
HAL Id: hal-04438994
https://hal.science/hal-04438994v1

Submitted on 5 Feb 2024 (v1), last revised 20 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

From low-level fault modeling (of a pipeline attack) to a
proven hardening scheme

Sébastien Michelland, Christophe Deleuze, Laure Gonnord

To cite this version:
Sébastien Michelland, Christophe Deleuze, Laure Gonnord. From low-level fault modeling (of a
pipeline attack) to a proven hardening scheme. Compiler Construction (CC’24), Mar 2024, Edin-
burgh (Scotland), United Kingdom. �10.1145/3640537.3641570�. �hal-04438994v1�

https://hal.science/hal-04438994v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

From low-level fault modeling (of a pipeline attack) to
a proven hardening scheme

Sébastien Michelland

sebastien.michelland@lcis.grenoble-
inp.fr

UGA, Grenoble INP, LCIS

Valence, France

Christophe Deleuze

christophe.deleuze@grenoble-inp.fr
UGA, Grenoble INP, LCIS

Valence, France

Laure Gonnord

laure.gonnord@grenoble-inp.fr
UGA, Grenoble INP, LCIS

Valence, France

Abstract
Fault attacks present unique safety and security challenges

that require dedicated countermeasures, even for bug-free

programs. Models of these complex attacks are made work-

able by approximating their effects to a suitable level of

abstraction. The common practice of targeting the Instruc-

tion Set Architecture (ISA) level isn’t ideal because it dis-

cards important micro-architectural information, leading

to weaker security guarantees. Conversely, including micro-

architectural details makes countermeasures harder to model

and reason about, creating a new challenge in validating and

trusting protections.

We show that a semantic approach to modeling faults

makes micro-architectural models workable, and enables

precise cooperation between software and hardware in the

design of countermeasures. We demonstrate the approach by

designing and implementing a compiler/hardware counter-

measure, which protects against a state-of-the-art pipeline

fetch attack that generalizes multi-fault instruction skips.

Crucially, we provide a formal security proof that guaran-

tees faults are detected by the end of every basic block. This

result shows that carefully embracing the complexity of low-

level systems enables finer, more secure countermeasures.

1 Introduction
An attacker with access to a physical device can perform

fault injection attacks. Physical interference such as a clock

glitch, a power supply voltage glitch, or an electromagnetic

pulse, can cause hardware to behave erroneously [Bar-El et

al. 2006], sometimes just enough to bypass an application’s

security. The development of fault injection attacks [Shep-

herd et al. 2021] makes them a tangible threat to modern

safety- and security-critical systems. Countering them is

uniquely challenging due to the unpredictable effects of low-

level interference on high-level security properties — a leap

that traditional development tools meticulously avoid by

The ARSENE project was funded by the “France 2030” government invest-

ment plan managed by the French National Research Agency, under the

reference ANR-22-PECY-0004.

Conference’17, July 2017, Washington, DC, USA

2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

building upon a clean abstraction stack from hardware to

programming languages.

In order to conquer the complexity of these attacks, se-

curity engineers construct fault models by approximating

faults’ effects to a desired level of abstraction. These span

from bit flips in RTL (Register Transfer Level) latches [Tollec

et al. 2022] to failures in pipeline forwarding [Laurent 2020]

to corrupted ISA registers [Barthe et al. 2014] and branch

inversion directly in source code [Potet et al. 2014]. Coun-

termeasures are then based on these models, so in a sense

secure programs resist fault models rather than faults. The

clear trade-off is one of accuracy versus simplicity; low-level

descriptions are more true to practical attacks, but high-level

approximations make it practical (in many cases possible) to

reason about and protect against them.

In practice, most existing works study faults at the ISA

level, based on mis-executions of assembler programs (in-

struction skips, wrong jumps, corrupted registers, etc. [Höller

et al. 2015]), with countermeasures as transformations of as-

sembler programs. This is a natural choice as assembler is the

lowest software abstraction, and dealing with software has

benefits such as ease of deployment, board-independence,

compiler automation, and the ability to protect only critical

sections of programs (compared to fixed costs in e.g. die sur-

face). Hardware protections [Lashermes et al. 2018] are less

common, but better equipped to deal with local and remote

side-channel attacks [Tillich et al. 2007], which share many

aspects with fault attacks (see f.i. [Winderix et al. 2021]).

The key issue with ISA-level fault models is that the ap-

proximation is quite crude; [Laurent et al. 2018] shows that

faulted behaviors often depend on micro-architectural fea-

tures and cannot be described accurately without including

hardware details. Pipeline analysis in [Yuce et al. 2016] fur-

ther shows that targeted fault attacks can and do defeat

many ISA-level countermeasures by exploiting unmodeled

low-level effects.

Naturally, using low-level models widens the abstraction

gap between the attack and the countermeasure (often ap-

plied during compilation at an IR or back-end level). This

creates a risk that protections could be altered or defeated by

the compiler’s late stages. These cross-layer concerns (com-

monly avoided by disabling optimizations or basing security

https://orcid.org/0009-0000-5428-5433
https://orcid.org/0000-0001-5051-5537
https://orcid.org/0000-0002-8013-1611
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

claims on exhaustive injection campaigns) resurface when

attempting to formally prove a countermeasure’s security.

The issue of proving security for countermeasures at the

ISA level or lower has received little attention compared to

traditional testing. Works that reach proven levels of security

usually focus on specific boards (e.g. RTL model checking

in [Tollec et al. 2022]) or high-level languages (e.g. symbolic

analysis in [Potet et al. 2014]). Proving traditional counter-

measures would provide an appropriate response to [Yuce

et al. 2016] by guaranteeing the absence of attack oppor-

tunities, across multiple abstraction layers starting at the

micro-architectural level.

This approach contrasts with recent progress in working

out sophisticated hardening schemes that combine multi-

ple types of protections or resist multiple consecutive or

independent attacks (multi-fault attacks) [Geier et al. 2023;

Werner et al. 2022]. The applicability of these solutions still

hinges on ISA-level fault models adequately capturing faults’

effects, which is not guaranteed. To ensure security at a lower

abstraction level, we choose to refocus on single but accu-

rate models, which we address with a software/hardware

co-design approach.

Contribution summary.We present the first formally-

proven countermeasure addressing a low-level fault model.

We formalize the fault in an extended assembler language in

Section 2, then propose in Section 3 a countermeasure based

on a hardware extension and a compile/link-time program

transformation. From the formal semantics for the fault, we

derive a security theorem in Section 4. We implement the

scheme in LLVM and GNU ld, then evaluate its security

with emulated fault campaigns and its performance with

processor simulations in Section 5. Finally, we compare this

work with recent literature in Section 6, and conclude in Sec-

tion 7. The supplementary material for this paper contains

a detailed operational semantics of the extended assembler

and the complete proof of the security theorem.

2 Formal description of fetch skips
We protect against a slightly generalized version of the fault

model described by [Alshaer et al. 2022], adapted for RISC-V
1
.

The target system is a 32-bit little-endian RISC-V processor

with the “C” extension for compressed instructions (such

as RV32IC [The RISC-V Instruction Set Manual Vol. I 2019]),

which means it has a mix of 16-bit and 32-bit instructions.

The instruction set includes the usual arithmetic instruc-

tions (add, xor. . .), memory instructions (lw, sw. . .), condi-
tional (beq. . .) and unconditional (j, jal. . .) branches. All
instructions have a 32-bit encoding unless prefixed with “c.”,
which denotes a 16-bit encoding from the “C” extension.

For brevity, we use “aligned” tomean amultiple of 4 (bytes)

and “unaligned” for a multiple of 4 plus 2. We also use the

term “line” to refer to 4 bytes of data at an aligned address.

1
RISC-V is an open standard ISA; details can be found at https://riscv.org.

int g(int x) { return f(x) + 1; }
g:

▼ Push register ra to stack

24: 41 11 c.addi sp, sp, -16

26: 06 c6 c.sw ra, 12(sp)

▼ Call f (linker later inserts address of f)

▼ ra is both target address and return address

28: 97 00 00 00 auipc ra, 0

2c: e7 80 00 00 jalr ra, 0(ra)

▼ Add 1 to return value a0 of f

30: 05 05 c.addi a0, a0, 1

▼ Pop ra from stack and return a0

32: b2 40 c.lw ra, 12(sp)

34: 41 01 c.addi sp, sp, 16

36: 82 80 c.ret

24: c.addi c.sw

28: auipc (1/2) auipc (2/2)

2c: jalr (1/2) jalr (2/2)

30: c.addi c.lw

34: c.addi c.ret

Figure 1. C code, object code, and memory layout of a simple

function g(x) = f(x) + 1.

2.1 RISC-V programs and their execution
This section introduces the notions needed to describe the

fault and state the security theorem in Section 4; the full for-

mal semantics can be found in the supplementary material.

We model RISC-V programs as collections of blocks made

of non- or conditionally-branching instructions, terminated

by an unconditional branch.
2
Figure 1 shows a function g(x)

= f(x) + 1 consisting of two blocks, one that calls f (im-

plicitly forwarding the argument) and one that increments

the return value a0 then returns.

We model the execution as a sequence of execution steps

in which the CPU obtains the next instruction (with a com-

bination of a buffer read and/or a memory fetch), decodes it,

and executes it. For instance, function g in Figure 1 executes

in 8 steps (ignoring the call to f), with each step running one

instruction and consuming either 2 or 4 bytes of code.

The central behavior of interest in this paper is that there

is not always one fetch for one step: certain instructions are

fetched in advance, and others are read by the CPU over

two consecutive fetches. This is because most CPUs always

fetch 4 aligned bytes in memory, that is, a line in the memory

layout table. For example, the first step in running g fetches

the 4 bytes at address 24 and puts them in a decoding buffer,

2
These aren’t classical basic blocks; not counting conditional branches as

terminators works better for this fault. This is of minor importance except

in the security proof.

https://riscv.org

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

PC

i16 ...

a. Fetch at PC, use 2/4 bytes

PC

... i16

c. Read from buffer, no fetch

PC

i32 (1/2) i32 (2/2)

b. Fetch at PC, use 4/4 bytes

PC

... i32 (1/2)

i32 (2/2) ...

d. Fetch at PC+2, use 2 bytes
Left: PC aligned Right: PC unaligned

Figure 2. Execution step patterns. i16/i32 represent arbitrary

16/32-bit instructions. The dashed region is the next instruction to be run.

but only consumes the first 2 to execute c.addi. Then, the
second step executes c.sw from the buffer without needing

another memory fetch.

Figure 2 shows all the ways a step may use buffered data

and/or fetch from memory when executing one instruction.

When PC is aligned (left), the next instruction is on a new

line, so a fetch is performed. When PC is unaligned (right),

2 bytes of instruction data are left in the decoding buffer.

If they form a 16-bit instruction (case c), the CPU runs it

immediately without a fetch. If they form the first half of a

32-bit instruction (case d), a fetch is performed at PC + 2 to
obtain the second half and piece together the opcode. Each

step then increments PC by 2 or 4, setting up the next cycle.

2.2 Fault model
We are interested in protecting programs against “fetch skip”

attacks described by [Alshaer et al. 2022]. Fetch skips refine

the traditional instruction skip fault model by analyzing the

effect of physical attacks (here, clock glitches) on the micro-

architecture rather than on the program only. Because the

model is more accurate with respect to physical effects, a

countermeasure against fetch skips will be more secure in

practice than a countermeasure against plain instruction

skip. Insérer le 80% d’Ihab

The different types of fetch skips are illustrated in Figure 3.

In this model, attempts by the CPU to fetch at an address L
may result in:

• Skip 32 bits, 𝑘 times (S32(𝑘)): Instead of returning the

memory contents at address L, the memory contents at

address L+ 4𝑘 are returned, and PC is incremented by 4𝑘 .3

• Skip and repeat 32 bits (S&R32): The contents at address
L are requested from memory, but due to the short cycle

the decoding stage triggers before the response is available.

A copy of the previous line (usually at L− 4) is returned to
the decoder for the current step, and the requested value

arrives in the decoding buffer later.

3
[Alshaer et al. 2022] observes that a the CPUmay run a nop during a S32(𝑘)
attack; we omit this detail here but account for it in the countermeasure.

L-4: c.sw add (1/2)

L: add (2/2) c.xor

... (skipped) (skipped)

L+4𝑘 : c.addi c.ret

S32(𝑘)!

L-4: c.sw add (1/2)

L: c.sw add (1/2) ← S&R32!

L+4: lw (1/2) lw (2/2)

▼ ▼

Figure 3. Effect of fetch skip attacks on fetch requests.

PC

L-4: ... add (1/2)

L: add (2/2) c.xor ← S32(1)!

L+4: lw (1/2) lw (2/2)

Forged opcode executed by CPU (nonsensical):

add (1/2) lw (1/2)

Figure 4. Forging a 32-bit instruction with a S32(1) attack.

We consider a “level 𝑁 attacker” that can independently

attack every fetch with either one S32(𝑘) attack (1 ≤ 𝑘 ≤ 𝑁)

or one S&R32 attack.4

The connection between fetch skips and the memory lay-

out of instructions creates a new effect, which we call in-
struction forging and illustrate in Figure 4, that cannot

be captured by the usual “instruction skip” model. Here,

PC = L − 2 and the decoding buffer contains the first half

of a 32-bit unaligned add instruction. The CPU fetches at L
to obtain the second half (Figure 2, case d). Attacking this

fetch with S32(1) results in an unrelated 16-bit value (the

start of an lw) being used to complete the add, causing the
execution of an opcode not originally in the program. This

opcode can be “anything” (including illegal). Alshaer et al.

[2022] demonstrate how this enables new vulnerabilities (e.g.

by forging control flow instructions).

Once PC is out of sync, forging can continue without

repeated fault injection. Continuing with Figure 4, after run-

ning the forged instruction we get PC = L + 6. Now the

second half of lw is interpreted as its own 16-bit or (first

half of) 32-bit instruction. Thus, the attack carries over to

the next line; in the worst case, execution might not resyn-

chronize with the intended sequence of instructions until a

jump.

2.3 Program model
To design and prove a countermeasure against such a low-

level attack, it is helpful to reflect the faults’ effects into

4
We use these patterns because the behavior of more complex combinations

cannot be inferred from [Alshaer et al. 2022] without more hardware details.

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

Name Rule statement
NOFAULT (PC, 𝜌) 𝑎 ⇒ [𝑎] (PC, [𝑎])
S32(𝑘) (PC, 𝜌) 𝑎 ⇒ [𝑎 + 4𝑘] (PC + 4𝑘, [𝑎 + 4𝑘])
S&R32 (PC, 𝜌) 𝑎 ⇒ 𝜌 (PC, [𝑎])

Figure 5. Short description of fetch rules.

