terre,
sans le contact avec cette derniére, ce qui veut dire la détection de 1’énergie électromagnétique
diffusée, réfléchie ou émise puis le traitement, I'interprétation et 'application de cette infor-
mation. Nous pouvons la définir comme une discipline scientifique appliquée, qui comprenne
et compte sur les domaines plus fondamentaux, comme le traitement du signal et d’image,
I’électromagnétisme et pratiquement toutes les sciences de la Terre. Aujourd’hui, il parait
impossible d’envisager les derniéres privées de large couverture spatiale de, soit les objets ex-
istants sur notre planéte, soit les processus et phénoménes ayant lieu partout sur sa surface.
Cela fait de la télédétection un outil indispensable dans la surveillance de la Terre.

L’importance de cette science et la nécessité de son développement supplémentaire sont
soulignés par certains des plus grands défis que I’humanité rencontre dans l’ére moderne
: les changements climatiques observés, la croissance rapide de la population mondiale, le
développement durable etc.

L’impact significatif du réchauffement global sur I’environnement, indiqué principalement
par la fonte des glaces dans les pdles et dans les régions montagnardes, impose la surveillance
de la cryosphére comme une de nos priorités principales. En dehors de cela, glaciers et man-
teau neigeux représentent les sources importantes de ’eau potable ainsi que industrielle, dont
le quantité peut étre estimée précisément seulement au moyen de large évaluation spatiale.
La végétation, particuliérement les foréts, étant les poumons de notre planéte, ne peuvent
étre préservées que par I'évaluation attentive et réguliére de leur état. Le besoin pour la re-
crudescence de production de nourriture, reconnu il y a longtemps, qui devrait étre faite en
optimisant les régions agricoles actuelles, demande leur inspection constante et précise. La
surveillance de surface des océans, qui couvrent presque 70% de la Terre, ne peut étre effectuée
qu’au moyen de la télédétection.
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Cela, ce n’est que quelques des nombreux exemples, est un effort pour démontrer
I’essentialité de l'information acquise & distance dans 'observation de la Terre. Dire, en
généralisant, que tout ce qui ne peut pas étre mesuré in situ, au moyen de I’échantillonnage
spatial, dépend de la télédétection, ne devrait pas étre une exagération.

Selon la fréquence des ondes électromagnétiques qui portent 'information, nous pouvons
distinguer entre différents types de capteurs actifs et passifs, qui peuvent étre soit satellitaires,
soit aéroportés. Par conséquent, il y a plusieurs disciplines de télédétection, dont, en prenant
en compte 'infrastructure actuelle, la télédétection optique passive et la télédétection Radar
a Synthése d’Ouverture (RSO) active, sont considérées comme prééminantes.

La télédétection optique fonctionne dans les régions visibles et infrarouges du spectre élec-
tromagnétique. Selon la résolution spectrale c’est a dire, combien de différentes fréquences
peut-on utiliser simultanément, nous pouvons discriminer entre des images optiques monospec-
trales (panchromatiques), multispectrales et hyperspectrales. Malgré le fait qu’elle ne peuvent
étre acquises que pendant la journée et malgré les contraintes qui concernent la présence de
nuages, une image optique, étant essentiellement une photographie "renforcée", représente une
piéce vitale d’information.

La télédétection RSO, qui fonctionne plutét dans la partie microondes du spectre électro-
magnétique, continue d’étre particuliérement attractive grace a ses performances de détection
"toute la journée" et "toutes les conditionnes météorologique". En dehors de cela, 'avantage
de RSO serait la pénétration plus profonde de microondes par rapport a la lumiére visible,
qui nous permet de déduire non seulement les propriétés de surface, mais aussi de volume. Le
principal désavantages concerne 'interprétation de données. Autrement dit, contrairement au
cas de I'imagerie optique, en raison de la géométrie différente et de l'interaction particuliére
avec la cible, nous ne pouvons pas entiérement compter sur notre intuition.

De facon analogue a la télédétection optique, oll nous utilisons simultanément plusieurs
fréquences pour approfondir la connaissance de la cible, dans le cas de la télédétection RSO
nous utilisons plutét plusieurs polarisations des ondes électromagnétiques, a 1’émission et a la
réception. On appelle cette sous-discipline la polarimétrie RSO et il en résulte une image RSO
avec plusieurs canaux, dont chacun correspond & une combinaison de différentes polarisations.

Dans cette thése nous proposons principalement des contributions a ['analyse et
Iinterprétation des images RSO. Cependant, nous ne négligeons pas l'imagerie optique mul-
tispectrale, mais nous 'utilisons plutét, en démontrant son utilité.

Les contributions présentées sont divisées en deux parties principales. La premiére par-
tie traite des avancements théoriques et en tant que tel, elle est liée & l'interprétation des
données polarimétriques RSO. Plus précisément, elle concerne l'implication des techniques
de séparation aveugle des sources, ayant comme l'objectif une amélioration de la qualité de
I'interprétation, en considérant les caractéristiques particuliéres des données acquises récem-
ment. Comme un prélude, le cadre méthodologique de I’évaluation statistique de ces partic-
ularités est inclus. La seconde partie, traitant plutét une application - la télédétection du
manteau neigeux, concerne le role de la télédétection RSO dans la cartographie de la neige et
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finalement, la modélisation spatiale de I’équivalent en eau de la neige (EEN). La derniére est
faite en intégrant les données optiques dans un modeéle hydrologique, mais aussi considérée
dans le contexte du RSO polarimétrique.

Les particularités des nouvelles données concernent principalement ’amélioration impor-
tante de la résolution spatiale, notamment la taille de 'objet le plus petit au sol, qui peut
étre distingué. Ce progrés influence significativement la statistique des images RSO. Notam-
ment, I’hypothése conventionnelle pour le modéle statistique de 'image RSO polarimétrique
multi-canaux serait la distribution Gaussienne multidimensionnelle. Pourtant, 'amélioration
de la résolution spatiale compromet cette hypothése, causant plutét un clutter hétérogéne,
caractérisé par le statistique non-Gaussienne.

