D. Gupta, M. Tsiantis, and M. , Gene networks and the evolution of plant morphology, Current Opinion in Plant Biology, vol.45, pp.82-87, 2018.

M. Rebeiz and M. Tsiantis, Enhancer evolution and the origins of morphological novelty. Current Opinion in Genetics & Development, vol.45, pp.115-123, 2017.

J. F. Schmitz, F. Zimmer, and E. Bornberg-bauer, Mechanisms of transcription factor evolution in Metazoa, Nucleic Acids Res, vol.44, pp.6287-6297, 2016.

*. *. Nishiyama, T. Sakayama, H. De-vries, J. Buschmann, H. Saint-marcoux et al., The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization, Cell, vol.174, pp.448-464, 2018.

M. N. Puttick, J. L. Morris, T. A. Williams, C. J. Cox, D. Edwards et al., The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte, Current Biology, vol.28, pp.733-745, 2018.

N. J. Wickett, S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter et al., Phylotranscriptomic analysis of the origin and early diversification of land plants, Proc Natl Acad Sci, vol.111, pp.4859-4868, 2014.

*. Delaux-p-m, A. J. Hetherington, Y. Coudert, C. Delwiche, C. Dunand et al., Reconstructing trait evolution in plant evo-devo studies, Current Biology, vol.29, pp.1110-1118, 2019.

O. Navaud, P. Dabos, E. Carnus, D. Tremousaygue, and C. Hervé, TCP Transcription Factors Predate the Emergence of Land Plants, J Mol Evol, vol.65, pp.23-33, 2007.

P. Wilhelmsson, C. Mühlich, K. K. Ullrich, and S. A. Rensing, Comprehensive Genome-Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in Streptophyte Algae, Genome Biology and Evolution, vol.9, pp.3384-3397, 2017.

M. A. Carmell, G. A. Dokshin, H. Skaletsky, Y. Hu, J. C. Van-wolfswinkel et al., A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes, vol.5, p.19993, 2016.

F. M. Rosin and E. M. Kramer, Old dogs, new tricks: Regulatory evolution in conserved genetic modules leads to novel morphologies in plants, Developmental Biology, vol.332, pp.25-35, 2009.

W. Dröge-laser, B. L. Snoek, B. Snel, and C. Weiste, The Arabidopsis bZIP transcription factor family -an update, Current Opinion in Plant Biology, vol.45, pp.36-49, 2018.

A. Feller, K. Machemer, E. L. Braun, and E. Grotewold, Evolutionary and comparative analysis of MYB and bHLH plant transcription factors: Plant MYB and bHLH factors, The Plant Journal, vol.66, pp.94-116, 2011.

K. Kaufmann, R. Melzer, and G. Theißen, MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants, Gene, vol.347, pp.183-198, 2005.

T. J. Guilfoyle, The PB1 Domain in Auxin Response Factor and Aux/IAA Proteins: A Versatile Protein Interaction Module in the Auxin Response, Plant Cell, vol.27, pp.33-43, 2015.

S. K. Mutte, H. Kato, C. Rothfels, M. Melkonian, G. Wong et al., Origin and evolution of the nuclear auxin response system, vol.7, p.33399, 2018.

E. Flores-sandoval, D. M. Eklund, S. Hong, J. P. Alvarez, T. J. Fisher et al., Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha, New Phytol, vol.218, pp.1612-1630, 2018.

R. Martin-arevalillo, E. Thévenon, F. Jégu, T. Vinos-poyo, T. Vernoux et al., Evolution of the Auxin Response Factors from charophyte ancestors, PLoS Genet, vol.15, p.1008400, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02329218

S. Piya, S. K. Shrestha, B. Binder, C. N. Stewart, and T. Hewezi, Protein-protein interaction and gene coexpression maps of ARFs and Aux/IAAs in Arabidopsis, Front Plant Sci, p.5, 2014.

S. A. Trigg, R. M. Garza, A. Macwilliams, J. R. Nery, A. Bartlett et al., CrY2H-seq: A massively multiplexed assay for deep-coverage interactome mapping, Nature Methods, vol.14, pp.819-825, 2017.