(PC, 𝜌) 𝑎 ⇒ 𝑑 (PC′, 𝜌 ′) indicates that the fetch of address 𝑎 with current PC

and 𝜌 returns value 𝑑 to the decoder, along with updated state PC
′
, 𝜌 ′. [𝑎]

denotes the memory contents at address 𝑎.

language features, and study the updated language with

semantic tools. In this section, we build a languagemodel that

captures the memory layout of instructions while ignoring

most concrete effects (apart from jumps and select registers).

Syntax. A program is a collection of blocks. A block bb
is a sequence of instructions bb = [i1, ..., i |bb |] where each
instruction i𝑗 is a 16-bit or 32-bit value, representing an

assembler instruction encoded as described by the RISC-V

ISA (or, as will be described in Section 3.2, a 32-bit “checksum

literal”). We write ||i|| for the size in bytes of instruction i

(which is either 2 or 4).

Program state.Due to the stateful nature of S&R32, which
duplicates the “previous” fetched line, a full description of the

program state must include the decoding buffer. We model

this state with a 4-tuple ⟨PC, 𝜌, 𝜎, 𝛼⟩, containing:

• The current PC value (always a multiple of 2);

• 𝜌 , the last 4-byte value fetched by the CPU (decoding

buffer). 𝜌 is used to decode at unaligned PCs (Figure 2,

right) and replaces the targeted line during a S&R32 attack;
• 𝜎 , the values of the Xccs registers associated with our

countermeasure, whose role is described in Section 3.2;

• 𝛼 , the rest of the architectural state (other registers, mem-

ory...), which we abstract away as an opaque value.

The attacks shown in Figure 3 are formalized in terms

of this state in Figure 5. To illustrate alignment dynamics,

attacking the fetch at 0x30 during the execution of g (just
upon returning from f) produces the following execution:

⟨0x30, 𝜌0, 𝜎0, 𝛼0⟩

⟨0x36, 𝜌1 = [0x34], 𝜎1, 𝛼1⟩

⟨𝛼1 .ra = 0x30, 𝜌2 = 𝜌1, 𝜎2, 𝛼2⟩

S32(1): (0x30, 𝜌0) 0x30⇒ [0x34] (0x34, [0x34])
Run instruction: c.addi sp, sp, 16

No fetch. Run instruction: c.ret

c.ret jumps to the address stored in register ra, which is

still 0x30 because we skipped the load from the stack, later

leading to a typical stack corruption crash.

3 A co-designed countermeasure
In this section, we propose a software/hardware countermea-

sure, based on code instrumentation with hardware support.

g: # PC >= 0x40000 is a protected region

400e4: 41 11 c.addi sp, sp, -1

400e6: 06 c6 c.sw ra, 12(sp)

▼ auipc was relocated

400e8: 97 00 00 00 auipc ra, 0

▼ Checksum was set and LSB flipped

400ec: 0b 64 00 00 ccscallb 8 (22,10)

400f0: e2 75 06 c6 .word 0xc60675e2 (22,11)

▼ jalr was relocated

400f4: e7 80 00 fb jalr ra, -80(ra)

400f8: 02 90 c.ebreak # 8 times (28)

40108: 05 05 c.addi a0, a0, 1

4010a: b2 40 c.lw ra, 12(sp)

4010c: 41 01 c.addi sp, sp, 16

4010e: 01 00 c.nop (19)

▼ Checksum was set, no flip needed

40110: 0b 10 00 00 ccs (24,13)

40114: 51 16 b3 40 .word 0x40b31651 (24,14)

40118: 82 80 c.ret

4011a: 02 90 c.ebreak # 8 times (28)

Figure 6. Linked object code for g after hardening (𝑁 = 2).

Numbers on the right refer to lines of Algorithm 1 that added the instructions.

3.1 Overview
The key ideas of the countermeasure are as follows. Machine

code is augmented (“hardened”) during compilation with

checksum protections that react to a fault attack by forcing

execution to trap before the end of the current block. This

limits exploits by ensuring a sufficiently tight window be-

tween attack and detection (like most countermeasures it

doesn’t prevent side-effects immediately resulting from the

fault, which is inherently difficult due to timing). Figure 6

shows the hardened code for the g function from Figure 1.

Hardware is modified to automatically maintain a running

checksum (in fact, a simple sum) of every line of instruction

data fetched from memory during the execution of a block,

independent of instruction alignment. Blocks are compiled so

that every exit is guarded by a ccs instruction (from our ISA

extension), which traps if the running checksum is not equal

to a reference value computed at compile-time. Blocks thus

act as autonomous “jails”, in that faulty executions causing

the checksum to deviate from its expected value cannot leave

their current block.

The co-designed nature of the countermeasure is a re-

sult of the cross-checking of information between hardware,

whose monitoring produces a trace (checksum) sensitive to

fault attacks, and software, which provides reference check-

sum values to interpret that trace.

Section 3.2 describes the hardware extension that we rely

on for the countermeasure. 3.3 details the hardening algo-

rithm. 3.4 highlights the subtleties of implementing the hard-

ening algorithm in LLVM. Finally, 3.5 discusses the design

choices in a more general context.

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

As always, one can attempt to attack the countermeasure

itself. The security theorem in Section 4 proves that no at-

tempt at skipping, repeating or forging ccs instructions or
jumps can succeed, leading to a strong security guarantee.

3.2 ISA and hardware extensions
We support the countermeasure with a custom ISA extension

named Xccs for Code CheckSum
5
. Throughout this section,

all examples refer to Figure 6, and uN denotes the type of
N-bit unsigned integers.

Xccs introduces four new Control and Status Registers

(CSR), which together form the 𝜎 field of the program state:

• CCS : u32 is the running checksum for the current block.

For example, the region of g from address 40108 through

40114 adds up in little-endian to

0x40b20505 + 0x00010141 + 0x0000100b = 0x40b31651
so the value of CCS at 40114 will be 0x40b31651 if no at-

tack is performed.

• CCSPROT : u32 indicates the PC value at which a protected

instruction (jump) is expected to execute. It is zero most

of the time and non-zero for a single step after a checksum

is validated. In Figure 6, it is set at 400f4 and 40118.
• CCSD : {E : u1, JO : u5} holds control information; the

enable bit (E) indicates whether checksum protection is

active for the current block (which currently is whenever

PC ≥ 0x40000), and the jump offset field (JO) is set by
ccscall as described below.

• CCSDS : u32 (“delay slot”) is used to implement the decod-

ing of Xccs instructions’ 32-bit checksum arguments. We

leave discussion of this detail to supplementary material.

The meat of Xccs is the addition of four guard instructions

whose encoding is shown in Figure 7, all of which are fol-

lowed by a 32-bit ⟨checksum⟩ argument:

• ccs ⟨checksum⟩ compares the CCS register with the pro-

vided argument and traps if they differ. Otherwise, it sets

CCSPROT = PC + 8 so a jump or function call can exe-

cute at the next step. For instance, at 40114 in Figure 6,

the dynamic value of the CCS register is compared to

0x40b31651. When no faults are injected, these are equal,

so execution proceeds to the c.ret instruction.
• ccscall 𝑁 ⟨checksum⟩ is similar; it is used before func-

tion calls. It sets CCSD.JO = 𝑁 , which causes the next

function call’s return address to increase by 2𝑁 bytes. For

instance, the ccscallb 8 at 400ec changes the return

address after the jalr (call) instruction from 400f8 to

40108, skipping over the c.ebreak block.

• ccsb and ccscallb are variations that flip the least sig-

nificant bit (LSB) of the checksum before comparing it.

This is leveraged to ensure that no ⟨checksum⟩ argument

decodes as a jump or Xccs instruction, as detailed in Sec-

tion 3.3. Again with Figure 6, the sum of the first block

5
The “X” is standard notation for unofficial RISC-V extensions.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

0 0 0 001 0 XCCS ccs
0 0 0 010 N XCCS ccscall N
0 0 0 101 0 XCCS ccsb
0 0 0 110 N XCCS ccscallb N

Figure 7. Xccs instructions (32-bit). XCCS is 0001011.

up to 400f0 is 0xc60675e3, but that decodes as a bltu,
creating a vulnerability. The LSB is flipped to avoid this.

All Xccs instructions further trap when run at unaligned

PC, which prevents most attempts at forging them. Finally,

existing CPU behavior is modified as follows:

1. All branch instructions trap if PC ≠ CCSPROT. If a branch
occurs, CCS and CCSPROT are reset to 0.

2. Every other instruction traps if CCSPROT ≠ 0.

3. Every value retrieved from a fetch is added to CCS.
4. Call instructions add 2 × CCSD.JO to the return address

and clear CCSD.JO before jumping.

Hardware support in this countermeasure serves an impor-

tant dual purpose: it enforces the jail, and it updates the

checksum through a system that is not vulnerable to attacks,

so that checks of the trusted CCS value can be guaranteed

even though the reference ⟨checksum⟩ is itself vulnerable.

3.3 Hardening algorithm
Algorithm 1 shows the hardening process for a single

block in pseudocode, with our canonical example in Figure 6.

(As all blocks are independent, this algorithm is executed by

the compiler for every block in the program.)

Themain for loop (line 15) iterates over the instructions of
the original block. All instructions are copied to the hardened

block (line 26). Jump instructions are preceded by a guard,

which is ccscall/ccscallb (line 22) for function calls and

ccs/ccsb for other jumps (line 24). nops are used to ensure

that guards are aligned and jumps are always separated by

at least one non-jump instruction, both of which prevent

subtle attacks against the countermeasure.

The second for loop (line 27) adds a barrier of c.ebreak
instructions, which raise a distinctive exception when exe-

cuted. Their role is to prevent control from leaving the block

by skipping over the terminator. Up to 2𝑁 + 4 are needed to

address the worst case where control reaches the middle of a

checksum whose second half is a 32-bit opcode, in which an

attack of a S&R32 followed by a S32(𝑁) would reach 4𝑁 + 6
bytes past the checksum.

Procedure addToBlock appends instructions to the hard-

ened block while computing the reference checksum value

sum by summing instruction’s opcodes. This accounts for

instructions’ alignment with the function

realign(offset, i) =
{
i if offset ≡ 0 [4]
2
16LSH(i) + MSH(i) otherwise

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

Calling convention: a0 serves as both argument and return value

for f and g. ra is used for function calls and is caller-saved

(push/pop omitted).

1 g: (...) # push ra to stack

2 PseudoCALL @f

3 # ^a0 forwarded implicitly

4

5

6 $a0 = nsw ADDI $a0, 1

7 (...) # pop ra from stack

8

9 PseudoRET $a0

10

(a) Machine IR before back-end pass.

1 g: (...) # push ra

2 PseudoCALL @f, .LBB1_0

3 PseudoCCSTRAP 2

4

5 .LCCS_Region_Start0:

6 $a0 = nsw ADDI $a0, 1

7 (...) # pop ra

8 CCS .LCCS_Region_Start0

9 PseudoRET $a0

10 PseudoCCSTRAP 2

(b) Machine IR after back-end pass.

g: e4: 41 11 06 c6 (...) # push ra

e8: 97 00 00 00 auipc ra, 0

ec: 0b 24 00 00 ccscall 8

▼ R_RISCV_CHECKSUM: g

f0: 00 00 00 00 .word 0x00000000

f4: e7 80 00 00 jalr ra, 0(ra)

f8: 02 90 c.ebreak # 8 times (2N+4)

.LCCS_Region_Start0:

108: 05 05 c.addi a0, a0, 1

10a: b2 40 41 01 (...) # pop ra

10e: 01 00 c.nop # ccs alignment

110: 0b 10 00 00 ccs

▼ R_RISCV_CHECKSUM: .LCCS_Region_Start0

114: 00 00 00 00 .word 0x00000000

118: 82 80 c.ret

11a: 02 90 c.ebreak # 8 times

(c) Object code before linking.

Figure 8. Stages of hardening the program from Figures 1 and 6 (𝑁 = 2) in our LLVM implementation.

where LSH, MSH : u32 → u16 are the Most and Least Signif-

icant Halves respectively. This process is equivalent to sum-

ming the lines of the final layout table. Finally, addChecksum
selects whether to use ccs/ccscall or their -b variants. The
-b variants are selected when the checksum value is an “in-

valid checksum literal”, i.e. it decodes as a jump, Xccs in-

struction or c.ebreak. Such values could be misused as in-

structions if an attacker were to skip the guard that precedes

it. Flipping the LSB ensures that these sensitive values do not

appear in code. Our running example in Figure 6 is obtained

by executing this algorithm on both blocks of g’s original
code from Figure 1 and linking it.

3.4 LLVM implementation
Algorithm 1 cannot be implemented as-is in a single pass

in a standard compiler, because reference checksum values

depend on the exact bit-level encoding of each instruction,

which is not decided until the linker relocates references

to globals and functions. See for instance how the call in

Figure 8c (before linking) has placeholder zero-offsets but

the one in Figure 6 (after linking) has a proper target offset.

We see this as a benign occurrence of a fundamental is-

sue: the progressive lowering that standard toolchains go

through is designed around functional invariants, not secu-

rity invariants. Encodings are decided late because they don’t

matter to the compiler, which is only interested in the func-

tional specification of instructions. The addition of a security

countermeasure to the compiler breaks this assumption and

creates a new concern in threading the security transform

through the abstraction gap of a functional lowering.

In this case, we are able to implement the algorithm in

two steps: a late Machine IR
6
pass followed by an extension

to the linker relocation process.

• Machine IR pass: the program’s Machine IR represen-

tation is first transformed late in the back-end (from Fig-

ure 8a to Figure 8b). This pass handles all tasks that add

code into the program, including:

– Aligning functions and blocks to 4-byte boundaries;

– Adding aligned Xccs instructions before all Machine

IR instructions that expand into RISC-V jumps, such as

PseudoRET. A label indicates the start of the region that

the checksum must cover;

– Adding the trap barrier with the PseudoCCSTRAP 𝑁

pseudo-instruction, which later expands into a series of

2𝑁 + 4 c.ebreak instructions.

At this stage some jumps are still hidden in pseudo-instruc-

tions, like the function call in PseudoCALL. This is because
far jumps in RISC-V are implemented with a pair of in-

structions, auipc and a jump, to overcome the limited

distance that can be encoded into single jump instructions.

In LLVM, this is expanded later in the code emitter due

to limitations in the back-end structure; we count this

towards the Machine IR pass for simplicity of exposition.

The Machine IR pass is followed by static branch relax-

ation (the unfolding of far jumps into multi-instruction

sequences and converse compaction of near jumps into

shorter instructions), which is the main reason why the

addition of new code cannot be delayed more; it would

break short jumps.
7

6
The back-end intermediate representation used by LLVM, which is aware

of the target architecture, not the usual LLVM IR.

