On Parallel and Sequential Independence in Attributed Graph Rewriting
Thierry Boy de la Tour

To cite this version:
Thierry Boy de la Tour. On Parallel and Sequential Independence in Attributed Graph Rewriting, 2020. hal-02549835v2

HAL Id: hal-02549835
http://hal.univ-grenoble-alpes.fr/hal-02549835v2
Preprint submitted on 22 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On Parallel and Sequential Independence in Attributed Graph Rewriting

Thierry Boy de la Tour
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
thierry.boy-de-la-tour@imag.fr
April 22, 2020

Abstract

We use graphs where vertices and arrows are attributed with sets of values, and rules that allow to delete data from a graph, to create new vertices or arrows, and to include values in attributes. Rules may be applied simultaneously, yielding a notion of parallelism that generalizes cellular automata in particular by allowing infinite matchings of rules in a graph. This is first used to define a notion of sequential independence of a set M of matchings of rules, even when M is infinite. Next, a notion of parallel independence of matchings is defined that accounts for the particular treatment of attributes, and it is proven to characterize sequential independence. Last, the effective deletion property, a condition that ensures that rules can be applied in parallel without conflicts, is proven to generalize parallel independence.

1 Introduction

The notion of parallel independence has been studied mostly in the algebraic approach to graph rewriting, see [1] and the references therein. It basically consists in a condition on concurrent transformations of an object that characterizes the possibility to apply the transformations sequentially in any order such that all such sequences of transformations yield the same result. When two transformations are involved this takes the form of the diamond property and is known as the Local Church-Rosser Problem. Parallel independence then allows to define critical pairs, a central notion in Term and Graph Rewriting.

This problem should therefore also be considered in algorithmic approaches to graph rewriting. Indeed, the informal description of parallel independence given above makes perfect sense out of the algebraic approach; it is purely operational. Thus parallel independence necessarily depends on the operational semantics of the rules, that can be defined without resorting to Category Theory. This is the case of the framework described in [5], where graphs are attributed by sets of values (see Section 2). This has been designed so that enough space can always be accommodated for any number of parallel application of rules. Similarly, new vertices and arrows can always be added.
But there is a fundamental difference between the two, that lies in the semantics of the rules described in Section 3: vertices and arrows are always added as new objects, but values are added by inclusion in attributes, where they may not be new. This is similar to assignments $x := y$ when x and y have the same value, and is therefore very natural. This is different from E-graphs, an alternate notion of attributed graphs with any number of values (see [3]), and is bound to have an impact on parallel independence.

But we are first faced with the same difficulty as in the algebraic approach, that is to apply transformations meant for the same graph in sequence, hence on already transformed graphs (except for the one considered first). This is solved in Section 4 by taking advantage of the parallel transformation defined in [5] and in Section 3. In Section 5 a definition of parallel independence adapted to this framework is given, and proven to be correct since it is equivalent to sequential independence. Finally, Section 6 is devoted to the effective deletion property from [5], a condition that guarantees that the operational semantics of rules is preserved when taken in parallel. It is proved that this property generalizes parallel independence, as it ought to.

2 Attributed Graphs

We consider a fixed many-sorted signature Σ. A graph G is a tuple (V, A, s, t, λ, l) where V, A are sets, λ is the source and target functions from A to V and l is an attribution of G, i.e., a function from $V \cup A$ to $\mathcal{P}([A])$ (the carrier set $[A]$ of A is the disjoint union of the carrier sets of the sorts in A). We assume that V, A and $[A]$ are mutually disjoint, their elements are respectively called vertices, arrows and attributes. Hence vertices and arrows are attributed by sets of elements of a Σ-algebra. G is unlabelled if $G(x) = \emptyset$ for all $x \in V \cup A$, it is finite if the sets V, A and $l(x)$ are finite. The carrier of G is the set $[G] := V \cup A \cup [A]$. When we speak of a graph G without specifying its components, these will be referred to as in $G = (\hat{G}, \bar{G}, \check{G}, \mathcal{A}_G, G)$.