T. Vernoux, G. Brunoud, E. Farcot, V. Morin, H. Van-den-daele et al., The auxin signalling network translates dynamic input into robust patterning at the shoot apex, Mol Syst Biol, vol.7, p.508, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00828880

J. L. Bowman, L. N. Briginshaw, and S. N. Florent, Evolution and co-option of developmental regulatory networks in early land plants, Current Topics in Developmental Biology, vol.2019, pp.35-53

*. Han, X. Chang, X. Zhang, Z. Chen, H. He et al., Origin and Evolution of Core Components Responsible for Monitoring Light Environment Changes during Plant Terrestrialization, Molecular Plant, vol.12, pp.847-862, 2019.

, This paper summarizes the genes orthologs involved in light signaling and shed light on the origin and evolution of several key players such as UVR8 or the module SPA-COP1

A. Possart, T. Xu, I. Paik, S. Hanke, S. Keim et al., Characterization of Phytochrome Interacting Factors from the Moss Physcomitrella patens Illustrates Conservation of Phytochrome Signaling Modules in Land Plants, Plant Cell, vol.29, pp.310-330, 2017.

V. N. Pham, P. K. Kathare, and E. Huq, Phytochromes and Phytochrome Interacting Factors, Plant Physiol, vol.176, pp.1025-1038, 2018.

T. Xu and A. Hiltbrunner, PHYTOCHROME INTERACTING FACTORs from Physcomitrella patens are active in Arabidopsis and complement the pif quadruple mutant, Plant Signaling & Behavior, vol.12, p.1388975, 2017.

K. Inoue, R. Nishihama, H. Kataoka, M. Hosaka, R. Manabe et al., Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort Marchantia polymorpha, Plant Cell, vol.28, pp.1406-1421, 2016.

K. Inoue, R. Nishihama, T. Araki, and T. Kohchi, Reproductive Induction is a Far-Red High Irradiance Response that is Mediated by Phytochrome and PHYTOCHROME INTERACTING FACTOR in Marchantia polymorpha, Plant and Cell Physiology, vol.60, pp.1136-1145, 2019.

*. Higo, A. Kawashima, T. Borg, M. Zhao, M. López-vidriero et al., Transcription factor DUO1 generated by neofunctionalization is associated with evolution of sperm differentiation in plants, Nat Commun, vol.9, p.5283, 2018.

C. Ortiz-ramírez, M. Hernandez-coronado, A. Thamm, B. Catarino, M. Wang et al., A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants, Molecular Plant, vol.9, pp.205-220, 2016.

T. Tam, B. Catarino, and L. Dolan, Conserved regulatory mechanism controls the development of cells with rooting functions in land plants, Proc Natl Acad Sci, vol.112, pp.3959-3968, 2015.

H. Proust, S. Honkanen, V. Jones, G. Morieri, H. Prescott et al., RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants, Current Biology, vol.26, pp.93-99, 2016.

S. Yamaoka, R. Nishihama, Y. Yoshitake, S. Ishida, K. Inoue et al., Generative Cell Specification Requires Transcription Factors Evolutionarily Conserved in Land Plants, Current Biology, vol.28, pp.479-486, 2018.

A. Khandelwal, S. H. Cho, H. Marella, Y. Sakata, P. Perroud et al., Role of ABA and ABI3 in Desiccation Tolerance, Science, vol.327, pp.546-546, 2010.

D. M. Eklund, M. Kanei, E. Flores-sandoval, K. Ishizaki, R. Nishihama et al., An Evolutionarily Conserved Abscisic Acid Signaling Pathway Regulates Dormancy in the Liverwort Marchantia polymorpha, Current Biology, vol.28, pp.3691-3699, 2018.

G. Theißen, R. Melzer, and F. Rümpler, MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution, Development, vol.143, pp.3259-3271, 2016.

Y. Tanabe, M. Hasebe, H. Sekimoto, T. Nishiyama, M. Kitani et al., Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes, Proceedings of the National Academy of Sciences, vol.102, pp.2436-2441, 2005.