7
We disable linker relaxation for simplicity to maintain jumps’ alignment,

but it could be enabled after adding appropriate alignment relocations.

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

Algorithm 1 Algorithm: HARDEN

Input: A source block [i1, ..., i𝑛]
Input: Upper bound 𝑁 for S32(𝑘) rule (𝑘 ≤ 𝑁)

Output: A hardened block hb.
1: hb← []
2: sum : u32 ← 0

3: offset← 0 ⊲ Blocks are 4-aligned.

4: procedure addToBlock(i)
5: hb.append(i)
6: sum← sum + realign(offset, u32 (i))
7: offset← offset + ||𝑖 ||
8: procedure addChecksum(i, ib)
9: if sum + i is not a valid checksum literal then
10: addToBlock(ib)
11: addToBlock(sum ⊕ 1)
12: else
13: addToBlock(i)
14: addToBlock(sum)
15: for i in [i1, ..., i𝑛] do
16: if i is a jump instruction then
17: if offset = 0 then ⊲ No empty sections.

18: addToBlock(encode(nop))
19: else if offset ≡ 2 [4] then ⊲ Force alignment.

20: addToBlock(encode(c.nop))
21: if i is a function call then

22:

addChecksum(encode(ccscall (2𝑁 + 4)),
encode(ccscallb (2𝑁 + 4)))

23: else ⊲ Jumps/branches.

24: addChecksum(encode(ccs), encode(ccsb))
25: offset← 0

26: addToBlock(i)
27: for 𝑗 = 1 to 2𝑁 + 4 do ⊲ Add trap barrier.

28: addToBlock(encode(c.ebreak))
29: return hb

During object file generation, the 8-byte CCSMachine IR

instruction is replaced with a 4-byte Xccs opcode and a

placeholder zero-checksum. A custom relocation of type

R_RISCV_CHECKSUM (marked by a comment in Figure 8c)

is added to mark the checksum region for the linker.
8

• Linking: the linker follows relocation entries to compute

checksums and insert them in the provided spaces. The

linker script is also updated so that hardened objects are

linked to a different virtual address (0x40000) than non-

hardened libraries and runtime files (0x10000), which we

use as the basis to enable Xccs protection.

3.5 Discussion
We discuss some of our design choices and how the scheme

interacts with other micro-architectural features.

8
The R_RISCV_CALL relocation for auipc/jump pairs is also replaced with

a custom type to inform the linker of the newly-added ccs in the pair.

Fault’s effect on CCSupdates.Our countermeasure relies

on CCS updates not being vulnerable to attacks. This is a

reasonable inference based on the fault model: recall that

fetch skips are induced by clock glitches, which are known

to cause problems locally along critical signal propagation

paths. Alshaer et al. [2022] identify that such paths aremostly

in the fetch stage of the pipeline, but CCS can be updated in

the execution stage using the realign sum technique, and

is thus unlikely to be affected.

Interrupts. Common interrupts and signal handlers (that

are invisible from the main thread) would not interfere with

Xccs protections (with the only OS support needed being to

save Xccs registers, which can be viewed as an extension of

PC, to the CPU context structure). However, a non-returning

interrupt (such as a signal exiting) would leave the current

block without a check.We assume such a no-returning action

implies abandoning the critical section where the interrupt

occurred; otherwise, there might be a vulnerability.

Effect of faults on complex architectures. The fault
model from [Alshaer et al. 2022] does not describe hardware

responses to fault attacks during speculative or out-of-order

execution. The study and design of fault models at the micro-

architectural level is already state-of-the-art, and applying

it to these complex features is a completely open problem.

While Xccs is amenable to speculative execution (mispredic-

tions would not lead to false checksum exceptions because

the checksum resets at the beginning of every block) and

out-of-order execution (the checksum update is associative-

commutative, allowing for reordering within each block) it

remains unlikely that clock glitches would affect such com-

plex designs in the same way as the simple processors from

which fetch skips are derived.

Possibility of a hardware-only solution. Hardware-
only countermeasures against fault attacks present their

own challenges [Clercq and Verbauwhede 2017]. Detecting

the clock glitch at the (hardware) source using a fault de-

tector [Gomina et al. 2014] creates a performance trade-off

between sensitivity and the rate of false alarms, which lim-

its the approach to security-critical systems that can afford

the performance loss. Detecting corruption in the instruc-

tion stream requires extra hardware logic that risks being

itself faulted (increased attack surface). Software/hardware

propositions like our Xccs countermeasure have contrast-

ing benefits. We minimize exposure to the fault because

the detection only relies on CCS updates (which occur in

the execution stage, away from disrupted fetch logic) and a

checksum check made after the fault’s transient effect has

subsided. (We carefully discussed the safety of these oper-

ations with authors of [Alshaer et al. 2022].) We also get

the benefits of using more software and less hardware, such

as incurring costs only in critical sections and the possibil-

ity of implementing hardware support late or during minor

hardware revisions.

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

Specificity of the attack model. Many (mostly early)

works in fault literature attempt to protect against all pro-

gram misbehaviors, described as “soft errors”. By contrast,

we target a single vulnerability, which might appear overly

specific. However, the fetch skips model coined by [Alshaer

et al. 2022] results from extensive physical injection cam-

paigns, where it described the impact of 80-90% of clock

glitches on Cortex-M boards [Alshaer 2023], making this

countermeasure useful against common attack vectors on

real boards. In addition, we argue that the lack of a precise

definition for soft errors leads to tricky vulnerabilities
9
pre-

venting any proof-based security standard from being met.

This is why we focus on fetch skip attacks, for which we can

formally prove security.

4 Security theorem
We now state the security theorem for our countermeasure

and the main steps of the proof. We omit some invariants

about 𝜎/𝜌 whose significance is only clear with the full for-

malization and proof (see supplementary material).

We define a step as a statement

𝑠 = ⟨PC, 𝜌, 𝜎, 𝛼⟩ → ⟨PC′, 𝜌 ′, 𝜎 ′, 𝛼 ′⟩
materializing the change in execution state associated with

the execution of a single instruction, and an execution as a

sequence of steps [𝑠0, . . . , 𝑠𝑛] such that the initial state of

any 𝑠𝑖 (𝑖 > 0) is the final state of 𝑠𝑖−1.

Theorem (simplified).
Let 𝑃 = [HARDEN(bb1), . . . HARDEN(bb |𝑃 |)] a program hard-

ened by Algorithm 1, and 𝑒 = [𝑠0, . . . , 𝑠 |𝑒 |] an execution such

that

• 𝑠0 starts at the top of a block of 𝑃 ;

• 𝑠 |𝑒 | successfully executes a program exit instruction.

Then 𝑒 can be partitioned into sub-sequences (𝑠𝑡𝑖 . . . 𝑠𝑏𝑖)1≤𝑖≤𝑚
each executing one hardened block HARDEN(bb𝑖), such that

1. Each 𝑠𝑡𝑖 starts at the top of HARDEN(bb𝑖);
2. Each 𝑠𝑏𝑖 (𝑖 ≠𝑚) runs a legitimate (non-forged) jump instruc-

tion of bb𝑖 , and 𝜎𝑏𝑖 .CCS is the correct associated checksum;

3. If each segment 𝑠𝑡𝑖 . . . 𝑠𝑏𝑖 contains at most one faulted fetch

and the last segment 𝑠𝑡𝑚 . . . 𝑠𝑏𝑚 has none
10
, then the entire

execution 𝑒 contains no faults.

In essence, this theorem says that the countermeasure

guarantees the execution of the original sequence of instruc-

tions (as witnessed by the checksum) at every control flow

edge. The key property is the local security at the block level;

the security property of passing checksums is checked at

9
For instance, triplication countermeasures such as SWIFT-R [Chang et al.

2006] and NEMESIS [Didehban et al. 2017] tend to assume that a single

“soft error” only affects one of the three execution streams, but this is not

true of e.g. the kind of decoding errors mentioned in [Didehban et al. 2017].

10
We do not protect the exit of the last block because in practice the last

instruction is a syscall invocation in the non-hardened libc function exit().

every block, and deviations from that property are detected

before the block ends. This facilitates both formal analysis

(by removing difficulties associated with control flow) and

testing (by providing an easy way to detect failures in the

countermeasure).

The progression of the argument is as follows:

1. Control cannot reach the end of a protected block due to

the c.ebreak-based trap barrier;

2. Control can only leave a protected block through a jump

if it passes the associated checksum;

3. Using exactly one faulted fetch in the execution of a block

always invalidates the checksum.

The checksummethod by itself does not always guarantee

that the execution cannot be compromised, as a vulnerable

block could contain a checksum collision: an unintended exe-

cution path, reachable with multiple faults, whose checksum

is the same as the intended execution. Such collisions can be

detected statically after linking, but they are hard to solve

because the linker is unable to add or remove instructions to

prevent the collision once it is discovered, as the first could

break short jumps and both would change jump offsets thus

more checksums. In this case, the toolchain’s abstraction

stack that we worked around fairly easily in Section 3.4

poses a greater challenge.

Note that the countermeasure still guarantees that check-

sums must pass even in multi-attack scenarios. Collisions

are rare (as showcased in Section 5) despite the apparent

weakness of the summing algorithm, mainly because the

attacker cannot feed arbitrary inputs to the sum; they can

only skip or repeat predetermined inputs. Thus, the scheme

retains value as a practical protection mechanism against

multi-fault attacks.

5 Implementation setting and evaluation
We now describe the implementation and the experimental

settings we used to evaluate the countermeasure. We exam-

ine functional correctness, security guarantees, and cost.

5.1 Implementation and experimental setting
We implemented the hardening scheme in LLVM [Lattner

and Adve 2004] 12.0,
11
linking programswith an off-the-shelf

GNU C library using a modified GNU ld 2.40 linker. The

hardware extension Xccs was prototyped in the system em-

ulator QEMU 8.0 [Bellard 2005] and the processor simulator

Gem5 22.1 [Lowe-Power et al. 2020]. The implementation is

about 1150 lines in LLVM/ld for the countermeasure, and

850 lines in QEMU/Gem5 for evaluation.
12

We evaluate our countermeasure on programs from the

MiBench benchmark suite [Guthaus et al. 2001], which is

11
All the modified tools used in this paper are publicly available at

gricad-gitlab.univ-grenoble-alpes.fr/michelse/fetch-skips-hardening.

12
Gem5 currently only emulates 64-bit RISC-V instructions; we modified it

to support 32-bit instructions for this evaluation.

https://gricad-gitlab.univ-grenoble-alpes.fr/michelse/fetch-skips-hardening

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

plot_simu.png

Figure 9. Outcomes of exhaustive S32(1), S32(2) (bars 1 and 2) and S&R32 (bars 3) single-fault injections, and random multi-fault

injections on MiBench programs (bars R). The total number of injected faults is given for each program.

designed to be representative of embedded applications. We

do not specifically use a cryptography- or security-oriented

benchmark as we protect code at a low enough level that

the nature of the program is not significant. Programs were

hardened with 𝑁 = 2, i.e. assuming a strong attacker that

can inject double-skips every fetch. We perform three types

of experiments, on a standard x86_64 GNU/Linux machine:

• Exhaustive single-fault injection campaigns in QEMU;

• Random multi-fault injection campaigns in QEMU;

• No-fault performance simulations in Gem5.

We instrument QEMU to support fault injections by skip-

ping or replacing data during the transpilation step. We take

advantage of the locally-correct design of the countermea-

sure and raise an explicit “countermeasure bypassed” excep-

tion at every successful exit of a block where a fault was

triggered. This ensures that successful fault attacks are re-

ported and cannot be masked by program logic. We similarly

extend Gem5 with the decoding and execution of Xccs in-

structions, but leave out exceptional conditions since we use

it only to evaluate performance without fault injections.

5.2 Functional correctness
We first assert that hardening preserves the functional be-

havior of programs when no fault is injected. This is checked

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

by running hardened MiBench programs and comparing

their output to a non-cross-compiled x86 build and a non-

hardened RISC-V build.
13
All programs pass this test.

5.3 Security guarantee
We then subject each program to two injection settings, both

performed by emulation in QEMU:

1. Single-fault exhaustive injection: we attack every PC in the

protected text segment of the program with single-fault

S32(1), S32(2), and S&R32.
2. Multi-fault random injection: we attack 2000 code intervals

of 64 bytes with randomly-selected sequences of 2 to 6

faults in close succession.

This showcases the guarantees proven in Section 4. Out-

comes of injections for which the targeted PC was reached

are classified in four categories in Figure 9:

• Fault reported: An invalid checksum, illegal jump,

or other Xccs-imposed constraint was violated; or

c.ebreak was executed.

• Segfault: The program segfaulted from an incorrect

memory access as a result of the injected fault.

• Other crash: Illegal instructions being decoded by the
CPU (SIGILL) or other rare crashes such as SIGBUS.
• Countermeasure bypassed: The program success-

fully exited a block after attacking it. This did not

happen in any of the tests.

Figure 9 shows that no attack was able to bypass the pro-

tection from the countermeasure, which in the multi-fault

case means that no checksum collision occurred.

A significant majority of faults that are reached result in

Xccs violations, meaning that failing checksums and invalid

attempts to jump out of blocks are adequately reported. Be-

cause all exits of attacked blocks were guarded with “Coun-

termeasure bypassed” exceptions, which were not reached,

every crash we encountered also occurred within the at-

tacked block. This shows that the countermeasure fulfills its

goal of containing faults within blocks.

Interestingly, crashes alone do not provide sufficient secu-

rity: unprotected programs (not depicted) experience ∼90%
crashes but only ∼30% in the block where the fault is injected.

So like with instruction skip, a system facing random failures

could leave the code unprotected, but the threat of targeted

attacks requires a countermeasure like Xccs.

5.4 Performance
On average, hardening with 𝑁 = 2 increased the size of

protected functions (i.e., excluding libraries and runtime

files) by a factor of 2.46 (which is large but usual for security

applications especially against skips, due to duplication).

Individual differences are given in Figure 10; unsurprisingly,

programs with longer straight-line sections see less of an

13
For some programs, comparison with the native build is skipped due to

differences in the precision of the math library.

increase, while short, loop-intensive programs like dijkstra
and bitcount get the largest overhead.

We run Gem5 simulations for each program
14
to estimate

the overhead in execution time, also reported in Figure 10.

The simulated system mainly consists of a 1-GHz RISC-V

core with a 1600 MHz DDR3 controller simulated by Gem5’s

timing model.