A graph H is a subgraph of G, written $H \triangleleft G$, if the underlying graph $(\hat{H}, \bar{H}, \check{H})$ of H is a subgraph of G’s underlying graph (in the usual sense), $\mathcal{A}_H = \mathcal{A}_G$ and $H(x) \subseteq G(x)$ for all $x \in \hat{H} \cup \check{H}$.

A morphism α from graph H to graph G is a function from $[H]$ to $[G]$ such that the restriction of α to $H \cup \check{H}$ is a morphism from H’s to G’s underlying graphs (that is, $\hat{G} \circ \alpha = \alpha \circ \hat{H}$ and $\check{G} \circ \alpha = \alpha \circ \check{H}$). This restriction of α is called the underlying graph morphism of α, the restriction of α to \mathcal{A}_H is a Σ-homomorphism from \mathcal{A}_H to \mathcal{A}_G, denoted $\check{\alpha}$, and $\bar{\alpha} \circ H(x) \subseteq \bar{G} \circ \alpha(x)$ for all $x \in \hat{H} \cup \check{H}$. This means that α is an isomorphism if and only if α is a bijective morphism and α^{-1} is a morphism, hence if and only if the underlying graph morphism of α is an isomorphism, $\check{\alpha}$ is a Σ-isomorphism and $\bar{\alpha} \circ \check{H} = \bar{G} \circ \alpha$. For all $F \triangleleft H$, the image $\alpha(F)$ is the smallest subgraph of G w.r.t. the order \triangleleft such that $\alpha|_F$ is a morphism from F to $\alpha(F)$.

If the underlying graph morphism of α is injective then α is called a matching. Note that the Σ-homomorphism $\check{\alpha}$ need not be injective.

Given two attributions l and l' of G we define $l \setminus l'$ (resp. $l \cap l'$, $l \cup l'$) as the attribution of G that maps any x to $l(x) \setminus l'(x)$ (resp. $l(x) \cap l'(x)$, $l(x) \cup l'(x)$). If l is an attribution of a subgraph $H \triangleleft G$, we extend it implicitly to the attribution
of G that is identical to l on $\hat{H} \cup \hat{G}$ and maps any other entry to \emptyset.

For any sets V, A and attribution l, we say that G is disjoint from V, A, l if $G \cap V = \emptyset$, $G \cap A = \emptyset$ and $G(x) \cap l(x) = \emptyset$ for all $x \in \hat{G} \cup \hat{G}$. We write $G \setminus [V, A, l]$ for the largest subgraph of G (w.r.t. \vartriangleleft) that is disjoint from G. It is easy to see that this subgraph always exists.

In order to define parallel rewrite relations on graphs, it is convenient to join possibly many different graphs that have a common part, i.e., that are joinable. We start with a simpler notion of joinable functions.

Definition 2.1 (joinable functions). Two functions $f : D \to C$ and $g : D' \to C'$ are joinable if $f(x) = g(x)$ for all $x \in D \cap D'$. Then, the meet of f and g is the function $f \land g : D \cap D' \to C \cap C'$ that is the restriction of f (or g) to $D \cap D'$. The join $f \lor g$ is the unique function from $D \cup D'$ to $C \cup C'$ such that $f = (f \lor g)|_D$ and $g = (f \lor g)|_{D'}$.

For any set I and any I-indexed family $(f_i : D_i \to C_i)_{i \in I}$ of pairwise joinable functions, let $\gamma_{i \in I} f_i$ be the only function from $\bigcup_{i \in I} D_i$ to $\bigcup_{i \in I} C_i$ such that $f_i = (\gamma_{i \in I} f_i)|_{D_i}$ for all $i \in I$.