Les dilemmes importants dans la communauté a propos de ce sujet, peuvent étre résumées
en deux questions :

e Est-ce que ces nouveaux modéles statistiques proposés sont vraiment appropriés pour
la modélisation de données RSO polarimétriques, ainsi que les autres types de données
RSO multidimensionnelles ?

e Qu’est-ce que nous gagnons exactement en admettant le départ de I’hypothése Gaussi-
enne, dans le cadre de 'interprétation 7

Ces deux questions furent une force motrice pour la recherche constituant le contexte
méthodologique de cette thése.

Apreés avoir introduit les bases sur la statistique d’image RSO dans le premier chapitre,
dans le chapitre II nous proposons une analyse statistique élaborée, dans le but de déterminer
quantitativement la nécessité et les bénéfices de I’hypothése statistique altérée. C’est-a-dire
que nous répondons & la premiére question.

Une interprétation de I'image RSO polarimétrique assume principalement ’application de
décompositions polarimétriques, dans le but d’exprimer la diffusion totale comme la somme
(soit cohérente ou incohérente) de composants de la diffusion plus élémentaire. Parmi dif-
férentes décompositions, introduites dans le premier chapitre avec le concept de la polarimétrie
RSO, les algébriques, arrivent & étre les plus utilisées dans la communauté aujourd’hui. Etant
basées sur l'analyse des valeurs propres, elles sont intrinséquement liées a 1’hypothése de
Gaussianité du clutter RSO polarimétrique. Comme on le dit dans I'introduction de la par-
tie méthodologique, le décalage par rapport & cette hypothése a comme conséquence que les
vecteurs propres dérivés ne sont pas indépendants statistiquement, mais plutét seulement
décorrélés. Donc, en employant de préférence la technique la plus proéminente de sépara-
tion aveugle des sources - analyse en composantes indépendantes (ACI), introduite dans le
premier chapitre, nous proposons une nouvelle approche pour la décomposition de données
polarimétriques dans le Chapitre III. Cette décomposition serait notre réponse a la deuxiéme
question.

Aprés avoir introduit les bases de la télédétection de manteau neigeux dans le Chapitre IV,
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dans le chapitre suivent nous proposons une nouvelle méthode stochastique pour la cartogra-
phie de la neige. Bien que 'application de la décomposition développée siir les images RSO
polarimétrique des régions neigeux, aboutit & quelques conclusions empiriques intéressantes,
nous avons inclus les propriétés électromagnétiques de la neige dans le contexte d’une image
RSO mono-canal. Notamment, les propriétés diélectriques de la neige dépendent significa-
tivement de la quantité d’eau présente dans le manteau. Par conséquent, les techniques de
télédétection employées dans 'extraction des paramétres de la neige, ce qui serait le but ultime
de la télédétection de la neige, varient selon le type de neige : si elle est séchée ou humide.
Donc, au début, il faut identifier le type du manteau neigeux. Dans l'approche présentée,
& part avoir proposé une décision stochastique pour discriminer entre deux types de neige,
nous dérivons aussi un nouveau seuil variable de rétrodiffusion, qui est basé sur le simulateur
de rétrodiffusion ainsi que le mécanisme de rétrodiffusion déduit depuis le dernier, les deux
introduits dans le Chapitre IV.

Finalement, nous nous concentrons sur la dérivation spatiale de ’équivalent en eau de la
neige. Vu que l'inversion du modéle de rétrodiffusion représente un probléme mal posé, qui
cause que I'image RSO mono-canal ne soit pas trés utile dans ce contexte, nous nous tournons
vers la conjonction du modéle hydrologique avec les données de télédétection. Aussi, nous
présentons briévement les recherches en cours, qui concerne le potentiel de modélisation de
I’EEN au moyen de données RSO polarimétriques, renforcées en impliquant les techniques
de séparation des sources (analyse en composantes principales) dans 'analyse des paramétres
dérivés. Cependant, le point culminant de ce chapitre serait la méthode de calibration du
modéle hydrologique de 'EEN, basée plutét sur les données optiques. Le modéle référent,
qui nécessita la calibration spatiale, est introduit dans la section IV.2. Le chapitre VI décrit
I’algorithme proposé, et méme plus, sert comme un type de démonstration de la suprématie
éventuelle de la télédétection par rapport aux mesures in Situ.

C.1 Image RSO polarimétrique et séparation aveugle des
sources

Ce chapitre sert comme un introduction aux méthodes de I’état de l’art qui nous ont inspirés
pour effectuer la recherche présentée dans la partie méthodologique de la thése. Ce chapitre en
constitue une revue, bréve mais systématique. La fusion d’une partie de ces méthodes forme
les bases des contributions théoriques présentées.

C.1.1 Polarimétrie RSO

La polarimétrie RSO représente ’émission en alternance des ondes polarisées horizontalement
(H) et verticalement (V), et la réception des ondes rétrodiffusées de la cible et captées par
les antennes horizontales et verticales (Fig. C.1). Cela nous permet d’avoir une information
complexe, c’est-a-dire le rapport du champ électrique incident et rétroduffusé, pour quatre
combinaisons de polarisations. Dans le cas de cibles cohérentes, qui ne montrent pas de
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Figure C.1: Principe de la polarimétrie : (a) schéma de l'instrument, (b) les pulses a la
transmission (T) et a la réception (R).
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fluctuations ni spatiales ni temporelles, cette information peut étre représentée soit dans la
forme de la matrice de rétrodiffusion (S), soit dans la forme du vecteur cible (k) :