The main cost is the execution of Xccs instructions them-

selves, which incur extra fetch-decode-execute cycles. As

expected, programs with denser control flow in hot sections

such as dijkstra and bitcount see by far the largest dif-

ference. We expected the code size increase to reduce cache

efficiency, and ran simulations with an 8-kB 4-way instruc-

tion cache (the median size of hardened sections in our test,

which is a lot smaller than the total text segment). This

speeds up executions significantly (not pictured) but the ra-

tio of hardened to non-hardened speed remains consistent.

The overall performance hit is 10.2%, consistent with the

knowledge that MiBench programs average out 6–7 instruc-

tions per basic block (keeping in mind that our blocks are

longer than traditional basic blocks). Unsurprisingly, crypto-

graphic schemes have the best performance results due to

being computation-heavy with long blocks.

Existing countermeasures without hardware support have

a comparatively much larger overhead. Geier et al. [2023]

compare multiple combinations of countermeasures against

single- to quadruple-instruction skips on a secure boot pro-

gram. Only 3 combinations (nZDC + RACFED, NEMESIS +

RACFED, and CompaSec) close more than 75% of vulnerabil-

ities, all with space overhead above x4.85 and time overhead

above x5.01.

6 Related work
The contribution of this paper follows the now numerous

developments in the area of compilation for security. Recent

countermeasure designs have consistently involved compi-

lation tools [Barry, Couroussé, and Robisson 2016; Proy et

al. 2017; Winderix et al. 2021], and issues stemming from

cross-layer abstractions have been raised previously [Barry,

Couroussé, Robisson, and Heydemann 2017]. Our work dif-

fers in its deliberate involvement of hardware, whereas exist-

ing designs that account for non-ISA details (such as timings

in [Winderix et al. 2021]) still end up performing pure as-

sembly transformations.

Countermeasure designs that lay more heavily towards

hardware also exist. Manssour et al. [2022] show how hard-

ware support can improve a classic countermeasure against

data corruption which consists in executing instructions mul-

tiple times and comparing results. This is traditionally very

costly due not only to repeated execution, but also program

size, register pressure, and the addition of many branches

14
Except patricia, due to a 32- vs. 64-bit compatibility issue related to

reused opcodes in the RISC-V ISA.

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

plot_cost.png

Figure 10. Evaluation of the cost of our counter-measure: static and dynamic metrics.

for comparisons. In this work, the ISA is extended with a

new “replay” instruction rpl w n which repeats the next

𝑤 instructions 𝑛 times, and compares in hardware with an

exception in case of a mismatch. A benefit is that the com-

piler only needs to mark sensitive instructions, however this

shifts more security burden to hardware and increases the

effort for hardware qualification/certification compared to a

more lightweight extension like Xccs.

Our countermeasure is based on classical redundancy

ideas and draws inspiration from previous work on instruc-

tion skips [Yao and Schaumont 2018] and control-flow in-

tegrity protections [Mishra et al. 2022; Zgheib et al. 2022].

Complications associated with multi-fault attacks incenti-

vized us to aim for a design that guarantees security locally

(at every block) to keep formal reasoning simple. Many coun-

termeasures in security literature (for instance [Chang et al.

2006; Didehban et al. 2017; Geier et al. 2023]) achieve sophis-

ticated and carefully-balanced compiler transforms, but lack

a detailed enough programming and fault model to allow for

a formal proof of the security property. We believe that our

semantics approach that includes “just enough” details in

the programming model, encodes the fault model in the se-

mantics, and encourages formal proofs, could be generalized

for other low-level countermeasures.

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

As for the correctness of securization schemes, apart from

manual proofs (in which this work falls), automatic counter-

measure verification techniques includes translation valida-

tion [Busi et al. 2022], static analysis [Christofi et al. 2013],

and symbolic execution [Potet et al. 2014]. These usually

focus on proving properties of the form “either the attack is

detected or the program crashed”, as we did here. Another

remarkable piece of work in this area is a proof that the

C compiler CompCert [Leroy 2009] preserves the constant-

time countermeasure when applied to source code [Hutin

2021]. A possible extension of our work would be to further

validate through one of these approaches.

7 Conclusion
We have presented a new countermeasure to a micro-arch-

itectural fault attack targeting the instruction fetch unit in

RISC-V processors. Our approach combines a hardware ex-

tension of the RISC-V ISA, dubbed Xccs, and a machine code

transformation performed at compile- and link-time. The

design process was guided by a specially-tailored seman-

tics that captures just the right set of architectural details to

formalize the hardening process and enable a proof of secu-

rity. We evaluated the scheme’s security by emulating both

exhaustive single-fault and randommulti-fault injection cam-

paigns, and its performance with a processor simulation. To

our knowledge, the present contribution is the first example

of such a proven countermeasure for a micro-architectural

fault model; which notably connects recent security experts’

results to compiler back-end techniques.

We believe that this approach is applicable more gener-

ally to the design of code hardening schemes that guarantee

both security and safety. We implemented this particular

countermeasure in the late back-end, which is pretty stan-

dard for low-level attacks, and keeps the abstraction gap

between the attack and countermeasure fairly small. In fu-

ture work we wish to explore countermeasures implemented

at other (sometime multiple) levels in the compilation flow,

widening that gap. This will escalate toolchain integration

challenges already raised in this paper, as the compiler’s

heavy descent in abstraction might break or hinder secu-

rity properties. Partial solutions such as [Vu 2021], which

advocates for embedding security properties into functional

properties, leads us to believe that cleaner, more methodical

integration is possible. Similar improvements to the semantic

model appear needed to mirror this property preservation

in the security proof.

Data-availability statement
An artifact of this work is available for reproduction on

Zenodo [Michelland 2024] and includes pre-built tools and

reference outputs. Source code and documentation for the

tools (LLVM, GNU binutils, QEMU, Gem5) is further available

for reuse through the Git repository at gricad-gitlab.univ-

grenoble-alpes.fr/michelse/fetch-skips-hardening.

References
Ihab Alshaer. Oct. 2023. “Cross-Layer Fault Analysis for Microprocessor

Architectures”. PhD thesis. Université Grenoble Alpes [2020-....], (Oct.

2023). https://www.theses.fr/s247831.
Ihab Alshaer, Brice Colombier, Christophe Deleuze, Vincent Beroulle, and

Paolo Maistri. 2022. “Variable-Length Instruction Set: Feature or Bug?” In:

Maspalomas, Spain. IEEE. isbn: 978-1-6654-7405-4. doi: 10.1109/DSD570
27.2022.00068.

H. Bar-El, Hamid Choukri, D. Naccache, Michael Tunstall, and C. Whelan.

2006. “The Sorcerer’s Apprentice Guide to Fault Attacks”. Proceedings of

the IEEE, 94, 2, 370–382. doi: 10.1109/JPROC.2005.862424.
Thierno Barry, Damien Couroussé, and Bruno Robisson. Jan. 2016. “Compi-

lation of a Countermeasure Against Instruction-Skip Fault Attacks”. In:

Workshop on Cryptography and Security in Computing Systems (Proceed-

ings of the ThirdWorkshop on Cryptography and Security in Computing

Systems). vienna, Austria, (Jan. 2016). doi: 10.1145/2858930.2858931.
Thierno Barry, Damien Couroussé, Bruno Robisson, and Karine Heydemann.

Mar. 2017. “Automated Combination of Tolerance and Control Flow

Integrity Countermeasures against Multiple Fault Attacks”. In: European

LLVM Developers Meeting. Saarbrücken, Germany, (Mar. 2017). https://h
al.sorbonne-universite.fr/hal-01660160.

Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Gré-

goire, and Jean-Christophe Zapalowicz. 2014. “Synthesis of Fault Attacks

on Cryptographic Implementations”. In: Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’14).

Association for Computing Machinery, Scottsdale, Arizona, USA, 1016–

1027. isbn: 9781450329576. doi: 10.1145/2660267.2660304.
Fabrice Bellard. 2005. “QEMU, a Fast and Portable Dynamic Translator”.

In: Proceedings of the Annual Conference on USENIX Annual Technical

Conference (ATEC ’05). USENIX Association, Anaheim, CA, 41.

Matteo Busi, Pierpaolo Degano, and Letterio Galletta. 2022. “Towards Effec-

tive Preservation of Robust Safety Properties”. In: Proceedings of the

37th ACM/SIGAPP Symposium on Applied Computing (SAC ’22). As-

sociation for Computing Machinery, Virtual Event, 1674–1683. isbn:

9781450387132. doi: 10.1145/3477314.3507084.
J. Chang, G.A. Reis, and D.I. August. 2006. “Automatic Instruction-Level

Software-Only Recovery”. In: Philadelphia, PA, USA. IEEE, Philadelphia,

PA, USA, 83–92. isbn: 0-7695-2607-1. doi: 10.1109/DSN.2006.15.
Maria Christofi, Boutheina Chetali, Louis Goubin, and David Vigilant. 2013.

“Formal Verification of a CRT-RSA Implementation Against Fault At-

tacks”. Journal of Cryptographic Engineering, 3, 3, 157–167. doi: 10.1007
/s13389-013-0049-3.

Ruan de Clercq and Ingrid Verbauwhede. 2017. “A survey of Hardware-

based Control Flow Integrity (CFI)”. CoRR, abs/1706.07257. http://arxiv.o
rg/abs/1706.07257 arXiv: 1706.07257.

Moslem Didehban, Aviral Shrivastava, and Sai Ram Dheeraj Lokam. Nov.

2017. “NEMESIS: a software approach for computing in presence of soft

errors”. In: Proceedings of the 36th International Conference on Computer-

Aided Design (ICCAD ’17). IEEE Press, Irvine, California, (Nov. 2017),

297–304.

Johannes Geier, Lukas Auer, Daniel Mueller-Gritschneder, Uzair Sharif, and

Ulf Schlichtmann. Jan. 2023. “CompaSeC: A Compiler-Assisted Security

Countermeasure to Address Instruction Skip Fault Attacks on RISC-V”.

In: Proceedings of the 28th Asia and South Pacific Design Automation

Conference (ASPDAC ’23). Association for Computing Machinery, Tokyo,

Japan, (Jan. 2023), 676–682. isbn: 9781450397834. doi: 10.1145/3566097.3
567925.

Kamil Gomina, Jean-Baptiste Rigaud, Philippe Gendrier, Philippe Candelier,

and Assia Tria. 2014. “Power supply glitch attacks: Design and evaluation

https://gricad-gitlab.univ-grenoble-alpes.fr/michelse/fetch-skips-hardening
https://gricad-gitlab.univ-grenoble-alpes.fr/michelse/fetch-skips-hardening
https://www.theses.fr/s247831
https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1145/2858930.2858931
https://hal.sorbonne-universite.fr/hal-01660160
https://hal.sorbonne-universite.fr/hal-01660160
https://doi.org/10.1145/2660267.2660304
https://doi.org/10.1145/3477314.3507084
https://doi.org/10.1109/DSN.2006.15
https://doi.org/10.1007/s13389-013-0049-3
https://doi.org/10.1007/s13389-013-0049-3
http://arxiv.org/abs/1706.07257
http://arxiv.org/abs/1706.07257
https://arxiv.org/abs/1706.07257
https://doi.org/10.1145/3566097.3567925
https://doi.org/10.1145/3566097.3567925

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

of detection circuits”. In: 2014 IEEE International Symposium on Hardware-

Oriented Security and Trust (HOST), 136–141. doi: 10.1109/HST.2014.685
5584.

Matthew RGuthaus, Jeffrey S Ringenberg, Dan Ernst, ToddMAustin, Trevor

Mudge, and Richard B Brown. 2001. “MiBench: A free, commercially

representative embedded benchmark suite”. In: Proceedings of the fourth

annual IEEE international workshop on workload characterization. WWC-4

(Cat. No. 01EX538). IEEE, 3–14.

Andrea Höller, Armin Krieg, Tobias Rauter, Johannes Iber, and Christian

Kreiner. 2015. “QEMU-Based Fault Injection for a System-Level Analysis

of Software Countermeasures Against Fault Attacks”. In: 2015 Euromicro

Conference on Digital System Design, 530–533. doi: 10.1109/DSD.2015.79.
RémiHutin. 2021. “Verified Secure Compilation against Timing Side-Channels”.

PhD thesis. http://www.theses.fr/2021ENSR0029/document. 2021ENSR0029.
Ronan Lashermes, Hélène Le Bouder, andGaël Thomas. Nov. 2018. “Hardware-

Assisted Program Execution Integrity: HAPEI”. In: NordSec 2018 : 23rd

Nordic Conference on Secure IT Systems. Oslo, Norway, (Nov. 2018). doi:

10.1007/978-3-030-03638-6_25.
Chris Lattner and Vikram Adve. 2004. “LLVM: A compilation framework for

lifelong program analysis & transformation”. In: International symposium

on code generation and optimization, 2004. CGO 2004. IEEE, 75–86.

Johan Laurent. Nov. 2020. “Modélisation de fautes utilisant la description

RTL de microarchitectures pour l’analyse de vulnérabilité conjointe

matérielle-logicielle”. Theses. Université Grenoble Alpes, (Nov. 2020).

https://tel.archives-ouvertes.fr/tel-03167493.
Johan Laurent, V. Beroulle, C. Deleuze, Florian Pebay-Peyroula, and Athana-

sios Papadimitriou. 2018. “On the Importance of Analysing Microar-

chitecture for Accurate Software Fault Models”, 561–564. doi: 10.1109
/DSD.2018.00097.

Xavier Leroy. July 2009. “Formal Verification of a Realistic Compiler”. Com-

mun. ACM, 52, 7, (July 2009), 107–115. doi: 10.1145/1538788.1538814.
Jason Lowe-Power et al.. 2020. “The gem5 simulator: Version 20.0+”. arXiv

preprint arXiv:2007.03152.

Noura Ait Manssour, Vianney Lapôtre, Guy Gogniat, and Arnaud Tisserand.

2022. “Processor Extensions for Hardware Instruction Replay against

Fault Injection Attacks”. In: 2022 25th International Symposium on Design

and Diagnostics of Electronic Circuits and Systems (DDECS), 26–31. doi:

10.1109/DDECS54261.2022.9770170.
[SW] Sébastien Michelland, Replication package for article: From low-level

fault modeling (of a pipeline attack) to a proven hardening scheme Jan.

2024. doi: 10.5281/zenodo.10440364, url: https://doi.org/10.5281/zenod
o.10440364.

Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes. Oct. 2022. “Survey

of Control-Flow Integrity Techniques for Real-Time Embedded Systems”.

ACM Trans. Embed. Comput. Syst., 21, 4, (Oct. 2022). doi: 10.1145/3538275.
Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil.