In particular, functions with disjoint domains are joinable, and every function is joinable with itself: $f \lor f = f \land f = f$. More generally, any two restrictions $f|_A$ and $f|_B$ of the same function f are joinable, $f|_A \land f|_B = f|_{A \cap B}$ and $f|_A \lor f|_B = f|_{A \cup B}$.

It is obvious that these operations are commutative. On triples of pairwise joinable functions, they are also associative and distributive over each other.

Definition 2.2 (joinable graphs). Two graphs H and G are joinable if $\omega_H = \omega_G$, $H \cap G = \emptyset$, and the functions \hat{H} and \hat{G} are joinable. We can then define the graphs

$$H \cap G \triangleq (\hat{H} \cap \hat{G}, \hat{H} \land \hat{G}, \hat{H} \lor \hat{G}, \omega_H, \hat{H} \cap \hat{G}),$$

$$H \cup G \triangleq (\hat{H} \cup \hat{G}, \hat{H} \lor \hat{G}, \hat{H} \land \hat{G}, \omega_H, \hat{H} \cup \hat{G}).$$

Similarly, if $(G_i)_{i \in I}$ is an I-indexed family of graphs (where $I \neq \emptyset$) that are pairwise joinable, hence have the same algebra A of attributes, then let

$$\bigcup_{i \in I} G_i \triangleq (\bigcup_{i \in I} \hat{G}_i, \bigcup_{i \in I} \hat{G}_i, \bigcup_{i \in I} \hat{G}_i, \gamma_{i \in I} \hat{G}_i, A, \bigcup_{i \in I} \hat{G}_i).$$

It is easy to see that these structures are graphs: the sets of vertices and arrows are disjoint and the adjacency functions have the correct domains and codomains. Note that if H and G are joinable then $H \cap G = G \cap H \triangleleft H \land G \land H$. Similarly, if the G_i’s are pairwise joinable then $G_j \triangleleft \bigcup_{i \in I} G_i$ for all $j \in I$. We also see that any two subgraphs of G are joinable, and that $H \land G \iff H \cap G = H \cap G = G \cap H$. As above, on triples of pairwise joinable graphs, these operations are associative and distributive over each other.

3 Applying Rules in Parallel

In the following, we assume a set \mathcal{V} disjoint from Σ, whose elements are called variables. For any finite $X \subseteq \mathcal{V}$, we call (Σ, X)-graph a finite graph G such that $\omega_G = \mathcal{F}(\Sigma, X)$ (the algebra of Σ-terms over X). We define the set of variables
occuring in a \((\Sigma, X)\)-graph \(G\) as \(\text{Var}(G) \overset{\text{def}}{=} \bigcup_{t \in G \cup \bar{G}} \left(\left(\bigcup_{t \in G(x)} \text{Var}(t) \right) \right)\), where \(\text{Var}(t)\) is the set of variables occurring in \(t\).

Definition 3.1 (rules, matchings). A **rule** \(r\) is a triple \((L, K, R)\) of \((\Sigma, X)\)-graphs such that \(L\) and \(R\) are joinable, \(L \cap R \subsetneq K \subsetneq L\) and \(\text{Var}(L) = X\) (see comment below).

A **matching** \(\mu\) of \(r\) in a graph \(G\) is a matching from \(L\) to \(G\) such that \(\tilde{\mu}(\tilde{L}(x) \setminus \tilde{K}(x)) \cap \tilde{\mu}(\tilde{K}(x)) = \emptyset\) (or equivalently \(\tilde{\mu}(L(x) \setminus K(x)) = \tilde{\mu}(L(x)) \setminus \tilde{\mu}(K(x))\) for all \(x \in \tilde{K} \cup \tilde{R}\)). We denote \(\mathcal{M}(r, G)\) the set of all matchings of \(r\) in \(G\) (they all have domain \([L]\)).