Cependant, la plupart de cibles naturelles que nous rencontrons fluctuent soit dans I’espace
ou dans le temps, ce qui veut dire qu’elles ont un caractére incohérent. Dans ce cas la,
la représentation appropriée de 'information acquise serait plutét la covariance du vecteur
cible (T = kk'?), estimée sur ’ensemble de pixels. En conséquence, a cause de cet effet de
I'interférence spatiale aléatoire que nous appelons speckle, la formation d’'une image RSO et
par conséquent d’une image RSO polarimétrique représente un processus stochastique. Si nous
présumons ’homogénéité du clutter, 'hypothése conventionnelle dit que le vecteur cible est
supposé étre un vecteur aléatoire complexe Gaussien circulaire & moyenne nulle et sa matrice
de covariance distribuée selon la distribution de Wishart. Par contre, I’amélioration de la
résolution spatiale, c’est-a-dire la réduction de la cellule spatiale qui correspond & un pixel,
engendre un clutter hétérogéne, ce qui nécessite 'implication de la texture (7). Donc, pour
décrire un pixel dans 'image polarimétrique texturée il nous faudrait un modéle multiplicatif
k = /7z, ou z représente le vecteur cible normalisé. Le modeéle qui correspond a cette
description et qui est proposé pour caractériser les images RSO polarimétriques texturées est
les vecteurs aléatoires sphériquement invariants (SIRV).

Le but principal de la polarimétrie radar, et finalement de toutes les autres disciplines de la
télédétection, est de mieux comprendre les cible observées sur la Terre. Le moyen d’y parvenir
serait de représenter I'information acquise et représentée dans la forme du S, k ou T comme
la mélange des diffuseurs élémentaires qui paraissent étre plus compréhensibles, c¢’est-a-dire de
décomposer la cible. Les décompositions polarimétriques, en dehors du fait d’étre cohérentes
ou incohérentes, peuvent étre soit basées sur les modéles (nous cherchons dans le mélange les
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modeéles a priori définis), soit algébriques (nous affirmons les composantes du mélange et puis
nous essayons de les caractériser). La décomposition incohérente algébrique proéminente est
la décomposition proposé par Cloude et Pottier, ot nous représentons la matrice de covariance
T comme la somme pondérée des covariances de ses vecteurs propres :

T = Mkik + Mokok + \3kaki!, (C.1)

ou les valeurs propres (\;) sont associées aux contributions de composantes. Chacune de ces
composantes est en suite paramétrée en utilisant le modéle a — 5 —~ — § ou le modéle TSVM
dans le cas de décomposition de Touzi, tandis que les contributions forment les parameétres de
I'entropie (H) et l'anisotropie (A).

C.1.2 Séparation aveugle des sources

La séparation aveugle des sources représente I’ensemble des techniques qui ont pour but la
récupération des signaux de sources (s) depuis leur mélange (x), sans avoir a priori la con-
naissance du processus de mélange (A) :

1 (t) A A Aip Sl(t)
X(t) = z2(t) _ As(l) = Ao A:22 Agn | | s2(1) ’ (C.2)
T (t) Ani Anp Ann] Lsn(t)

D’un coté, la technique la plus classique qui correspond a cette description est I’Analyse en
Composantes Principales (ACP), ot les sources s sont mutuellement décorrélées et la matrice
de mélange A doit étre orthogonale. De l'autre coté, la technique proéminente qui assure
I'indépendance des sources et qui n’impose pas l'orthogonalité de la matrice de mélange est
I’Analyse en Composantes Indépendantes (ACT).

Les méthodes de I’ACI utilisées dans cette thése peuvent étre divisées en méthodes itéra-
tives et tensorielles. Finalement, la méthode qui correspond le mieux dans notre contexte
de la polarimétrie RSO, est une méthode itérative - FastICA. Dans ce cas, le critére pour
I'indépendance des sources est leur non-gaussianité, le concept qui découle du théoréme cen-
trale limite. En général, nous assurons l'indépendance en maximisant un des critéres de non-
gaussianité comme le kurtosis ou la néguentropie, en minimisant 'information mutuelle ou en
utilisant 'Estimation de Vraisemblance Maximum. Si nous traitons les signaux complexes,
comme si c¢’est le cas dans la polarimétrie RSO, I'indépendance est assurée en maximisant la
fonction non-linéaire de contraste, qui peut étre quadratique, logarithmique ou racine carrée.
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C.2 Evaluation statistique des images RSO polarimétriques a
haute résolution spatiale

Dans ce chapitre, nous proposons un cadre méthodologique pour I’évaluation statistique des par-
ticularités des données RSO multidimensionnelles et a haute résolution spatiale. Celui surtout
représente l'analyse des trois itmportants paramétres statistiques : circularité, sphericité et
symétrie sphérique. Tous les trois sont considérés dans le contexte de modéle statistique SIRV.
Les conclusions dérivées apreés avoir appliqué ce cadre sur les données RSO polarimétriques,
sont renforcées en impliquant également les données RSO interférométriques.

C.2.1 Paramétres statistique

Le but principal est d’examiner la conformité des données RSO multidimensionnelles haute-
ment texturées par rapport & l'’hypothése statistique contemporaine - vecteur aléatoire
sphériquement invariant (SIRV). Nous démontrons que cela peut étre fait en analysant la
symétrie sphérique du vecteur cible, aprés avoir vérifié des propriétés de circularité et de
sphéricité.

test de moyenne

1

test de circularité

)

test de sphericité

l

test de symétrie sphérique

!

test de gaussianité

Figure C.2: Cadre méthodologique pour I’évaluation statistique de données RSO multidimen-
sionnelles.

La circularité concerne I'indépendance entre la partie réelle (x) et la partie imaginaire (y)
d’un vecteur aléatoire (k = x 4 iy). Dans le contexte de polarimétrie, nous la vérifions en
considérant le vecteur de cible augmenté J = [k’ k"]7 qui forme la matrice de covariance
augmentée :
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Figure C.3: Image RSO polarimétrique de Toulouse, acquise par RAMSES en bande X (en
haut); Image RSO interférométrique de Chamonix, acquise par TerraSAR-X en bande X (en
bas) : pixels non-circulaires, pixels sphériques, pixels sphériquement non-symétriques.

cC P

R=ED)= . .

(C.3)

Le test concerne la structure de matrice de pseudo-covariance (P) (Table C.1). Des vecteurs
non-circulaires devraient étre traités comme les vecteurs réels augmentés.