2014. “Lazart: A Symbolic Approach for Evaluation the Robustness of

Secured Codes against Control Flow Injections”. In: 2014 IEEE Seventh

International Conference on Software Testing, Verification and Validation,

213–222. doi: 10.1109/ICST.2014.34.
Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen. Dec.

2017. “Compiler-Assisted Loop Hardening Against Fault Attacks”. ACM

Trans. Archit. Code Optim., 14, 4, (Dec. 2017). doi: 10.1145/3141234.
Carlton Shepherd, Konstantinos Markantonakis, Nico van Heijningen, Driss

Aboulkassimi, Clément Gaine, Thibaut Heckmann, and David Naccache.

Dec. 2021. “Physical fault injection and side-channel attacks on mobile

devices: A comprehensive analysis”. Computers & Security, 111, (Dec.

2021), 102471. doi: 10.1016/j.cose.2021.102471.
The RISC-V Instruction Set Manual Vol. I. (Dec. 2019).

Stefan Tillich, Christoph Herbst, and Stefan Mangard. 2007. “Protecting AES

Software Implementations on 32-Bit Processors Against Power Analy-

sis”. In: Applied Cryptography and Network Security, 5th International

Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007, Proceedings (Lec-

ture Notes in Computer Science). Ed. by Jonathan Katz and Moti Yung.

Vol. 4521. Springer, 141–157. doi: 10.1007/978-3-540-72738-5_10.
Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann,

and Mathieu Jan. 2022. “Exploration of Fault Effects on Formal RISC-V

Microarchitecture Models”. In: 2022 Workshop on Fault Detection and

Tolerance in Cryptography (FDTC), 73–83. doi: 10.1109/FDTC57191.2022
.00017.

Son Tuan Vu. 2021. “Optimizing Property-Preserving Compilation”. PhD

thesis. http://www.theses.fr/2021SORUS435/document. 2021SORUS435.
Vincent Werner, Laurent Maingault, and Marie-Laure Potet. Oct. 31, 2022.

“An end-to-end approach to identify and exploit multi-fault injection vul-

nerabilities on microcontrollers”. Journal of Cryptographic Engineering,

(Oct. 31, 2022), 1–17. doi: 10.1007/s13389-022-00292-z.
HansWinderix, J. Mühlberg, and F. Piessens. 2021. “Compiler-Assisted Hard-

ening of Embedded Software Against Interrupt Latency Side-Channel

Attacks”, 667–682. doi: 10.1109/EuroSP51992.2021.00050.
Yuan Yao and Patrick Schaumont. 2018. “A Low-Cost Function Call Protec-

tion Mechanism Against Instruction Skip Fault Attacks”. In: Proceedings

of the 2018 Workshop on Attacks and Solutions in Hardware Security

(ASHES ’18). Association for Computing Machinery, Toronto, Canada,

55–64. isbn: 9781450359962. doi: 10.1145/3266444.3266453.
Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santapuri, Chinmay Desh-

pande, Conor Patrick, and Patrick Schaumont. 2016. “Software Fault

Resistance is Futile: Effective Single-Glitch Attacks”. In: 2016 Workshop

on Fault Diagnosis and Tolerance in Cryptography (FDTC), 47–58. doi:

10.1109/FDTC.2016.21.
Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, and Jean-MaxDutertre.

2022. “A CFI Verification System based on the RISC-V Instruction Trace

Encoder”. In: 2022 25th Euromicro Conference on Digital System Design

(DSD), 456–463. doi: 10.1109/DSD57027.2022.00067.

https://doi.org/10.1109/HST.2014.6855584
https://doi.org/10.1109/HST.2014.6855584
https://doi.org/10.1109/DSD.2015.79
http://www.theses.fr/2021ENSR0029/document
https://doi.org/10.1007/978-3-030-03638-6_25
https://tel.archives-ouvertes.fr/tel-03167493
https://doi.org/10.1109/DSD.2018.00097
https://doi.org/10.1109/DSD.2018.00097
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/DDECS54261.2022.9770170
https://doi.org/10.5281/zenodo.10440364
https://doi.org/10.5281/zenodo.10440364
https://doi.org/10.5281/zenodo.10440364
https://doi.org/10.1145/3538275
https://doi.org/10.1109/ICST.2014.34
https://doi.org/10.1145/3141234
https://doi.org/10.1016/j.cose.2021.102471
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.1109/FDTC57191.2022.00017
https://doi.org/10.1109/FDTC57191.2022.00017
http://www.theses.fr/2021SORUS435/document
https://doi.org/10.1007/s13389-022-00292-z
https://doi.org/10.1109/EuroSP51992.2021.00050
https://doi.org/10.1145/3266444.3266453
https://doi.org/10.1109/FDTC.2016.21
https://doi.org/10.1109/DSD57027.2022.00067

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

Supplementary material for the CC’24 submission:

From low-level fault modeling (of a pipeline attack) to a
proven hardening scheme

A Operational semantics
In this appendix, we formalize operational semantics for a

minimal, representative subset of 32-bit RISC-V assembly

which includes fetch skip attacks and our Xccs extension,

and provide a detailed proof of the claims made in Section 4.

Notations.We write uN the type of N-bit unsigned integers.
We also use structure-like notations {⟨field⟩ : ⟨type⟩ , ...} and
⟨struct⟩.⟨field⟩ for bit fields and named collections of values.

A.1 Program and execution models

Definition 1 (Instruction, Block, Program).
An instruction i is a 16- or 32-bit integer (a u16 or a u32)

corresponding to a RISC-V opcode.
15
We write ||i|| the size of

an instruction in bytes (2 or 4).

A block bb is a nonempty sequence of instructions, along

with a 4-aligned address value blockAddr(bb) indicating
where it is loaded in memory.

A program P is a collection of non-intersecting blocks.

Since instructions in the same block are loaded contigu-

ously, each block spans the interval

blockSpan(bb) =
[
blockAddr(bb), blockAddr(bb)+

∑︁
i∈bb
||i||

)
.

Programs are assumed to be well-formed, in that no two

blocks’ spans intersect and every jump points to the blockAddr
of some block.

Definition 2 (Program state).
A program state in RISC-V assembler with Xccs and fetch skips

is a quadruplet ⟨PC, 𝜌, 𝜎, 𝛼⟩, where
• PC : u32 is the program counter;

• 𝜌 : u32 is the last row fetched from code memory;

• 𝜎 = {CCS, CCSD, CCSDS, CCSPROT} holds Xccs registers:
– CCS : u32 the running checksum of the current block;

– CCSD : {E : u1, JO : u5} the Xccs status register;
– CCSDS : u32 the Xccs “delay slot” register;

– CCSPROT : u32 the protected PC register.

• 𝛼 : u32 [32] is the architectural state (registers x0...x31).

The program state tracks the progress of execution. For

simplicity, we do not include memory, which would be han-

dled like the registers in 𝛼 , or side-effects, which could be

recorded as a trace whenever a side-effecting syscall is in-

voked by the ecall instruction. We only consider the final

state of registers.

15
There is no risk of type confusion because 16- and 32-bit instructions

differ on their low bits.

Note that 𝜌 is a raw 32-bit value which is not necessarily

a legal instruction because instructions are not always 32-bit

and not always aligned in memory.

Definition 3 (Step, Execution).
A step is a statement representing the effect of executing one in-

struction, written ⟨PC, 𝜌, 𝜎, 𝛼⟩ → 𝑟 where 𝑟 is either a program

state or one of two termination reasons:

• ⊥, denoting an exception or crash;

• end(𝛼), denoting successful completion with final state 𝛼 .

An execution is a sequence of program states ending with a

termination reason, such that all pairs of consecutive elements

are related by a step:

⟨PC, 𝜌, 𝜎, 𝛼⟩ → ...→ ⟨PC𝑛, 𝜌𝑛, 𝜎𝑛, 𝛼𝑛⟩ →
{
⊥
end(𝛼 ′)

A.2 Fetch and step rules
We can now describe how execution steps are derived from

the fetch-decode-execute cycle of the CPU, including fault

injections during fetches.

Definition 4 (Fetch).
A fetch is a statement (PC, 𝜌) 𝑎 ⇒ 𝑑 (PC′, 𝜌 ′) representing
the CPU fetching 32 bits at 4-aligned address 𝑎 : u32 and

getting value 𝑑 : u32 (“data”), with the PC and 𝜌 members of

the program state being updated in the process.

Each fault attack corresponds to one use of the S32(𝑘) or
S&R32 rules. Notice, for example, how rule S32(𝑘) skips over
𝑎 directly to 𝑎 + 4𝑘 . In the following rules, [𝑎] denotes the
32 bits stored in memory at address 𝑎.

NOFAULT

(PC, 𝜌) 𝑎 ⇒ [𝑎] (PC, [𝑎])

S32(𝑘)
1 < 𝑘 ≤ 𝑁

(PC, 𝜌) 𝑎 ⇒ [𝑎 + 4𝑘] (PC + 4𝑘, [𝑎 + 4𝑘])

S&R32
𝜌 ≠ [𝑎]

(PC, 𝜌) 𝑎 ⇒ 𝜌 (PC, [𝑎])

Figure 11. Fetch rules.

From there, we can formalize execution steps as an op-

tional fetch, then the execution of a decoded instruction.

This is shown in Figure 12. The J·K and J·K𝑐𝑐𝑠 functions rep-
resent the semantics of individual instructions and are spec-

ified later. Both are oblivious to 𝜌 so we re-insert 𝜌 into

their result after-the-fact using the • function. The functions
LSH, MSH : u32 → u16 extract the least and most significant

halves of a 32-bit value.

These inference rules for steps formalize the patterns

shown in Figure 2 (ALIGNED-* is 2.(a) and (b), UNALIGNED-16 is

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

ALIGNED-16
PC aligned (PC, 𝜌) PC⇒ 𝑑 (PC𝐹 , 𝜌

′)
𝜎.CCSDS = 0 LSH(𝑑) is a 16-bit instruction16

⟨PC, 𝜌, 𝜎, 𝛼⟩ → JLSH(𝑑)K(PC𝐹 , 𝜎, 𝛼) • 𝜌 ′

ALIGNED-32
PC aligned (PC, 𝜌) PC⇒ 𝑑 (PC𝐹 , 𝜌

′)
𝜎.CCSDS = 0 LSH(𝑑) is a 32-bit instruction leader

16

⟨PC, 𝜌, 𝜎, 𝛼⟩ → J𝑑K(PC𝐹 , 𝜎, 𝛼) • 𝜌 ′

UNALIGNED-16
PC unaligned 𝜎.CCSDS = 0

MSH(𝜌) is a 16-bit instruction16

⟨PC, 𝜌, 𝜎, 𝛼⟩ → JMSH(𝜌)K(PC, 𝜎, 𝛼) • 𝜌 ′

UNALIGNED-32
PC unaligned MSH(𝜌) is a 32-bit instruction leader

16

𝜎.CCSDS = 0 (PC, 𝜌) PC + 2⇒ 𝑑 (PC𝐹 , 𝜌
′)

⟨PC, 𝜌, 𝜎, 𝛼⟩ → J216MSH(𝜌) + LSH(𝑑)K(PC𝐹 , 𝜎, 𝛼) • 𝜌 ′

CHECKSUM-DELAY-SLOT
PC aligned

𝜎.CCSDS ≠ 0 (PC, 𝜌) PC⇒ 𝑑 (PC𝐹 , 𝜌
′)

⟨PC, 𝜌, 𝜎, 𝛼⟩ → J𝜎.CCSDSK𝑐𝑐𝑠 (PC𝐹 , 𝜎, 𝛼, 𝑑) • 𝜌 ′

Re-inserting 𝜌 into the ⟨PC, 𝜎, 𝛼⟩ • 𝜌 = ⟨PC, 𝜌, 𝜎, 𝛼⟩
result of J·K and J·K𝑐𝑐𝑠 : ⊥ • 𝜌 = ⊥

end(𝛼) • 𝜌 = end(𝛼)
Figure 12. Step rules.

2.(c) and UNALIGNED-32 is 2.(d)). For instance, in UNALIGNED-32,
MSH(𝜌) identifies the two remaining bytes in the previously-

fetched line as 32-bit instruction leader, so the rule fetches

the next line 𝑑 at PC + 2 and recombines 𝜌 with LSH(𝑑) to
form the complete 32-bit instruction and run it.

The extra rule CHECKSUM-DELAY-SLOT describes the special
treatment of the 32-bit checksum value following an Xccs in-

struction, which is triggered by 𝜎.CCSDS ≠ 0 and is described

later with the semantics of Xccs instructions.

A.3 Instruction semantics
We now define instruction semantics through the functions

J·K : (PC, 𝜎, 𝛼) ↦→ ⟨PC′, 𝜎 ′, 𝛼 ′⟩ or ⊥ or end(𝛼 ′)
J·K𝑐𝑐𝑠 : (PC, 𝜎, 𝛼, 𝑑) ↦→ ⟨PC′, 𝜎 ′, 𝛼 ′⟩ or ⊥ or end(𝛼 ′)

The two functions are similar in nature; J·K𝑐𝑐𝑠 is used when

re-running Xccs instructions after their 32-bit checksum

value (passed as 4th argument) has been found.

In the following, we assume a function encode which

encodes assembler notation into 16/32-bit values (16-bit for

16
As per the RISC-V ISA [The RISC-V Instruction Set Manual Vol. I 2019], a

32-bit instruction leader is a value 𝑖 : u16 such that 𝑖 ≡ 3 [4] and a 16-bit

instruction is any other 16-bit value.

mnemonics starting with “c.”, 32-bit otherwise), following
the RISC-V ISA [The RISC-V Instruction Set Manual Vol. I

2019]. Unspecifiedmembers in the output 𝜎 ′/𝛼 ′ are implicitly

kept from the input 𝜎/𝛼 .

Instructions that are not jumps, traps, or Xccs instruc-

tions have their natural semantics, with two small changes:

they cannot run when CCSPROT is set to a non-zero address,

and they update CCS as a side-effect. We illustrate this cat-

egory with the add and c.add instructions, and the c.nop
instruction that we use as padding while hardening.