We consider finite sets \(\mathcal{R}\) of rules such that for all \(r, r' \in \mathcal{R}\), if \((L, K, R) = r \neq r' = (L', K', R')\) then \([L] \neq [L']\), so that \(\mathcal{M}(r, G) \cap \mathcal{M}(r', G) = \emptyset\) for any graph \(G\); we then write \(\mathcal{M}(\mathcal{R}, G)\) for \(\bigcup_{r \in \mathcal{R}} \mathcal{M}(r, G)\). For any \(\mu \in \mathcal{M}(\mathcal{R}, G)\) there is a unique rule \(r_\mu \in \mathcal{R}\) such that \(\mu \in \mathcal{M}(r_\mu, G)\), and its components are denoted \(r_\mu = (L_\mu, K_\mu, R_\mu)\).

Comment: if \(X\) were allowed to contain a variable \(v\) not occurring in \(L\), then \(v\) would freely match any element of \(\mathcal{S}_G\) and the set \(\mathcal{M}(r, G)\) would contain as many matchings with essentially the same effect. Also note that \(\text{Var}(R) \subseteq \text{Var}(L)\), \(R\) and \(K\) are joinable and \(R \cap K = L \cap R\). The fact that \(K\) is not required to be a subgraph of \(R\) allows the possible deletion by other rules of data matched by \(K\) but not by \(R\). This feature enables a straightforward representation of cellular automata (see [4]).

A rewrite step may involve the creation of new vertices in a graph, corresponding to the vertices of a rule that have no match in the input graph, i.e., those in \(\tilde{R} \setminus \tilde{L}\) (or similarly may create new arrows). These vertices should really be new, not only different from the vertices of the original graph but also different from the vertices created by other transformations (corresponding to other matchings in the graph). This is computationally easy to do but not that easy to formalize in an abstract way. We simply reuse the vertices \(x\) from \(\tilde{R} \setminus \tilde{L}\) by indexing them with any relevant matching \(\mu\), each time yielding a new vertex \((x, \mu)\) which is obviously different from any new vertex \((x, \nu)\) for any other matching \(\nu \neq \mu\), and also from any vertex of \(G\).

Definition 3.2 (graph \(G^\mu_\mu\) and matching \(\mu^\uparrow\)). For any rule \(r = (L, K, R)\), graph \(G\) and \(\mu \in \mathcal{M}(r, G)\) we define a graph \(G^\mu_\mu\), together with a matching \(\mu^\uparrow\) of \(R\) in \(G^\mu_\mu\). We first define the sets

\[
\tilde{G}^\mu_\mu \overset{\text{def}}{=} \mu(\tilde{R} \cap \tilde{K}) \cup ((\tilde{R} \setminus \tilde{K}) \times \{\mu\}) \quad \text{and} \quad \tilde{G}^\mu_\mu \overset{\text{def}}{=} \mu(\tilde{R} \cap \tilde{K}) \cup ((\tilde{R} \setminus \tilde{K}) \times \{\mu\}).
\]

Next we define \(\mu^\uparrow\) by: \(\tilde{\mu}^\uparrow \overset{\text{def}}{=} \tilde{\mu}\) and for all \(x \in \tilde{R} \cup \tilde{\bar{R}}\), if \(x \in \tilde{K} \cup \tilde{\bar{K}}\) then \(\mu^\uparrow(x) \overset{\text{def}}{=} \mu(x)\), else \(\mu^\uparrow(x) \overset{\text{def}}{=} (x, \mu)\). Since the restriction of \(\mu^\uparrow\) to \(\tilde{R} \cup \tilde{\bar{R}}\) is bijective, then \(\mu^\uparrow\) is a matching from \(R\) to the graph

\[
G^\mu_\mu \overset{\text{def}}{=} (\tilde{G}^\mu_\mu, \tilde{G}^\mu_\mu, \mu^\uparrow, \tilde{\mu} \circ \tilde{\bar{R}} \circ \mu^\uparrow, \mu^\uparrow \circ \tilde{\bar{R}} \circ \mu^\uparrow, \mathcal{S}_G, \tilde{\mu} \circ \tilde{\bar{R}} \circ \mu^\uparrow^{-1}).
\]

By construction \(\mu^\uparrow(R) = G^\mu_\mu\), \(\mu\) and \(\mu^\uparrow\) are joinable and \(\mu \cup \mu^\uparrow\) is a matching from \(R \cap K\) to \(\mu(R \cap K)\). It is easy to see that the graph \(G\) and the graphs \(G^\mu_\mu\) are pairwise joinable.