O. Zobell, W. Faigl, H. Saedler, T. Munster, and . Box, Proteins: Conserved Regulators of the Gametophytic Generation of Land Plants, Molecular Biology and Evolution, vol.27, pp.1201-1211, 2010.

Y. Wang, R. Melzer, and G. Theißen, Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets': Quartet formation of gymnosperm MADS proteins, The Plant Journal, vol.64, pp.177-190, 2010.

R. G. Immink, I. A. Tonaco, S. De-folter, A. Shchennikova, A. D. Van-dijk et al., SEPALLATA3: the "glue" for MADS box transcription factor complex formation, Genome Biology, vol.10, p.24, 2009.

Z. Zhang, H. Coenen, P. Ruelens, R. R. Hazarika, A. Hindi et al., Resurrected Protein Interaction Networks Reveal the Innovation Potential of Ancient Whole Genome Duplication, Plant Cell, 2018.

C. Smaczniak, J. M. Muiño, D. Chen, G. C. Angenent, and K. Kaufmann, Differences in DNA-binding specificity of floral homeotic protein complexes predict organ-specific target genes. The Plant Cell, 2017.

T. Tanahashi, N. Sumikawa, M. Kato, and M. Hasebe, Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens, Development, vol.132, pp.1727-1736, 2005.

*. *. Plackett, A. R. Conway, S. J. Hazelton, K. Rabbinowitsch, E. H. Langdale et al., LEAFY maintains apical stem cell activity during shoot development in the fern, vol.7, p.39625, 2018.

, This paper revealed a role for LEAFY in maintaining cell division in the apical stem cells of both haploid and diploid phases of the lifecycle in the fern Ceratopteris richardii. The study supports an evolutionary trajectory in which an ancestral LEAFY module that promotes cell proliferation was progressively co-opted

E. Moyroud, E. Kusters, M. Monniaux, R. Koes, and F. Parcy, LEAFY blossoms, vol.15, pp.346-352, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00484550

E. Moyroud, M. Monniaux, E. Thévenon, R. Dumas, C. P. Scutt et al., A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development, New Phytologist, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01515755

H. Chahtane, G. Vachon, L. Masson, M. Thévenon, E. Périgon et al., A variant of LEAFY reveals its capacity to stimulate meristem development by inducing RAX1, Plant Journal, vol.74, pp.678-689, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843005

N. Yamaguchi, M. F. Wu, C. M. Winter, M. C. Berns, S. Nole-wilson et al., A Molecular Framework for Auxin-Mediated Initiation of Flower Primordia, Developmental Cell, vol.24, pp.271-282, 2013.

C. Sayou, A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor, Nature Communications, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01310696

B. Gao, M. Chen, X. Li, and J. Zhang, Ancient duplications and grass-specific transposition influenced the evolution of LEAFY transcription factor genes, Commun Biol, vol.2, p.237, 2019.

C. Sayou, M. Monniaux, M. H. Nanao, E. Moyroud, S. F. Brockington et al., A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity, Science, vol.343, pp.645-648, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01141179

A. Bartlett, R. C. O'malley, S. C. Huang, M. Galli, J. R. Nery et al., Mapping genomewide transcription-factor binding sites using DAP-seq, Nature Protocols, vol.12, pp.1659-1672, 2017.

R. C. O'malley, C. Huang-s-shan, L. Song, M. G. Lewsey, A. Bartlett et al., Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape, Cell, vol.166, p.1598, 2016.

A. Jolma, T. Kivioja, J. Toivonen, L. Cheng, G. Wei et al., Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities, Genome Research, vol.20, pp.861-873, 2010.

S. Cheng, M. Melkonian, S. A. Smith, S. Brockington, J. M. Archibald et al., 10KP: A phylodiverse genome sequencing plan, p.7, 2018.

N. Matasci, L. Hung, Y. Z. Carpenter, E. J. Wickett, N. J. Mirarab et al., Data access for the 1,000 Plants (1KP) project. GigaSci, vol.3, p.17, 2014.

X. Lai, A. Stigliani, G. Vachon, C. Carles, C. Smaczniak et al., Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants, Molecular Plant, vol.12, pp.743-763, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02088235