E[lk;|4)

Hy: P#0

{ Hy: P=0, Gaussien SIRV

det(® H m L1212
Ak, k) = et((c?zf;)l))z 20N | Ak, k) S S

Table C.1: Circularité : test ratio de vraisemblance généralisé pour vecteur cible gaussien et
pour SIRV.

La sphéricité concerne plutdt I'indépendance égale entre les éléments d’un vecteur aléatoire.
Elle est testée en vérifiant la structure de matrice de covariance (Table C.2). Les vecteurs
sphériques ne devraient pas étre traités au moyen de I'analyse multivariée.
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{ Hy: C=gl, Gaussien SIRV
iz CF sl 1Ak, ky) = W 2 | oAk, k) = (det Mpp) s <g, As

Table C.2: Sphéricité : test généralisé du ratio de vraisemblances pour vecteur cible gaussien
et pour SIRV.

Enfin, la symétrie sphérique pour des vecteurs circulaires et non-sphériques présume une
conformité par rapport a la famille de distributions elliptiquement proﬁlees Cette propriété est
testée en vérifiant la structure de la matrice de quadri-covariance M4 =5 ZZ L kikF okkH.

C.2.2 Reésultats

L’application des tests réalisés sur une image polarimétrique et une image interférométrique
(Fig. C.3) nous permettent les conclusions suivantes :

e la circularité, ne découlant pas de bruit thermique, ne devrait pas étre a priori présumée,
e la sphéricité devrait étre testée, pour éventuellement éviter I’analyse multivariée,

e le modeéle SIRV répond bien sauf dans les régions caractérisées plutot par une forte
rétrodiffusion cohérente.

C.3 Deécomposition polarimétrique par séparation aveugle des
sources

Ce chapitre représente le point central de la thése. Ici, en remplacant la décomposition conven-
tionnelle en valeurs propres par un algorithme de I’ACI, nous généralisons le concept de décom-
position incohérente de la cible au niveau de séparation aveugle des sources. La décomposition
proposée exploite l'information statistique des ordres supérieurs, émergeant de I’hétérogénéité
du clutter RSO polarimétrique. Le résultat est I’ensemble de vecteurs de cible, mutuellement
indépendants et non-orthogonauzr. La composante la plus dominante est trés similaire a celle
obtenue au moyen des méthodes conventionnelles, mais la deuzxiéme, par contre, porte une
nouvelle information.

La premiére étape serait de sélectionner des ensembles de données d’observation, c¢’est-a-
dire des vecteurs de cible. A priori, il y a deux fagons pour faire cela :

e une approche globale qui présume une classification statistique donnant a la sortie des
ensembles de données stationnaires.

e une approche locale qui est basée sur une fenétre glissante.
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Initial target vector

Figure C.4: Image de Brétigny, acquise par RAMSES en bande X : (a) vecteur cible Pauli,
(b) classification.

Vu la taille de fenétre requise en cas de I’ACI, nous sommes plutét concentrés sur ’approche
globale.

Ensuite, sur tous les sous-ensembles de I'image RSO (classes), nous appliquons I’algorithme
de ’ACI, ce qui nous permet de caractériser chacun parmi eux avec une matrice de mélange
et des sources appropriées (Eq. C.2, n = 3). Chaque colonne de matrice A est liée & une
des sources dans le vecteur s, chacune étant mutuellement indépendante. En conséquence, les
colonnes de la matrice de mélange sont également indépendantes et vu qu’elles représentent
physiquement des vecteur cibles, nous les considérons comme les mécanismes indépendants de
rétrodiffusions (Fig. C.5). Leur indépendance est assurée en maximisant la fonction logarith-
mique comme la mesure de contraste, tandis que leurs contributions a la rétrodiffusion totale
(homologue de valeurs propres) sont estimées au moyen de £3 norme au carré.

Shn(i,7) + Sou (4, ) 11 Afy Afg 51(4,7)
Sl?.h(%]) - Ssv (7',.7) = gl Ag2 Aga ) 35(7',.7)
255,(4, 9) A3y A3y A3 s3(4, )

~ N N

Figure C.5: Le concept d’implication de ’ACI dans le contexte de polarimétrie.

Le vecteur cible de chacun de mécanismes indépendants est ensuite paramétré en utilisant
le modele de vecteur de rétrodiffusion de la cible (TSVM) de Touzi. Cela nous permet de
caractérise les trois mécanismes les plus dominants en fonction de paramétres invariants par
rapport & la rotation, ainsi que de les illustrer avec une sphére de Poincaré (Fig. C.6).

Le choix de l'algorithme de ’ACI (Complex FastICA logarithmique) est fait en appliquant
la décomposition sur une image de la région urbaine (Fig. C.6) qui contient des triédres placés
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Figure C.6: Image de Brétigny, acquise par RAMSES en bande X : (a) entropie (ACP), (b)
entropie (ACI - log), (c) composantes (lére, triedre) de classe VIII (ACP), (d) composantes
(Lére, 2¢me, triedre) de classe VIII (ACI-log).

en fin de calibration, par rapport a deux critéres :

e l'estimation d’entropie : I’hypothése de départ fut que les composantes estimées de-
vraient avoir des contributions similaires a celles obtenues au moyen de la décomposition
conventionnelle (Fig. C.6a et b).

e l'identification des triédres : [’algorithme choisi devrait étre capable d’estimer aussi
précisément le triédre tant que la premiére composante comme la décomposition con-
ventionnelle (Fig. C.6c et d).