For any set \(M \subseteq \mathcal{M}(\mathcal{R}, G)\) of matchings in a graph \(G\) we define below how to transform \(G\) by applying simultaneously the rules associated with matches in \(M\).
Definition 3.3 (graph $G\|_M$). For any graph G, set $M \subseteq \mathcal{M}(\mathcal{R}, G)$ and matching $\mu \in \mathcal{M}(\mathcal{R}, G)$, let

$$G\|_M \overset{\text{def}}{=} G \setminus [V_M, A_M, \ell_M] \cup \bigcup_{\mu \in M} G_{\mu}^\uparrow \text{ where}$$

$$V_M \overset{\text{def}}{=} \bigcup_{\mu \in M} \mu(\tilde{L}_\mu \setminus \tilde{K}_\mu), \quad A_M \overset{\text{def}}{=} \bigcup_{\mu \in M} \mu(\tilde{L}_\mu \setminus \tilde{K}_\mu) \quad \text{and} \quad \ell_M \overset{\text{def}}{=} \bigcup_{\mu \in M} \mu \circ (L_\mu \setminus K_\mu) \circ \mu^{-1}.$$

If M is a singleton $\{\mu\}$ we write $G\|_\mu$ for $G\|_M$, V_μ for V_M, etc.

Note that ℓ_M is only defined on the subgraph $\bigcup_{\mu \in M} \mu(L_\mu)$ of G; so ℓ_M is implicitly extended to $\tilde{G} \cup \tilde{G}$ by mapping other vertices and arrows to \varnothing. $G\|_M$ is guaranteed to be a graph since the \cup operation is only applied on joinable graphs. Every morphism μ^\uparrow is a matching from the right hand side R_μ to $G\|_M$.

The definition of $G\|_M$ bears some similarity with the double pushout diagram (see [3]), where $G \setminus [V, A, \ell]$ replaces the pushout complement of G (but we are not restricted by the gluing condition) and $\bigcup_{\mu \in M} G_{\mu}^\uparrow$ replaces the right pushout. The case where M is a singleton defines the classical semantics of one sequential rewrite step.

Definition 3.4 (sequential rewriting). For any finite set of rules \mathcal{R}, we define the relation $\to_\mathcal{R}$ of sequential rewriting by stating that, for all graphs G and H,

$$G \to_\mathcal{R} H \text{ if and only if there exists some } \mu \in \mathcal{M}(\mathcal{R}, G) \text{ such that } H \simeq G\|_\mu.$$

4 Sequential Independence

In the Double-Pushout approach to graph rewriting (see [3]), sequential independence is a property of two consecutive direct transformations, formulated as the existence of two commuting morphisms j_1 and j_2 as shown below.

$$\begin{array}{c}
L_1 \leftarrow K_1 \rightarrow R_1 \\
\downarrow \mu_1 \downarrow \downarrow \\
G \leftarrow D_1 \rightarrow H_1 \\
\downarrow \mu_2 \downarrow \downarrow \\
\uparrow \uparrow \\
L_2 \leftarrow K_2 \rightarrow R_2 \\
\downarrow \mu_1 \downarrow \downarrow \\
H_1 \leftarrow D_2 \rightarrow H_2 \\
\downarrow \mu_2 \downarrow \downarrow \\
\end{array}$$