• i = encode(add rd, rs1, rs2),
i = encode(c.add rd, rs1, rs2) :

JiK(PC, 𝜎, 𝛼) =


⊥ if 𝜎.CCSPROT ≠ 0

⟨PC + ||i||, 𝜎 ′, 𝛼 ′⟩ otherwise, with
𝜎 ′ .CCS = 𝜎.CCS + realign(PC, u32 (i))
𝛼 ′ [rd] = 𝛼 [rs1] + 𝛼 [rs2]

• i = encode(c.nop) :

JiK(PC, 𝜎, 𝛼) =

⊥ if 𝜎.CCSPROT ≠ 0

⟨PC + ||i||, 𝜎 ′, 𝛼⟩ otherwise
𝜎 ′ .CCS = 𝜎.CCS + realign(PC, u32(i))

The CCS update adds the instruction’s opcode to the CCS
register, adjusted for PC alignment:

17

realign(PC, i)=
{
i if PC ≡ 0 [4]
2
16LSH(i) + MSH(i) otherwise

Trapping instructions include ebreak/c.ebreak which

we treat as non-recoverable, and ecall which invokes a

syscall whose number is specified in register a7 (x17). We

treat an invocation of syscall __NR_exit (1) as program ter-

mination.
18

• i = encode(ebreak), i = encode(c.ebreak) :

JiK(PC, 𝜎, 𝛼) = ⊥
• i = encode(ecall) :

JiK(PC, 𝜎, 𝛼) =
{
end(𝛼) if 𝛼 [17] = 1 and 𝜎.CCSPROT = 0

⊥ otherwise

Among standard instructions, jumps are the most heavily

affected. We show here the cases of jal (jump-and-link),

which in RISC-V is used for unconditional branches and

function calls, and beq (branch-if-equal), a representative

conditional branch. The extension to jalr (which is used to

return from functions) is immediate by replacing the target

PC + imm of jal with the value of a register in 𝛼 .

• i = encode(jal rd, imm):
17
Computing the sum of realigned instruction opcodes ends up being equiv-

alent to summing the values returned by fetch rules in the program, see

Lemma 3. We choose to update during decoding because of our intuition

that a CCS update during the fetch cycle would be impacted by the fault.

18
We provide this exit mechanism to have a reasonable program model, but

in practice the exit() function is in the non-protected libc, so we don’t

actually worry about protecting the last block.

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

JiK(PC, 𝜎, 𝛼) =



⊥ if 𝜎.CCSPROT ≠ PC

⟨PC + imm, 𝜎 ′, 𝛼 ′⟩ otherwise, with
𝜎 ′ .CCS = 0

𝜎 ′ .CCSPROT = 0

𝜎 ′ .CCSD.JO = 0

𝛼 ′ [rd] = PC + ||𝑖 || + 2 × 𝜎.CCSD.JO
There are two changes compared to traditional jumps: (1)

it is only allowed when CCSPROT is set to PC; (2) it accounts
for the jump offset (JO) field of CCSD to jump over trap barri-

ers after function calls. The jump also prepares the execution

of the next block by resetting CCS and other registers to 0.

We do not allow the compiler to compress jal into the 16-bit
version c.jal to make sure the next block is also aligned.

Conditional branches are similar, except that if the branch

is not taken the block continues and in particular CCS is

updated rather than reset.

• i = encode(beq rs1, rs2, imm):

JiK(PC, 𝜎, 𝛼) =



⊥ if 𝜎.CCSPROT ≠ PC

⟨PC + imm, 𝜎 ′, 𝛼⟩ if 𝛼 [rs1]=𝛼 [rs2], with
𝜎 ′ .CCS = 0

𝜎 ′ .CCSPROT = 0

𝜎 ′ .CCSD.JO = 0

⟨PC + ||i||, 𝜎 ′, 𝛼⟩ otherwise, with
𝜎 ′ .CCS = 𝜎.CCS + realign(PC, u32 (i))

The last type of instruction is Xccs instructions. Because

these have both a 32-bit opcode and a 32-bit argument, they

cannot be executed in a single step. A “delay slot” mechanism

with 𝜎.CCSDS and the CHECKSUM-DELAY-SLOT rule is used to

solve this issue in two steps. At the first step, the Xccs opcode

will be fetched and recorded in 𝜎.CCSDS. At the second step,

the checksum value will be fetched, and passed as argument

to the appropriate semantics function J𝜎.CCSDSK𝑐𝑐𝑠 .
The first step which records the opcode in CCSDS proceeds

as follows:

• i = encode(ccs), i = encode(ccsb),
i = encode(ccscall N), i = encode(ccscallb N) :

JiK(PC, 𝜎, 𝛼) =


⊥ if PC is unaligned or 𝜎.CCSPROT ≠ 0

⟨PC + ||i||, 𝜎 ′, 𝛼⟩ otherwise, with
𝜎 ′ .CCS = 𝜎.CCS + realign(PC, u32 (i))
𝜎 ′ .CCSDS = i

The second step, which always uses the CHECKSUM-DELAY-SLOT
rule, reads back from CCSDS and calls the JK𝑐𝑐𝑠 function by

passing the checksum 𝑑 just fetched from memory as an

extra 4th argument. All 4 Xccs instructions have similar

semantics; the -call variants set CCSD.JO = N and the -b
variants flip the least significant bit of the checksum value

before comparing. We factor them as follows.

• Checksum step (𝑑 is a checksum value):

Jencode(ccs)K𝑐𝑐𝑠 = check(0, 0)
Jencode(ccsb)K𝑐𝑐𝑠 = check(1, 0)
Jencode(ccscall N)K𝑐𝑐𝑠 = check(0, N)
Jencode(ccscallb N)K𝑐𝑐𝑠 = check(1, N)

check(mask : u32, JO : u5) (PC, 𝜎, 𝛼, 𝑑) =

⊥ if 𝜎.CCS ≠ (𝑑 ⊕ mask) or 𝜎.CCSPROT ≠ 0

⊥ if 𝑑 is not a valid checksum literal

⟨PC + 4, 𝜎 ′, 𝛼⟩ otherwise, with
𝜎 ′ .CCSPROT = PC + 4
𝜎 ′ .CCSDS = 0

𝜎 ′ .CCSD.JO = JO

The purpose of the “checksum literals” check is to close

attack vectors in which an attacker feeds an incorrect check-

sum value by injecting a fault between the Xccs opcode and

its checksum parameter. We avoid these by preventing a

32-bit value 𝑑 from appearing verbatim as a checksum value

if:

• it decodes as a jump instruction;

• it decodes as an Xccs instruction;

• it decodes as a pair of c.ebreak.

The countermeasure gets rid of such values by flipping

their LSB, which is shown to be correct in Lemma 9.

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

B Hardening algorithm and proof of
security

B.1 Structure of hardened programs
The security property that we want to establish is that in the

execution of a hardened program, any single-fault injection

leads to termination with ⊥ before the end of the current

block. This relies on a particular structure for blocks, which

we also use to formalize the hardening process.

Definition 5 (Source block).
A source block is a block whose sequence of instructions con-

sists of:

• 0 or more straight (add, ebreak, ecall...) or conditional
branch (beq) instructions, excluding c.ebreak and Xccs
instructions; followed by

• One unconditional branch instruction (jal).

Unlike classical definitions,we do not count conditional
branches as block terminators. This improves the corre-

spondence between blocks and checksum regions; in partic-

ular, it ensures the invariant that CCS resets to 0 at the start

of every block.

Definition 6 (Hardened block).
A hardened block is a block hb obtained by hardening a

source block, i.e. hb = HARDEN(sb, 𝑁) for some source block sb.
HARDEN is detailed as Algorithm 2 (which is a copy of Algo-

rithm 1).

The hardening algorithm processes instructions individu-

ally. All the original instructions are kept. Before each jump,

a checksum check is added by procedure addChecksum(), in
the form of an Xccs instruction (ccscall for function calls,

ccs otherwise) followed by the reference checksum value.

In order to close certain attack vectors, the checksum value

must not decode as a jump or Xccs instruction; if that hap-

pens, the LSB of the checksum value is flipped and the Xccs

instruction is replaced by its -b variant. Finally, a barrier of

c.ebreak instructions is added at the end.

Now, conditional branches in the middle of a block allow

for early exits, but don’t reset the checksum. The idea is

that upon exiting the block, the expected checksum value is

always the sum of all lines from the beginning of the block

to the exit instruction. It will nonetheless be useful to split

the blocks at each exit point to help formalization.

Lemma 1 (Structure of source blocks).
A source block sb can be uniquely decomposed into 𝑚 ≥ 0

early sections followed by one final section, i.e.

sb = se1 + ... + se𝑚 + sf (“+” is concatenation)
where

• each se𝑘 (source early, 1 ≤ 𝑘 ≤ 𝑚) section consists of

straight instructions followed by one conditional branch;

Algorithm 2 Algorithm: HARDEN

Input: A source block [i1, ..., i𝑛]
Input: Upper bound 𝑁 for S32(𝑘) faults each fetch

Output: A hardened block hb.
hb← []
sum : u32 ← 0

offset← 0 ⊲ Blocks are 4-aligned.

procedure addToBlock(i)
hb.append(i)
sum← sum + realign(offset, u32 (i))
offset← offset + ||𝑖 ||

procedure addChecksum(i, ib)
if sum + i is not a valid checksum literal then

addToBlock(ib)
addToBlock(sum ⊕ 1)

else
addToBlock(i)
addToBlock(sum)

for i in [i1, ..., i𝑛] do
if i is a jump instruction then

if offset = 0 then ⊲ No empty sections.

addToBlock(encode(nop))
else if offset ≡ 2 [4] then ⊲ Force alignment.

addToBlock(encode(c.nop))
if i is a function call then

addChecksum(encode(ccscall (2𝑁 + 4)),
encode(ccscallb (2𝑁 + 4)))

else ⊲ Conditional/unconditional jumps.

addChecksum(encode(ccs), encode(ccsb))
offset← 0

addToBlock(i)
for 𝑗 = 1 to 2𝑁 + 4 do ⊲ Add trap barrier.

addToBlock(encode(c.ebreak))
return hb

• the sf (source final) section consists of straight instructions
followed by the block’s unconditional jump.

Proof. Because there is exactly one conditional branch per

se𝑘 and none other,𝑚 must be the number of conditional

branches in sb. The grouping is straightforward from here.

□

Lemma 2 (Structure of hardened blocks).
A hardened block hb = HARDEN(se1 + ... + se𝑚 + sf, 𝑁) can be

uniquely decomposed into 4-aligned sections

hb = he1 + ... + he𝑚 + hf
where

• each he𝑘 (hardened early, 1 ≤ 𝑘 ≤ 𝑚) section consists of:

1. the straight instructions of se𝑘 ;
2. an optional c.nop or nop, in a way that 1) and 2) com-

bined are not empty;

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

3. a 4-aligned ccs or ccsb;
4. a 4-aligned 32-bit checksum value;

5. the conditional branch of se𝑘 ;
• the hf (hardened final) section consists of:

1. the straight instructions of hf;
2. an optional c.nop or nop, in a way that 1) and 2) com-

bined are not empty;

3. a 4-aligned csscall or ccscallb if the terminator is a

function call, a ccs or ccsb otherwise;

4. a 4-aligned 32-bit checksum value;

5. the terminator of sf;
6. 2𝑁 + 4 c.ebreak instructions.

Proof. Decomposition: The main (for i) loop in HARDEN is a
morphism for concatenation. Take for he𝑘 /hf the hardened

sequences corresponding to se𝑘 /sf in the input; structurally,

we get hb = he1 + ... + he𝑚 + hf.
Section contents: Straight instructions are clearly preserved

by HARDEN. For both types of sections, items 2 through 5 are

generated by the handling of the section’s jump by HARDEN.
The trap barrier is always added at the end of the block; we

can count it towards hf.
Alignment: First, all sections have a length that is a multi-

ple of 4. This constraint is ensured by adding a c.nop before
section’s branch if the straight instructions finish on an un-

aligned address. The following Xccs instruction, checksum

value, and branch instruction all occupy 4 bytes each. Then,

because the block hb itself is 4-aligned and the sections fol-

low each other in memory, each section individually must

be 4-aligned. □

Finally, we give an intuitive view of the checksum values

by proving that the per-instruction summing process with

realignment is equivalent to summing 4-aligned lines.We can

do this by comparing both computations on the underlying

sequences of u16 values.

Lemma 3 (realign sum computes the sum of fetched lines).
Let ℎ = (ℎ0, ..., ℎ2𝑛−1) : u2𝑛16 a sequence of u16 (“halfwords”).
Assume (𝑤0, ...,𝑤𝑛−1) : u𝑛32 is a sequence of u32 (“words”)

whose concatenation is ℎ, i.e. such that𝑤𝑖 = ℎ2𝑖 + 216ℎ2𝑖+1.
Let (i0, ..., i𝑚−1) a sequence of instructions, andwrite offset𝑗 =

1

2

∑𝑗−1
𝑘=0
||𝑖𝑘 || the offset of instruction 𝑗 in the sequence (in 16-bit

units). Assume the concatenation of this sequence is also ℎ, i.e.

offset𝑚 = 2𝑛 and for all 𝑗 ,

• i𝑗 = ℎoffset𝑗 if i𝑗 is a 16-bit instruction;

• i𝑗 = ℎoffset𝑗 + 216ℎoffset𝑗+1 otherwise.

Then,

𝑚−1∑︁
𝑗=0

realign(2 · offset𝑗 , u32 (i𝑗)) =
𝑛−1∑︁
𝑖=0

𝑤𝑖 .

Proof. First, rewrite every instruction’s realigned contribu-

tion in terms of ℎ𝑖 ; specifically, we have

∀𝑗, realign(2 · offset𝑗 , u32 (i𝑗)) =
offset𝑗+1−1∑︁
𝑖=offset𝑗

2
16(𝑖 mod 2)ℎ𝑖 .

This we can show by distinguishing four cases:

• i𝑗 is 16-bit, offset𝑗 mod 2 = 0:

– LHS is i𝑗
– RHS is ℎoffset𝑗 = i𝑗
• i𝑗 is 16-bit, offset𝑗 mod 2 = 1:

– LHS is 2
16i𝑗

– RHS is 2
16ℎoffset𝑗 = 2

16i𝑗
• i𝑗 is 32-bit, offset𝑗 mod 2 = 0:

– LHS is i𝑗
– RHS is ℎoffset𝑗 + 216ℎoffset𝑗+1 = i𝑗
• i𝑗 is 32-bit, offset𝑗 mod 2 = 1:

– LHS is MSH(i𝑗) + 216LSH(i𝑗)
– RHS is 2

16ℎoffset𝑗 + ℎoffset𝑗+1 = 2
16LSH(i𝑗) + MSH(i𝑗)

Now, by summing from 𝑗 = 0 to𝑚 − 1, we get

𝑆 :=

𝑚−1∑︁
𝑗=0

realign(offset𝑗 , u32 (i𝑗)) =
offset𝑚−1∑︁

𝑖=0

2
16(𝑖 mod 2)ℎ𝑖 .

Recalling that offset𝑚 = 2𝑛, this equivalent to unfolding

𝑤𝑖 into a sum of u16:

𝑛−1∑︁
𝑖=0

𝑤𝑖 =

2𝑛−1∑︁
𝑖=0

2
16(𝑖 mod 2)ℎ𝑖 = 𝑆.