De la méme maniére comme pour la classe de "triédres", la premiére composante est trés
similaire & celle estimée par ’ACP pour toutes les autres classes. Par contre, la deuxiéme
composante est différente. Notamment, elle est maintenant non seulement décorrélée mais
indépendante par rapport & la premiére et en plus, elle n’est plus contrainte par orthogonal-
ité. L’information portée par cette deuxiéme composante représente I’apport principal de la
nouvelle décomposition proposée.
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C.4 Télédétection de la neige

Ce chapitre sert comme une introduction au contexte appliqué de cette thése. Notamment,
comme il est indiqué dans [’introduction, la télédétection représente une discipline scien-
tifique appliquée, souvent intrinséquement liée aux sciences de la Terre. Donc, en dehors
de contributions présentées dans la premiére partie, qui peuvent étre désignées comme plutot
méthodologiques, nous présentons dans cette partie un probléme environnemental plus con-
cret, approché au moyen de la télédétection radar, avec avec ’apport important de l'imagerie
optique.

Le probléme considéré est 'estimation spatiale de ’équivalent en eau de la neige (EEN),

il étant une fonction de la densité (p) et du profondeur de la neige (d) :

1 d
EEN = — [ p.dz (C4)
Pw Jo

Les travaux présenté, effectues en collaboration avec Electricité de France (EDF), sont liés
au cas d’études qui concerne la région autour du barrage Serre-Pongon, en France.

Le but principal fut de :

e soit estimer EEN de maniére indépendante, en utilisant que des données de télédétection.

e soit intégrer des données de télédétection dans l'infrastructure existante - le modéle
hydrologique.

Pour faire cela, nous avons disposé de ’ensemble de mesure in situ, ’ensemble des im-
ages RSO et I'ensemble des cartes de la neige délivrées & partir des données MODIS multi-
temporelles. Evidement, les premiers efforts sont dirigés vers une approche autonome.

Figure C.7: Le rétrodiffusion de manteau neigeux.
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D’abord, nous dérivons un simulateur de la rétrodiffusion de la neige séche et humide, qui
prend en compte le manteau neigeux mono-couche et multi-couche. Les simulations effectuées
nous permettent d’arriver jusqu’aux conclusions concernant la physique de la rétrodiffusion
de la neige, ainsi que de former les bases d’'une méthode de cartographie, présentée dans le
chapitre suivant.

La rétrodiffusion de la neige est décomposé en quatre composantes (Fig. C.7) :

1. rétrodiffusion de la surface de la neige,
2. rétrodiffusion du sol au-dessous de la neige,
3. rétrodiffusion de la volume de la neige.

4. interaction entre le sol au-dessous et la volume de la neige.

Tous les types de rétrodiffusion sont simulés en appliquant les théories fondamentales. Pour
la rétrodiffusion de la surface cela fut Integral Equation Model (IEM-B), tandis que pour celle
du volume nous utilisimes comparativement le modeéle de Rayleigh (la diffusion indépendante)
et Transfert Radiatif de Milieux Denses (DMRT). Le dernier est basé sur ’approximation
quasi-cristalline (QCA) dans le case de la neige séche et 'approximation quasi-cristalline avec
potentiels cohérents pour la neige humide.

Aprés avoir fait des analyses dans trois bandes de fréquences (L, C et X) pour les
paramétres représentatifs du manteau neigeux, nous avons obtenus les conclusions suivantes
par rapport & deux paramétres formant 'EEN :

e neige séche : la composante la plus dominante est la deuxiéme - le rétrodiffusion du sol
au-dessous de la neige. La sensibilité au changement de profondeur est trés faible, bien
qu’elle augmente avec la fréquence. Par contre, la sensibilité au changement de densité
est assez forte et la facon dans laquelle la densité influence la rétrodiffusion dépend
significativement de la fréquence.

e neige humide : la composante la plus dominante est le premiére - le rétrodiffusion de la
surface de la neige. La sensibilité au changement de profondeur est presque négligeable.
Dans ce cas 13, la sensibilité au changement de densité est aussi forte, mais il y a qu’'un
moyen de l'influence - le changement de permittivité diélectrique.

C.5 Cartographie de la neige humide par les données RSO a
haute résolution spatiale

Comme il était indiqué dans le chapitre préceédent, tous les efforts pour inverser le modéle de
rétrodiffusion de la neige pour estimer les paramétres de manteau meigeur, parait étre con-
dittonné par la discrimination appropriée entre la neige séche et la neige humide. Donc, en
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Figure C.8: Le seuil variable : (a) polarisation HH, (b) polarisation VV. Les régions noires
indiquent la neige séche, tandis que les régions grises sont associées & la présence de la neige
humide.

utilisant le simulateur de rétrodiffusion de la neige mono-couche et multi-couche, et surtout, en
utilisant les conclusions affirmées, nous développons une méthode de détection de changements
de la neige. Par ailleurs, en s’appuyant sur la statistique de l'image RSO, élaborée en premier
chapitre, la méthode présentée dans ce chapitre, estime la probabilité de la neige humide en
tenant compte de la statistique locale de speckle, ce qui en fait une méthode stochastique.

L’approche classique de cartographie de la neige est une méthode de détection de change-
ments basée sur la ratio de deux images RSO acquises en bande C, une pendant I’hiver et
I’autre dans I'été. En présument que la rétrodiffusion de la neige séche peut étre considérée
comme assez proche a celle du sol nu, et que la rétrodiffusion de la neige humide doit étre
caractérisé par les fortes pertes électromagnétique, la ratio inférieur au —3dB devrait montrer
la présence de la neige humide.

Pourtant, les résultats que nous obtinmes par le simulateur introduit dans le chapitre
préceédent ainsi que les mesure de 1'état de l'art (Alpes Suisses, 1994/95) indiquent que ces
hypothéses classique peuvent étre appropriement modifiées. En conséquence, la méthode
proposée dans ce chapitre est caractérisée par les points suivants :

e vu que la présence de la neige séche influence la rétrodiffusion du sol, nous proposons
plutdt la ratio des images acquises en bande X, une pendant la saison de fonte et 'autre
pendant I'hiver.

e en considérant 'importance du réle de la rétrodiffusion des surfaces, nous dérivons un
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Figure C.9: La validation de méthode proposée : (a) correspondance entre les cartes HH et
VV dans trois cas - filtrage de speckle avant le rapport, filtrage de speckle aprés le rapport
et notre approche, respectivement, (b) la carte de probabilité georéférencée, (c) la carte de
température interpolée, (d) la corrélation spatiale de deux cartes précédentes.
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seuil variable, il étant la fonction de ’angle local d’incidence.

e pour mieux refléter la nature des images RSO, nous impliquant la statistique locale de
speckle dans la prise de la décision.