It is then proven by the Local Church-Rosser Theorem that the two production rules can be applied in reverse order to G and yield the same result H_2 (we may call this the swapping property). Of course, the matchings μ_1 and μ_2 are then replaced by other matchings that are related to μ_1 and μ_2. A drawback of this definition is that it does not account for longer sequences of direct transformations. Indeed, if three consecutive steps are given by (μ_1, μ_2, μ_3), it is possible to swap μ_1 with μ_2 if they are sequential independent, and similarly for μ_2 and μ_3, but this does not imply that μ_1 and μ_3 can be swapped under these hypotheses (because the matchings, and hence the direct transformations, are modified by the swapping operations). We would need to express sequential independence between μ_1 and μ_3, but the definition does not apply since they are not consecutive steps. More elaborate notions of equivalence between sequences of direct transformations are thus required (see [2]).
Because of the specificities of our framework (no pushouts, horizontal morphisms are only canonical injections, and we do not have such a morphism from \(K\) to \(R\)) we need a different definition of sequential independence. It is natural to think of the swapping property as the definition, but we are faced with another problem. We are dealing with possibly infinite sets of matchings of rules in a graph, and we cannot form a notion of infinite sequences of rewrite steps (because each step may both remove and add data). Yet we do not wish to restrict the notion to finite sets, not simply for the sake of generality but also because it is closely related to parallel independence, a notion that can naturally be defined on infinite sets (see below).

We may however use Definition 3.3 to handle infinite sets of matchings, and thus express sequential independence as the possibility to apply any rule after the others (and these can be applied in parallel), yielding the same result as a parallel transformation with the whole set of matchings. Yet this definition would not imply that subsets of a sequential independent set are sequential independent, hence it needs to be stated for all subsets.

Definition 4.1. For any graph \(G\) and set \(M \subseteq \mathcal{M}(\mathcal{R}, G)\), we say that \(M\) is sequential independent if for all \(M' \subseteq M\) and all \(\mu \in M \setminus M'\),

- \(\mu(L_\mu) \preceq G\|_{M'}\), hence there is a is canonical injection \(j\) from \(\mu(L_\mu)\) to \(G\|_{M'}\),
- there exists an isomorphism \(\alpha\) such that \(\alpha(G\|_{M'\cup\{\mu\}}) = (G\|_{M'})\|_{j\circ \mu}\) and \(\alpha\) is the identity on \(G\).

The isomorphism \(\alpha\) in Definition 4.1 is necessary to account for the difference between the isomorphic graphs \(\mu'(\mathcal{R}_\mu)\) and \((j \circ \mu)'(\mathcal{R}_\mu)\).

It is then easy to see (by induction on the cardinality of \(M\)) that

Proposition 4.1. For any graph \(G\) and finite set \(M \subseteq \mathcal{M}(\mathcal{R}, G)\), if \(M\) is sequential independent then \(G \rightarrow^* \mathcal{R} G\|_M\).

The converse is obviously not true; one reason is that sequences of rewrite steps cannot generally be swapped.

5 Parallel Independence

In the Double-Pushout approach, parallel independence is a property of two direct transformations of the same object \(G\), formulated as the existence of two commuting morphisms \(j_1\) and \(j_2\) as shown below.

![Diagram](image)

This definition can easily be lifted to sets of matchings (or direct transformations) by considering all possible pairs of matchings, with a slight caveat. In
this definition the two direct transformations may be identical, thus stating a property of a single transformation that is clearly not shared by all. But Definition 3.3 does not allow to apply any member \(\mu \) of \(M \) more than once (because applying \(\mu \) any number of times in parallel would jeopardize determinism). For this reason any singleton \(M \) shall be considered as parallel independent.

The Local Church-Rosser Theorem mentioned above actually shows that \(\mu_1 \) and \(\mu_2 \) are parallel independent iff they correspond to a sequential independent pair \((\mu_1, \mu'_2) \), where \(\mu_2 \) and \(\mu'_2 \) are related. It is the symmetry between \(\mu_1 \) and \(\mu_2 \) that entails the swapping property. This is remarkable since parallel independence does not refer to the results of the direct transformations involved.