□

B.2 Program state upon leaving a hardened block
We will now show that the counter-measure ensures good

properties in the execution of hardened blocks, namely that

they can only be exited by a legitimate jump instruction and

while validating the checksum associated to that jump.

In the following, we assume a program 𝑃 and a successful

execution 𝑒 = [𝑠1, ..., 𝑠 |𝑒 |], with each step being written

𝑠𝑖 = ⟨PC𝑖 , 𝜌𝑖 , 𝜎𝑖 , 𝛼𝑖⟩ → 𝑟𝑖 ,

which structurally implies that{
𝑟𝑖 = ⟨PC𝑖+1, 𝜌𝑖+1, 𝜎𝑖+1, 𝛼𝑖+1⟩ if 𝑖 < |𝑒 |;
𝑟 |𝑒 | = end(𝛼 |𝑒 |).

The first step in the proof is to show that the trap barrier

prevents the end of a hardened block from being reached,

meaning that any exit must happen through a jump instruc-

tion.

Lemma 4 (Hardened blocks must be exited by jumps).
Let hb be a hardened block of 𝑃 , and assume the execution

enters hb, meaning that there exists 𝑡 (“top”) such that PC𝑡 =

blockAddr(hb).
Let 𝑛 be the number of instructions executed without leaving

hb, i.e. the largest number such that the following all hold:

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

1. 𝑡 + 𝑛 ≤ |𝑒 |;
2. ∀𝑖 ∈ [𝑡, 𝑡 + 𝑛), PC𝑖+1 ∈ blockSpan(hb);
3. ∀𝑖 ∈ [𝑡, 𝑡 + 𝑛), 𝑠𝑖 is not a jump instruction.

19

Then, either

• 𝑡 + 𝑛 = |𝑒 | (hence 𝑠𝑡+𝑛 is a successful termination by an

invocation of the exit syscall), or

• 𝑡 + 𝑛 < |𝑒 | and 𝑠𝑡+𝑛 is a jump instruction.

Proof. By contradiction. An exit not covered by the lemma

statement must be with 𝑡 + 𝑛 < |𝑒 | and 𝑠𝑡+𝑛 not a jump

instruction. As such, there must be no jump instruction in

the entire sub-sequence 𝑠𝑡 ... 𝑠𝑡+𝑛 .
For a non-jumping step 𝑠𝑖 , we always have PC𝑖+1 > PC𝑖 .

This is because the only two changes to PC are the update

by the instruction’s semantics (which always adds ||i|| > 0)

and the potential skip from the S32(𝑘) fetch rule (which is

4𝑘 ≥ 0).

Therefore, (PC𝑖)𝑡≤𝑖≤𝑡+𝑛 is a strictly increasing sequence,

which means that every address in blockSpan(hb) is part
of exactly one [PC𝑖 , PC𝑖+1) interval (i.e. there is exactly one

step that consumes it as part of its execution).

So then, we can look at hb’s ending, which has the follow-

ing 4-aligned sequence (where each line covers 4 bytes of

code):

ccs/ccsb/ccscall/ccscallb

<checksum value>

j32

L: c.ebreak; c.ebreak # (repeat N+2 times)

The j32 marker represents the jump instruction, which is

always a 32-bit instruction. The trap barrier starts at address

L and contains 2𝑁 + 4 c.ebreak instructions, therefore the
block ends at L + 4𝑁 + 8.
From the previous argument, there is exactly one step 𝑠𝑖

such that address L lies in the interval [PC𝑖 , PC𝑖+1), meaning

that the line at address L is loaded or skipped during the

execution of step 𝑠𝑖 . Step 𝑠𝑖 starts at PC𝑖 , which can bewritten

in a unique way as either PC𝑖 = L − 4𝑘 or PC𝑖 = L − 4𝑘 − 2
depending on its alignment.

Now by analyzing all cases for the value of𝑘 and alignment

of PC, we can show that the execution always crashes at or

shortly after 𝑠𝑖 , completing the contradiction argument.

• 𝑘 > 0. This case is only possible if step 𝑠𝑖 uses the fetch

rule S32(𝑘 ′) because PC𝑖+1 > L, yet all other options for
non-jump instructions result in PC𝑖+1 ≤ PC𝑖 + 4. Since
𝑘 ′ ≤ 𝑁 , the fetch will not reach beyond the trap barrier, so

the fetch returns a pair of c.ebreak instructions. These
then get consumed by 𝑠𝑖 ’s step rule, which we can identify

from the alignment of PC.

– PC aligned: 𝑠𝑖 must then be using either ALIGNED-16 or
CHECKSUM-DELAY-SLOT. In the first case, the first c.ebreak
fetched by 𝑠𝑖 is executed, leading to a trap. In the second

19
For now we consider a forged jump that jumps back somewhere into the

block as “leaving” the block; we will later show that this cannot happen.

case, the checksum check also traps because double

c.ebreak is not a valid checksum literal.

– PC unaligned: since there was a fetch, UNALIGNED-32 is be-
ing used. A 32-bit instruction is composed from MSH(𝜌𝑖)
and the first c.ebreak. Recall that 𝑠𝑖 is not a jump, so

this instruction either crashes or leads into 𝑠𝑖+1 with
PC𝑖+1 unaligned. In this case, 𝑠𝑖+1 will use UNALIGNED-16
and run the second c.ebreak, trapping as claimed.

• 𝑘 = 0. In this case, PC𝑖 must be either L or L − 2.
– PC𝑖 = L (aligned). Here, 𝑠𝑖 can either use rule ALIGNED-16,
ALIGNED-32, or CHECKSUM-DELAY-SLOT, all of which require

a fetch that can only return 𝜌𝑖 = encode(j32) (if S&R32
is used) or a pair of c.ebreak. Using ALIGNED-16 and
ALIGNED-32would either crash from running a c.ebreak
or contradict the hypothesis that 𝑠𝑖 is not a jump. Using

CHECKSUM-DELAY-SLOT would also crash because neither

fetch result is a valid checksum literal.

– PC𝑖 = L−2 (unaligned). Because there is a fetch, 𝑠𝑖 must

be using rule UNALIGNED-32. Much like the similar case

in 𝑘 > 0, the instruction recomposed from MSH(𝜌𝑖) and
LSH(𝑑) cannot be a jump, so if it doesn’t crash execution

continues to 𝑠𝑖+1 with the new LSH(𝜌𝑖+1).
If 𝑠𝑖 uses fetch rule NOFAULT or S32(𝑘 ′), then 𝜌𝑖+1 is a

pair of c.ebreak, therefore 𝑠𝑖+1 will use UNALIGNED-16
and crash running the second c.ebreak.
Execution can only proceed past 𝑠𝑖+1 if 𝑠𝑖 uses fetch

rule S&R32, in which case 𝑠𝑖+1 is a repeat of 𝑠𝑖 4 bytes
later (PC𝑖+1 = L + 2). The analysis of 𝑠𝑖 can be repeated,

with two changes. First, S32(𝑘 ′) could now reach 4 bytes

further, up to L+4+4𝑁 , which hits the last 4 bytes of the

barrier. This shows why 2𝑁 + 4 c.ebreak are required.

Second, using S&R32 no longer succeeds because 𝜌𝑖+1 is
now also a pair of c.ebreak. Therefore, 𝑠𝑖+2 crashes.

This guaranteed crash implies that a successful execution

can only exit a protected block in one of the ways described

by the theorem statement. □

The next objective is to show that the Xccs instruction,

checksum and jump instruction sequence is secure in that

only legitimate jumps can be used to exit a hardened block.

A key part of this is that only original instructions must be

executed around the time of the jump, not forged instructions.

This synchronization is guaranteed by the fact that an Xccs

instruction is needed to jump, and Xccs instructions cannot

be forged.

Lemma 5 (Xccs instructions can be repeated but not forged).
Let hb = [i1, ..., i |hb |] be a hardened block and

𝑠 = ⟨PC, 𝜌, 𝜎, 𝛼⟩ → ⟨PC′, 𝜌 ′, 𝜎 ′, 𝛼 ′⟩
a step that successfully runs an Xccs opcode within hb, i.e.
such that [PC, PC′) ⊆ blockSpan(hb). Further assume that

we don’t repeat upon landing in hb, i.e. either 𝑠 doesn’t use
rule S&R32 or PC ≥ blockAddr(hb) + 4.

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

Then, the instruction executed by 𝑠 is an original instruction

of hb, in the sense that there is an Xccs instruction i𝑗 ∈ hb
(with address L = blockAddr(hb) +∑𝑗−1

𝑘=0
||i𝑘 ||) such that one

of the following is true:

1. 𝑠 uses fetch rule NOFAULT and PC = L;
2. 𝑠 uses fetch rule S32(𝑘) and PC = L − 4𝑘 ;
3. 𝑠 uses fetch rule S&R32 and PC = L + 4.
Proof. Xccs instructions trap when executed with unaligned

PC, so they can only be run by step rule ALIGNED-32. This rule
always uses the value 𝑑 returned by a fetch as an opcode,

which is a 4-aligned value found in program memory at an

address that depends on the fetch rule:

• With NOFAULT, 𝑑 is the value at PC;

• With S32(𝑘), 𝑑 is the value at PC + 4𝑘 ;
• With S&R32, 𝑑 is the value at PC − 4.
Given the hypotheses and the length of the trap barrier,

this value must be a 4-aligned value within hb, which can

intersect the instruction sequence in three ways:

1. 𝑑 matches a 32-bit instruction i𝑗 ∈ hb: then the lemma is

obviously true.

2. LSH(𝑑) is the last two bytes of an instruction i𝑗 ∈ hb and

MSH(𝑑) is the first two bytes of i𝑗+1. This is impossible

because 𝑑 is an Xccs opcode so MSH(𝑑) = 0. The 16-bit

zero value is reserved in the RISC-V ISA as an invalid

opcode, thus i𝑗+1 could not be a valid instruction.

3. 𝑑 matches a 32-bit checksum argument to an Xccs instruc-

tion: this is also impossible because Xccs opcodes are not

valid checksum literals.

Since only case 1) is possible, 𝑠𝑖 must indeed be executing a

legitimate instruction i𝑗 ∈ hb (maybe after a fault). □

Definition 7 (Legitimate entry).
A state ⟨PC, 𝜌, 𝜎, 𝛼⟩ is called a legitimate entry into a block

bb if PC = blockAddr(bb), 𝜎.CCSPROT = 𝜎.CCSDS = 0, and

𝜌 does not decode as an Xccs instruction.

Definition 8 (Legitimate execution of a block).
A sequence of steps 𝑠𝑡 ... 𝑠𝑏 (“top”, “bottom”) is defined as a le-
gitimate execution of a hardened block hb if the following
conditions are met:

• 𝑠𝑡 ’s initial state is a legitimate entry into hb;
• ∀𝑖 ∈ [𝑡, 𝑏), PC𝑖+1 ∈ blockSpan(hb);
• 𝑠𝑏 is the first and only instruction in the sequence to be either

a taken jump or an invocation of the exit syscall.

Lemma 6 (Jumps out of hardened blocks must be legitimate).
Let hb = [i1, ..., i |hb |] a hardened block of 𝑃 , and 𝑠𝑡 ... 𝑠𝑏 a

legitimate execution of hb where 𝑠𝑏 is a jump. Then:

1. 𝑏 ≥ 𝑡 + 2 and 𝑠𝑏−2 is an Xccs instruction;

2. The jump is legitimate, i.e. there is an instruction i𝑗 ∈ hb
such that PC𝑏 = blockAddr(hb) + ∑𝑗−1

𝑘=0
||i𝑘 || and step 𝑠𝑏

executes the opcode i𝑗 .

3. The checksum is correct when leaving the block, i.e.

𝜎𝑏 .CCS =

{
[PC𝑏 − 4] if it’s a valid checksum literal;

[PC𝑏 − 4] ⊕ 1 otherwise.

4. 𝑠𝑏 ’s final state is a legitimate entry into another block.

Proof. Walking back from the last few instructions, for 𝑠𝑏
to be a jump and not trap, we must have 𝜎𝑏 .CCSPROT ≠ 0.

Therefore 𝑏 > 𝑡 and 𝑠𝑏−1 must use the CHECKSUM-DELAY-SLOT
rule, as no other type of step can end with CCSPROT ≠ 0. This

implies that 𝜎𝑏−1.CCSDS ≠ 0, so once again 𝑏 − 1 > 𝑡 and

𝑠𝑏−2 must execute an Xccs instruction, because CCSDS can

only be non-zero for one step and no other instruction sets

it.

By Lemma 5, there must be an original Xccs instruction

from hb being executed by 𝑠𝑏−2, and such instructions are

only found at the end of early or final sections, which have

the following structure:

L: ccs/ccsb/ccscall/ccscallb

L+4: <checksum value>

L+8: j32

L+12: # ... next section or c.ebreak ...

Note that while 𝑠𝑏−2 runs the opcode found in memory at

address L, PC𝑏−2 is not guaranteed to be L since faults might

be involved. The lemma focuses on showing that even then,

in all execution scenarios starting from 𝑠𝑏−2 the legitimate

jump at L + 8 must be taken by 𝑠𝑏 while also passing the

checksum at L + 4.20
First note that, as Xccs instructions set CCSPROT = PC + 8

and both 𝑠𝑏−2 and 𝑠𝑏 already increment PC by 4, neither

𝑠𝑏−1 nor 𝑠𝑏 can fetch with S32(𝑘) as that would cause PC >

CCSPROT in 𝑠𝑏 and trap. The only variable after 𝑠𝑏−2 is whether
the S&R32 fetch rule is used to change either fetched value.

• If 𝑠𝑏−2 uses either of the fetch rules NOFAULT and S32(𝑘),
then PC𝑏−1 = L + 4 and PC𝑏 = L + 8.
Then, 𝑠𝑏−1 uses the CHECKSUM-DELAY-SLOT rule after fetch-

ing a checksum literal. Attacking the fetch with S&R32
would return the Xccs opcode of 𝑠𝑏−2, and trap because

it’s not a valid checksum literal. Thus 𝑠𝑏−1 must fetch with

NOFAULT, passing the checksum.

Finally, 𝑠𝑏 performs the jump. Fetching with S&R32 is
again impossible as that would execute the checksum

literal, which cannot be a jump. Therefore, 𝑠𝑏 fetches with

NOFAULT, and executes the intended jump at L + 8 while

passing the intended checksum.

• If 𝑠𝑏 uses the fetch rule S&R32, then PC𝑏 = L + 4, which
means that PC𝑏−1 = L + 8 and PC𝑏 = L + 12.
This time, 𝑠𝑏−1 must fetch with S&R32 to obtain the in-

tended checksum, as a NOFAULT fetch would return the

jump opcode, which is not a valid checksum literal.