Le simulateur de la rétrodiffusion est d’abord calibré en bande C, en utilisant les mesures
de I’état de 'art, citées ci-dessus. Cette calibration est, au fond, une optimisation du ratio de
rétrodiffusion de la neige humide et de la neige séche, elle étant une fonction de I’angle local
d’incidence, par rapport a la rugosité de surface.

Une fois nous avons les paramétres optimaux, nous refaisons les simulations en bande X.
Les conclusions sont ensuite généralisées, en variant ces paramétres. Le paramétre qui ne
varie pas est 'humidité de la neige humide. Notamment, dans nos analyses, elle est trés base
(w = 0.73%), ce qui est supposé de refléter le cas ou la variation de la ratio par rapport a
I’angle d’incidence devient importante. Autrement, pour les valeurs d’humidité augmentées,
I’hypothése physique qui associe ’absorption au comportement électromagnétique de la neige
humide est incontestable.

Enfin, grace a ces simulations en bande X, nous formons des zones associées a la présence
de la neige séche et la neige humide (Fig. C.8).
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Au lieu de tout simplement calculer la ratio de deux images filtrées et puis associer chacun
des pixels soit a la classe de neige séche, soit a celle de neige humide, nous dérivons plutdt la
probabilité de la neige humide. Notamment, en présument que la ratio normalisée d’intensité
est distribuée selon la loi Béta prime, nous estimons les paramétres de la densité de probabilité
(B') pour chaque région (fenétre glissante). Ensuite, la probabilité de la neige humide est
estimée au moyen de la fonction de répartition (B') :

iout(6,7) = Bl =5 | =By |~ ) =
/L(Z,]) M(Zvj)
T5(4,5)
w(ig)  __,

_ / B, (€)de. (C.5)

T (4,5)
p(,5)

ol p représente la moyenne utilisée pour la normalisation, tandis que 77 et T sont les seuils
deéfinis dans 1’étape précédente (Fig. C.8).

La méthode est validée :

e quantitativement : pour démontrer l'utilité du caractére stochastique, nous avons
analysé la correspondance entre deux cartes de probabilité estimées séparément (HH
et VV). La comparaison de notre approche (les cartes binaires) avec celle ot nous cal-
culons le ratio de deux images filtrée et celle ou le ratio est filtrée, montre le supériorité
de I'implication de statistique dans la prise de décision (Fig. C.9a).

e qualitativement : nous comparons la carte de probabilité geo-référencée avec la carte de
température de l'air au niveau de sol, en obtenant une bonne corrélation spatiale (Fig.

C.9b, c et d).

C.6 Modélisation spatiale de PEEN par les données de télédé-
tection

Comme il était spécifié dans le chapitre IV, la dérivation de paramétres de la meige au moyen
de l'image RSO, représente un probléme sous-déterminé. Pourtant, dans le chapitre précédent
nous développions une méthode pour la classification de neige, basée sur les images RSO
multi-temporelles. Dans ce chapitre, pour dériver la distribution spatiale de I’EEN, nous nous
tournons vers la télédétection optique, accompagnée par le modéle hydrologique introduit dans le
chapitre IV. Egalement, nous présentons bricvement les efforts en cours pour faire travailler les
méthodes RSO polarimétriques, renforcées par une technique de séparation aveugle des sources
(ACP), dans la surveillance de paramétres de la neige qui forment EEN.

Le sub-modéle du MORDOR qui concerne ’équivalent en eau de la neige (EEN) prend a
I’entrée :
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Figure C.10: Une des sorties du modéle MORDOR : Equivalent en eau de la neige.

la température spatialisée,

la précipitation spatialisée,
e le coefficient de I'accumulation (cp),

e le coefficient de la fonte (ky),

et il donne a la sortie 'EEN comme une fonction spatiale et temporelle (Fig. C.10).
L’implication des données optiques, c’est-a-dire la calibration du modéle est liée a ’estimation
de deux coefficients spatiales (¢, et kf) qui ne peuvent pas étre mesurés autrement.

La calibration peut étre divisée en trois étapes :

e sélection de la méthode d’optimisation,
e paramétrisation de la fonction de binarisation,

e dérivation des coefficients ¢, et ky.

D’abord, nous choisissons la méthode d’optimisation en calibrant le modéle par rapport
aux mesures in situ de 'EEN pour quatre différentes stations dans la région d’intérét. Le
critére pour 'optimisation est I’erreur quadratique moyenne.

Ensuite, pour utiliser les carte de la neige multi-temporelles, dérivées des images MODIS
(données optiques), ou bien les courbes quasi-binaires temporelles, délivrées a partir de ces
cartes, nous fiimes obligé de binariser la sortie du modéle. Les paramétres de la fonction de
binarisation sont calculés en optimisant les mesures in situ par rapport aux courbes MODIS
qui correspondent & quatre stations.

Finalement, en optimisant la sortie binarisée du modéle par rapport aux courbes MODIS
nous calibrons le modéle, c’est-a-dire nous dérivons les coefficients de I’accumulation et de la
fonte dans toute la région couverte par les images optiques.
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Figure C.11: Correspondance entre les cartes de la neige dérivées depuis le modéle non-calibré
(ii) et celui calibré (iii) avec les cartes MODIS (i).

Les résultats obtenus et affichés dans la Fig. C.11 montrent que le modéle calibré spa-
tialement correspond beaucoup mieux aux cartes de la neige délivrées des données MODIS,
pendant toute I’année. Pour deux sur quatre stations oli nous avons disposé des mesures,
la calibration avec des données optiques est supérieur par rapport & celle effectuée avec des
mesures in situ. Cela peut servir comme une démonstration de la nécessité d’impliquer la
télédétection dans les problématiques environnemental avec un caractére spatial.