Our goal is therefore to formulate parallel independence in the present framework, in order to obtain an equivalence similar to the Local Church-Rosser Theorem. Considering that the pushout complement \(D_1 \) is replaced by the graph \(G \setminus [V_{\mu_1}, A_{\mu_1}, \ell_{\mu_1}] \), the commuting property of \(j_2 \) amounts to \(\mu_2(L_2) \prec G \setminus [V_{\mu_1}, A_{\mu_1}, \ell_{\mu_1}] \), that can be more elegantly expressed as \(\mu_2(L_2) \cap \mu_1(L_1) \prec \mu_1(K_1) \). This simply means that any graph item that is matched twice cannot be removed.

However, our treatment of attributes makes it possible to recover in the right hand side an attribute that has been deleted in the left hand side (this is of course not possible for vertices or arrows). This possibility should therefore be accounted for in the notion of parallel independence, i.e., an attribute that is matched twice may be deleted provided it is recovered. We also need to consider what it means for an attribute to be matched: it may be the case that an (occurrence of an) attribute is matched by \(\nu \uparrow \) but not by \(\nu \) (i.e., it corresponds to an occurrence of a term in the right hand side of a rule but to none in the left hand side). This leads to the following definition.

Definition 5.1. For any graph \(G \) and set \(M \subseteq \mathcal{M}(R, G) \), we say that \(M \) is parallel independent if

\[
\mu(L_\mu) \cap (\nu(L_\nu) \cup \nu(\mathcal{R}_\nu)) \prec \mu(K_\mu) \cup \mu(\mathcal{R}_\mu) \text{ for all } \mu, \nu \in M \text{ such that } \mu \neq \nu.
\]

This definition may seem strange, but it is easy to see that on unlabelled graphs it amounts to \(\nu(L_\nu) \cap \mu(L_\mu) \prec \mu(K_\mu) \) for all \(\mu \neq \nu \), i.e., to the standard algebraic notion of parallel independence (translated to the present framework).

But the best justification for the definition is the following result.

Theorem 5.1. For any graph \(G \) and set \(M \subseteq \mathcal{M}(R, G) \), \(M \) is parallel independent iff \(M \) is sequential independent.

Thus Definition 5.1 arises as a characterization of sequential independence that does not refer to the results of the transformations, and indeed that does not rely on Definition 3.3, though of course it does rely on Definitions 2.2, 3.1 and 3.2.

6 The Effective Deletion Property

We have not yet defined a relation of parallel rewriting as we did for sequential rewriting (Definition 3.4). The reason is that two matchings may conflict as one retains (in \(R \cap K \)) what another removes. The transformation offered by Definition 3.3 performs deletions before unions, which means that these conflicts
are resolved by giving priority to retainers over removers. But if the deletion actions of a rule are not executed in a parallel transformation, how can we claim that this rule has been executed (or applied) in parallel with others? Thus, in order to define parallel rewriting with a clear semantics we need to rule out such conflicts.

One possibility is to translate to the present framework the notion of \textit{parallel coherence} that has been devised in order to define algebraic parallel graph transformation (see [4]). This is is a property of two direct transformations of the same object G, formulated as the existence of two commuting morphisms j_1 and j_2 as shown below.

\[
\begin{array}{c}
R_1 \leftarrow I_1 \rightarrow K_1 \rightarrow L_1 \rightarrow R_2 \\
H_1 \leftarrow D_1 \rightarrow G \rightarrow J_2 \rightarrow H_2
\end{array}
\]

This notion clearly generalizes algebraic parallel independence. In the present framework the object I_2 is replaced by the graph $K_2 \cap R_2$, hence the commuting property of j_2 amounts to $\mu_2(K_2 \cap R_2) \sim G \setminus \{V_\mu, A_\mu, \ell_\mu\}$, that can be expressed as $\mu_2(K_2 \cap R_2) \cap \mu_1(L_1) \sim \mu_1(K_1)$. This simply means that any graph item that is matched by some $K \cap R$ cannot be removed by any rule.