20
The analysis in this lemma remains correct even if rule S32(𝑘) caused the

execution of extra nop instructions, as that would reset CCSPROT to 0 and
just prevent the jump altogether.

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

Then, 𝑠𝑏 must also fetch with S&R32 to get the jump,

since a NOFAULT fetch would the value at L + 12, which
cannot be a jump.

Notice that in the second case the entire jump widget is

“delayed” by 4 bytes by repeated attack with S&R32. This is
still a legitimate exit for the purpose of this lemma. We will

show later that in single-fault cases, the checksum would

not pass in such a scenario.

Now, since the jump was executed properly, it is fairly

easy to show that 𝑠𝑏 is a legitimate entry into another block.

• The target of the jump is the blockAddr of another block

by assumption about the validity of the entire program 𝑃 .

• After the jump, we have 𝜎𝑏 .CCSPROT = 0 and 𝜎𝑏 .CCSDS = 0

as a result of the semantics of 𝑠𝑏−1 and 𝑠𝑏 .
• Finally, 𝜌𝑏+1 is either a jump, a c.ebreak, or the first line

of the next section (which is never an Xccs instruction).

□

B.3 Security guarantees
This key lemma implies that legitimate entries and exits

from hardened blocks is an execution invariant. We can sum

this up in the most general (multi-fault) case as every block

guaranteeing its checksum must pass.

Theorem 1 (Security guarantee for multi-fault executions).

Let 𝑃 a fully hardened program and 𝑒 = [𝑠0, ..., 𝑠 |𝑒 |] an
execution such that

• 𝑠0 is a legitimate entry into a block of 𝑃 ;

• 𝑠 |𝑒 | ends successfully, returning some end(𝛼).
Then there exists a sequence [hb1, ..., hb𝑚] of blocks of 𝑃 such

that

1. The execution 𝑒 can be partitioned into subsequences (𝑠𝑡𝑖 ... 𝑠𝑏𝑖)1≤𝑖≤𝑚
each a legitimate execution of hb𝑖 ;

2. Each 𝑠𝑏𝑖 (𝑖 ≠𝑚) is a legitimate jump of hb𝑖 and 𝜎𝑏𝑖 .CCS is
the correct checksum associated with that jump.

Proof. By induction, constructing (𝑡𝑖), (𝑏𝑖) and (hb𝑖) along
the way.

Assume 𝑠𝑡𝑖 is a legitimate entry into hb𝑖 (which is true

for 𝑖 = 0). By Lemma 4, there is 𝑏𝑖 such that 𝑠𝑡𝑖 ... 𝑠𝑏𝑖 is

an execution of hb1, with 𝑠𝑏𝑖 leaving either by successful

termination or by a jump. If 𝑠𝑏𝑖 ends the program, we’re

done. Otherwise, by Lemma 6, 𝑠𝑏𝑖 is a legitimate jump out

of hb𝑖 with 𝜎𝑏𝑖 .CCS passing the associated checksum, and

its final state is a legitimate entry into another block hb𝑖+1.
Define 𝑡𝑖+1 := 𝑏𝑖 + 1 and start over. □

As we’ve discussed previously, this doesn’t completely

rule out attacks, because for some blocks there exist multi-

faulted paths whose checksum collides with the expected

checksum. However, such paths do not exist when a single

fault is injected during the execution of a block. To show

this, we can go back to the sum-of-u32 expression of the

checksum and reason on the series of fetches that builds it.

Definition 9 (Fetch trace).
The fetch trace of a subsequence 𝑠𝑡 ... 𝑠𝑏 of 𝑒 is the tuple

(𝑁, 𝑆, 𝑅, 𝜌entry, (𝑎𝑖), (𝑘𝑖), next)

where fetches are partitioned by rule type:

• 𝑁 = {𝑖 | 𝑠𝑖 uses the NOFAULT rule}
• 𝑆 = {𝑖 | 𝑠𝑖 uses the S32(𝑘) rule}
• 𝑅 = {𝑖 | 𝑠𝑖 uses the S&R32 rule and 𝑖 ≠ 𝑡}
• 𝜌entry= 𝜌𝑡 if 𝑠𝑡 uses the S&R32 rule, 0 otherwise

and relevant information is recorded as follows:

• for 𝑖 ∈ 𝑁 ∪ 𝑆 ∪ 𝑅, 𝑎𝑖 is the address fetched by 𝑠𝑖 ;
• for 𝑖 ∈ 𝑆 , 𝑘𝑖 is the parameter to S32(·) (0 for other 𝑖);
• next gives the next step that includes a fetch, i.e.

next(𝑖) = min { 𝑗 ∈ 𝑁 ∪ 𝑆 ∪ 𝑅 | 𝑗 > 𝑖}.

Lemma 7 (Relation between checksum and fetch trace).
Let hb a hardened block of 𝑃 , 𝑠𝑡 ... 𝑠𝑏 a legitimate execution

of hb and (𝑁, 𝑆, 𝑅, 𝜌entry, (𝑎𝑖), (𝑘𝑖), next) the fetch trace of

𝑠𝑡 ... 𝑠𝑏−2 (only up to the last Xccs instruction that counts to-

wards the checksum).

Then fetched addresses are contiguous in the sense that

∀𝑖 < 𝑏 − 2, 𝑎next(𝑖) = 𝑎𝑖 + 4𝑘𝑖 + 4

and the checksum upon leaving the block is

𝜎𝑏−1 .CCS =
∑︁
𝑖∈𝑁
[𝑎𝑖] +

∑︁
𝑖∈𝑆
[𝑎𝑖 + 4𝑘𝑖] +

∑︁
𝑖∈𝑅
[𝑎𝑖 − 4] + 𝜌entry .

Proof. The checksum upon leaving the block is 𝜎𝑏 = 𝜎𝑏−1
(since CCS is not updated during checks and jumps). By defi-

nition of instructions’ semantics, 𝜎𝑏−1 is the realigned sum

of the instructions executed by 𝑠𝑡 ... 𝑠𝑏−2 (i.e. the values being
passed to J·K or J·K𝑐𝑐𝑠 in each step rule).

Because the sequence takes no branch, each instruction

i ends with PC← PC + ||i|| so each new fetch queries the

data immediately following the previous fetch. Accounting

for skips in S32(𝑘) means that 𝑎next(𝑖) = 𝑎𝑖 + 4𝑘𝑖 + 4 (𝑘𝑖 being
0 for other rules).

In addition, the sequence starts on a 4-aligned boundary

and ends with a 4-aligned Xccs instruction, so the concate-

nation of executed instructions’ encodings is exactly equal

to the concatenation of values returned by fetches. Thus, by

Lemma 3, 𝜎𝑏−1 .CCS is equal to the sum of values returned by

fetches. These can be determined for all four categories of

fetches:

• For 𝑖 ∈ 𝑁 , NOFAULT returns [𝑎𝑖];
• For 𝑖 ∈ 𝑆 , S32(𝑘) returns [𝑎𝑖 + 4𝑘𝑖];
• For 𝑖 ∈ 𝑅 (𝑖 > 𝑡), S&R32 returns 𝜌𝑖 , which is always equal

to [𝑎𝑖 − 4] (because 𝜌𝑖 = [𝑎𝑖] at the end of every step that

includes a fetch);

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

• If 𝑠𝑡 uses the S&R32 rule, then the fetch for 𝑠𝑡 returns 𝜌𝑡
(the last value fetched by the previous block), otherwise

it’s counted by 𝑁 and 𝑆 .

Adding these up yields the claimed formula for 𝜎𝑏−1.CCS. □

Lemma 8 (Single faults always invalidate the checksum).
Let hb a hardened block of 𝑃 and 𝑠𝑡 ... 𝑠𝑏 a legitimate execution

of hb ending in a jump. Assume the maximum number of skips

allowed in a single S32(𝑘) rule is 𝑁 = 1. Then there cannot be

exactly one fault attack during the execution of the block, i.e.

Card {𝑖 ∈ [𝑡, 𝑏] | 𝑠𝑖 uses S32(𝑘) or S&R32} ≠ 1.

Proof. By Lemma 6, a legitimate exit by a jump requires an

Xccs instruction at 𝑠𝑏−2, and 𝑠𝑏−1 and 𝑠𝑏 must either both use

NOFAULT or both use S&R32. The second option immediately

implies the theorem; this leaves the first.

Let (𝑁, 𝑆, 𝑅, 𝜌entry, (𝑎𝑖), (𝑘𝑖), next) be the fetch trace of

𝑠𝑡 ... 𝑠𝑏−2. Because 𝑠𝑏−1 and 𝑠𝑏 both use NOFAULT, the fault

attack must occur in 𝑠𝑡 ... 𝑠𝑏−2, which leaves 3 options.

• 𝑠𝑡 uses S&R32: by Lemma 7, the checksum at the end of the

block is

𝜎𝑏−1 .CCS =

𝑏−2∑︁
𝑖=𝑡+1
[𝑎𝑖] + 𝜌entry,

with 𝑎𝑖 = blockAddr(hb) + 4𝑖 . Remember that the ex-

pected checksum is

𝜎expected =

𝑏−2∑︁
𝑖=𝑡

[blockAddr(hb) + 4𝑖] .

The difference is 𝜌entry − [blockAddr(hb)] = 𝜌𝑡 − [𝑎𝑡],
which is non-zero due to the condition on S&R32 (silent
replacements do not count as faults). Therefore the check-

sum doesn’t pass, contradicting the hypothesis that 𝑠𝑡 ... 𝑠𝑏
is a legitimate execution of hb.
• Some 𝑠 𝑗 uses S&R32 (𝑗 ≠ 𝑡): by Lemma 7, the checksum is

𝜎𝑏−1.CCS =

𝑏−2∑︁
𝑖=𝑡

[𝑎𝑖] − [𝑎 𝑗] + [𝑎 𝑗 − 4]

still with 𝑎𝑖 = blockAddr(hb) + 4𝑖 . The difference with
𝜎expected is [𝑎 𝑗 − 4] − [𝑎 𝑗] = 𝜌 𝑗 − [𝑎 𝑗] which is again

non-zero due to the condition on S&R32.
• Some 𝑠 𝑗 uses S32(1): still by Lemma 7, the checksum is

now

𝜎𝑏−1.CCS =
∑︁
𝑖∈𝑁
[𝑎𝑖] + [𝑎 𝑗 + 4] =

𝑏−2∑︁
𝑖=𝑡+1
[𝑎𝑖] − [𝑎 𝑗],

since the execution is offset by the skip at 𝑠 𝑗 , leading to

𝑎𝑖 = blockAddr(hb) + 4𝑖 + 4(𝑖 ≥ 𝑗). The difference is [𝑎 𝑗];
for the checksum to pass we must have [𝑎 𝑗] = 0. This is

impossible: for the same reasons as discussed in Lemma 5,

a 4-aligned zero value cannot intersect any instructions, so

it would have to be a checksum value... but then 𝑠 𝑗 would

crash. This is because the execution was not faulted up

to this point, so 𝑠 𝑗 must be using rule CHECKSUM-DELAY-SLOT
with S32(1). As a result, 𝑠 𝑗 fetching [𝑎 𝑗 + 4], which is not a

valid checksum literal (it’s a 32-bit jump), leads to a crash.

□

We are now finally able to prove the security property

that a successful execution with no more than one fault per

block has no faults at all.
21

Theorem 2 (Security guarantee for single-fault executions).

Let 𝑃 a fully hardened program and 𝑒 = [𝑠0, ..., 𝑠 |𝑒 |] an
execution such that

• 𝑠0 is a legitimate entry into a block of 𝑃 ;

• 𝑠 |𝑒 | ends successfully, returning some end(𝛼).
Let [hb1, ..., hb𝑚], (𝑠𝑡𝑖 ... 𝑠𝑏𝑖)1≤𝑖≤𝑚 be the partition of 𝑒 into

block executions outlined by Theorem 1.

If each segment 𝑠𝑡𝑖 ... 𝑠𝑏𝑖 uses at most one faulted fetch rule

and the last segment 𝑠𝑡𝑚 ... 𝑠𝑏𝑚 is faultless, then 𝑒 is faultless.

Proof. By Theorem 1, segments 𝑖 = 1 to𝑚 − 1 all validate

their checksums, and by hypothesis, they use at most one

faulted fetch rule. By Lemma 8, they must in fact use no

faulted fetch. The last block is itself faultless by hypothesis.

As a result, the entire execution is legitimate. □

B.4 Feasibility of Algorithm HARDEN

Algorithm 2 relies on the ability to get rid of invalid check-

sum literals by flipping their Least Significant Bit (LSB). We

still have to show that this indeed works.

Lemma 9 (Invalid checksum literals can be avoided).
If 𝑑 : u32 is an invalid checksum literal, then (𝑑 ⊕ 1) + 214 is
a valid checksum literal.

Proof. Invalid checksum literals are jumps, Xccs instructions,

and pairs of c.ebreak. The low 7 bits of each invalid literal

is listed in Table ??; note how flipping the LSB never yields

a new pattern that’s present in the table.

It is important that the validity of the checksum literal

can be inferred from the low 7 bits only. This is because

flipping the LSB of the checksum literal also comes with

an update to the Xccs opcode (replacing ccs by ccsb or

ccscall by ccscallb). This update amounts to flipping bit

14 of the opcode, thus affecting bits 14–31 of the checksum

value. Since bits 0–6 are not affected, the final checksum

literal is still valid even after accounting for this change. □

21
We exclude the last block since we don’t protect ecall; in practice it’s in

non-protected libc and the entry into the exit() function is a function call

that is itself protected.

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference’17, July 2017, Washington, DC, USA

Conference’17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

	Abstract
	1 Introduction
	2 Formal description of fetch skips
	2.1 RISC-V programs and their execution
	2.2 Fault model
	2.3 Program model

	3 A co-designed countermeasure
	3.1 Overview
	3.2 ISA and hardware extensions
	3.3 Hardening algorithm
	3.4 LLVM implementation
	3.5 Discussion

	4 Security theorem
	5 Implementation setting and evaluation
	5.1 Implementation and experimental setting
	5.2 Functional correctness
	5.3 Security guarantee
	5.4 Performance

	6 Related work
	7 Conclusion
	A Operational semantics
	A.1 Program and execution models
	A.2 Fetch and step rules
	A.3 Instruction semantics

	B Hardening algorithm and proof of security
	B.1 Structure of hardened programs
	B.2 Program state upon leaving a hardened block
	B.3 Security guarantees
	B.4 Feasibility of Algorithm HARDEN