C.6.1 Le role potentiel de RSO polarimétrique

Dans la partie qui concerne la spatialisation de I’équivalent en eau de la neige, nos efforts
actuel sont dirigés vers 'analyse du role de RSO polarimétrique dans la spatialisation des
paramétres qui forment EEN.

Cette piste de recherche est basée sur la corrélation observée (R? = 0.8439) entre 'entropie
"enrichie" et le profondeur de la neige (Fig. C.12). Entropie "enrichie" ou bien entropie
débruitée est obtenue en appliquant I’ACP sur I’ensemble de cing descripteurs polarimétriques.
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Figure C.12: Entropie vs. profondeur de la neige au-dessus de la premiére croute de glace :
corrélation temporelle.
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C.7 Conclusions

Cette thése fut envisagée de refléter d’'une maniére crédible tous ce que nous avons fait dans
le cadre de la télédétection pendant les trois derniéres années, et ce qui peut étre considéré
en tant que contribution & la communauté scientifique de télédétection. L’idée fut d’essayer
de confronter des questions ouvertes dans la communauté RSO polarimétrique, ainsi que
d’essayer de proposer des solutions moins abstraites pour des problémes environnementaux
"palpables". Vu notre affinité et les tendances actuelles dans notre environnement profession-
nel, la premiére est liée & 'implantation des outils trés efficaces de traitement statistique du
signal dans I’analyse et I'interprétation des données polarimétriques. La derniére, plutét grace
a la position géographique de notre environnement professionnel, concerne I’estimation d’un
paramétre dérivé du manteau neigeux - I’équivalent en eau de la neige.

Alors que les conclusions un peu plus détaillés sont déja fournis pour chacun des chapitres,
ici nous essayons d’illustrer briévement, mais concisément, les quatre contributions principaux

e Les tests statistiques pour I'évaluation de la circularité et de la sphericité dans le cas
de la modélisation statistique alternative des données RSO polarimétriques hautement
texturées. Ceux-ci sont suivis par une méthode basée sur le test de symétrie sphérique,
utilisé pour I’évaluation de la pertinence de vecteurs aléatoires sphériquement invariants

(SIRV).

e La décomposition incohérente polarimétrique, basée sur ’analyse en composantes in-
dépendantes des données polarimétriques observées, plutét que sur leur décomposition
en valeurs propres. Elle fournit les vecteurs de cible qui sont mutuellement indépendants
et non-orthogonaux, en exploitant I'information contenue dans les ordres statistiques
supérieurs.

e L[’approche stochastique pour la cartographie de la neige humide, basée sur la méthode
de la détection de changements, ou la décision est la fonction de I’angle d’incidence local
via le seuil variable, et la statistique locale de speckle est introduite implicitement dans
la prise de décision.

e La méthode de calibration d’'un modéle EEN, basée sur les données optiques multi-
temporelles, qui permet 'implication non-autonome mais toujours trés efficace de la
télédétection dans la dérivation spatiale de 'EEN.

Heureusement, en ce moment nous ne percevons pas d’obstacles insurmontable, mais plutét
un horizon ouvert pour le développement supplémentaire et ’exploitation de ces contributions.
Les perspectives les plus évidentes du travail présenté seraient les suivantes :

e Adapter 'interprétation des données RSO polarimétriques et interférométriques haute-
ment texturées aux propriétés statistiques affirmées. Proposer de nouveaux modéles
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Résumé étendu (fr)

alternatifs pour la modélisation statistique de cibles qui ne répondent ni au modéle
Gaussien multivarié ni au modéle SIRV.

Appliquer la décomposition développée et exploiter 'information contenue dans la deux-
iéme composante, qui n’est pas contrainte pas l'orthogonalité. Au lieu de compter
sur 'algorithme itérative (FastICA), proposer une méthode de I’ACI particuliére, basée
éventuellement sur 'Estimation de Vraisemblance Maximale, et adaptée a la structure
particuliére des données polarimétriques observées.

Etendre la méthode basée sur un seul canal & sa version polarimétrique et dériver un
seuil variable qui semble étre mieux adapté a la diversité spatiale des paramétres de
manteau neigeux.

Exploiter la possibilité de surveillance de 'EEN au moyen de décompositions RSO po-
larimétriques (conventionnelles ou contemporaines) avec I'implication de ’ACP dans le
contexte de débruitage. Utiliser les données RSO, c’est-a-dire, des cartes de probabil-
ité de la neige humide dérivées, pour améliorer la calibration des modéles spatiaux de
I'EEN, et pour finalement démontrer la nécessité de la télédétection dans la surveillance
de cibles naturelles distribuées.



APPENDIX D

Rezime (me)

Karakterizacija polarimetrijskih SAR slika velike rezolucije tehnikama slijepog razdvajanja
izvora

Ova teza podrazumijeva dva pravca istrazivanja. Prvi, metodoloski, predstavlja nase na-
pore da odgovorimo na neka od otvorenih pitanja u POLSAR zajednici, dok je drugi vezan za
specificnu aplikaciju - teledetekciju snijeZznog pokrivaca.

Uzevsi u obzir alternativno statisticko modelovanje multivarijantnih SAR slika visoke re-
zolucije koriste¢i SIRV model, mi predlazemo odgovarajucu estimaciju, uostalom pretpostavl-
jenih parametara cirkularnosti i sfernosti. IntegriSuci posljednju u test sferne simetrije, formi-
ran je metod za evaluaciju prikladnosti statistickog modela SIRV u kontekstu POLSAR slika
visoke rezolucije. Posmatrajuci stopu odbacivanja, sumnja u opravdanost pretpostavke cirku-
larnosti i sfernosti se ¢ini opravdanom, dok pogodnost SIRV modela mora biti preispitana u
regionima koje karakterise jako deterministicko elektromagnetno rasijanje. U nastavku, kao
primarni doprinos ove teze, predlazemo polarimetrijsku nekoherentnu dekompoziciju mete,
koja je bazirana na ICA metodu i zasnovana na hipotezi o otklonu od Gausove prirode POL-
SAR clutter-a. Eksploatisuéi informaciju sadrzanu u visim statistickim redovima, predloZzena
dekompozicija daje na izlazu set medusobno nezavisnih (prije nego samo nekorelisanih), neor-
togonalnih vektora mete. Za razliku od prve dominante komponente, koja je skoro identi¢na
komponenti estimiranoj koriste¢i konvencionalnu ICTD metodu, druga dominanta kompo-
nenta se znacajno razlikuje, $to predstavlja dodatan potencijal u interpretaciji POLSAR slika.

Prvi prezentovani doprinos u primijenjenom kontekstu bio bi stohasti¢ki metod za mapi-
ranje snijeznog pokriva¢a baziran na multitemporalnom setu SAR slika. Najznacajniji prilozi
prezentovane metode grupi tehnika "detekcije promjene" u mapiranju snijeznog pokrivaca su
opravdano promijenjena pretpostavka o koli¢niku povratnog rasijanja djelimi¢no otopljenog i
suvog snijega, kao i implicitno uvedeno prostorna korelacija izmedu regiona djelimi¢no oto-
pljenog snijega, postignuta direktnim uvodenjem lokalne statistike speckle Suma u proces od-
lu¢ivanja. Konaé¢no, predlazemo neautonomni metod za prostornu estimaciju SWE parame-
tra, zasnovan na optic¢kim slikama. Uspjesno inflitrirajuéi teledetekciju u kalibraciju eksternog
SWE modela, imamo za cilj demonstrirati njenu korisnost i neophodnost u monitoringu sni-
jeznog pokrivaca.
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Abstract: This thesis comprises two research axes. The first, being rather methodological, con-
sists of our efforts to answer some of the open questions in the POLSAR community, while the latter
is sooner related to the specific application - the remote sensing of snow. Following the alternative sta-
tistical modelling of highly textured multivariate SAR datasets by means of SIRV model, we propose
the appropriate assessment of, otherwise assumed, circularity and sphericity parameters. The last is
coupled with the spherical symmetry test, forming a method for the evaluation of SIRV statistical
model suitability in the context of POLSAR data. Given the rejection rate, challenging circularity
and sphericity appears to be justified, while STIRV model pertinence must be doubted in the regions
characterized by strong deterministic scattering. Further on, as the highlight of this thesis, we pro-
pose a polarimetric incoherent target decomposition, based on ICA and founded on the hypothesis of
non-Gaussianity of POLSAR clutter. By exploiting the information contained in the higher statistical
orders, this decomposition provides at the output a set of mutually independent (rather than only
decorrelated), non-orthogonal target vectors. Unlike the first dominant component, which is nearly
identical to the one estimated by the conventional ICTD counterpart, the second dominant compo-
nent differs significantly, which, as we anticipate, represents an additional potential for the POLSAR
datasets interpretation. In the applied context, the first presented contribution would be a stochastic
approach in snow mapping by means of multitemporal SAR datasets. The most notable supplements
of the presented method to the ensemble of change detection techniques in snow mapping are the
plausibly modified assumption of the wet/dry snow backscattering ratio and implicitly introduced
spatial correlation between wet snow areas, achieved by directly implicating local speckle statistics in
the decision process. Finally, we present the non-autonomous method for SWE spatial estimation,
based on optical datasets. By successfully involving the remote sensing datasets in the calibration of
the external SWE model, we seek to demonstrate the utility and the necessity of the former in the
snow pack monitoring.

Résumé: Cette thése est composée de deux axes de recherche. Le premiér, plutdét méthodologique,
consiste de nos efforts pour répondre & des questions ouvertes dans la communauté de RSO po-
larimétrique, tandis que le second est plutot lié a application spécifique - le télédétection du manteau
neigeux. Suite a la modélisation statistique alternative des images RSO multivariées et hautement
texturées, par le modéle SIRV, nous proposons d’abord une évaluation appropriée des paramétres
de circularité et sphéricité, autrement a priori présumés. La derniére est accouplée avec le test de
symétrie sphérique, ce qui forme une méthode pour I’évaluation de pertinence de modéle statistique
SIRV dans le contexte de données RSO polarimétriques. Compte tenu du taux de réjection, cela
parait justifié de mettre en question les hypothéses de circularité et sphéricité, alors que la pertinence
de modéle SIRV doit étre soupgonnée dans les régions caractérisées par la diffusion déterministe forte.
En suite, comme le point culminant de cette thése, nous proposons une décomposition incohérente
de cible polarimétrique, basée sur I’ACI et fondée sur ’hypothése de non-Gaussianité du clutter RSO
polarimétrique. En exploitant l'information contenue dans les ordres statistiques supérieurs, cette
décomposition donne a la sortie un ensemble de vecteurs de cible, qui sont mutuellement indépen-
dants (plutot que seulement décorrélés) et non-orthogonaux. Contrairement & la premiére composant
dominante, qui parait presque identique & 'une estimée par le homologue conventionnel, la deux-
iéme composante dominante différe significativement, ce qui représente un potentiel additionnel pour
I'interprétation des données RSO polarimétriques. Dans le contexte appliqué, la premiére contribu-
tion présentée serait une approche stochastique pour la cartographie du manteau neigeux au moyen de
données RSO multi-temporelles. Les apports les plus notables de la méthode présentée a ’ensemble de
techniques de la détection de changements dans la cartographie du manteau neigeux, sont ’hypothése
modifiée du ratio de rétrodiffusion entre la neige séche et la neige humide, aussi que la corrélation spa-
tiale entre les régions de la neige humide, introduite en impliquant la statistique locale de speckle dans
le processus de décision. Finalement, nous présentons la méthode non-autonome pour l’estimation
spatiale de 1’équivalent en eau de la neige (EEN), basée sur des données optiques. En utilisant avec
succes des données de télédétection dans la calibration du modéle EEN externe, on essaie de démontrer
I'utilité et la nécessite du télédétection dans la surveillance du manteau neigeux.