Definition 6.1. For any graph G and set $M \subseteq \mathcal{M}(R, G)$, we say that M is \textit{parallel coherent} if

\[
\mu(L_\mu) \cap \nu(K_\nu \cap R_\nu) \sim \mu(K_\mu) \text{ for all } \mu, \nu \in M.
\]

The problem here as above is that deleted attributes can be recovered by the right hand side of rules, and that this possibility is not accounted for in the algebraic definitions, since these do not distinguish between graph items and attributes. This leads to the following definition (see [5]).

Definition 6.2 \textit{(effective deletion property, full parallel rewriting)}. For any graph G, a set $M \subseteq \mathcal{M}(R, G)$ is said to satisfy the \textit{effective deletion property} if $G\|M$ is disjoint from $V_M, A_M, \ell_M \setminus \ell_M^1$, where

\[
\ell_M^1 \overset{\text{def}}{=} \bigcup_{\mu \in M} \mu \circ (\hat{R}_\mu \setminus \hat{K}_\mu) \circ \mu^{-1}.
\]

For any finite set of rules R, we define the relation \equiv_R of \textit{full parallel rewriting} by stating that, for all graphs G and H,

\[
G \equiv_R H \text{ iff } \mathcal{M}(R, G) \text{ has the effective deletion property and } H \simeq G\|_{\mathcal{M}(R, G)}.
\]

It can be shown that \equiv_R is deterministic up to isomorphism, that is, if $G \equiv_R H$, $G' \equiv_R H'$ and $G \simeq G'$ then $H \simeq H'$. In particular, it is possible to represent any cellular automata by a suitable rule r and a class of graphs that correspond to configurations of the automata (every vertex corresponds to a cell), such that \equiv_r (restricted to such graphs) is the transition function.
This representation of cellular automata satisfies the effective deletion property, but it also satisfies parallel coherence. Hence Definition 6.2 may appear as a weird choice. One motivation behind the present work is to support this definition.

Our first argument in favor of Definition 6.2 is that parallel coherence is not sufficient because it does not generalize parallel independence, as shown by the following example.

Example 6.1. Let us consider rules \(r_1 = (L_1, K_1, R_1) \) and \(r_2 = (L_2, K_2, R_2) \) where the graphs \(L_1, K_1 \) and \(R_1 \) have only one vertex \(x \), the graphs \(L_2, K_2 \) and \(R_2 \) have only one vertex \(y \), and the attributes are as pictured below (\(u, v \) are variables and \(f \) is a unary function symbol). Let \(A_G \) be the algebra with carrier set \(\{1\} \) where \(f \) is interpreted as the constant function 1, and let \(G \) be the graph that has a unique vertex \(a \) with attribute \(\{1\} \).

There are exactly two matchings of \(\{r_1, r_2\} \) in \(G \): \(\mu_1 \) and \(\mu_2 \) defined by \(\mu_1(x) = a, \mu_1(u) = 1, \mu_2(y) = a \) and \(\mu_2(v) = 1 \). Let \(M = \{\mu_1, \mu_2\} \), we see that \(M \) is not parallel coherent since \(\mu_1(R_1 \cap K_1) \cap \mu_2(L_2) = G \) is not a subgraph of \(\mu_2(K_2) \). However, we see that \(M \) is sequential independent since the matchings can be applied sequentially in any order, yielding the same graph \(G \).

Our second argument is that the effective deletion property is sufficient because it does generalize both parallel coherence and parallel independence.

Theorem 6.2. For any graph \(G \) and set \(M \subseteq \mathcal{M}(R, G) \) if \(M \) is parallel independent or parallel coherent then \(M \) has the effective deletion property.

Hence effective deletion encompasses both a general algebraic notion translated to the present (non algebraic) framework, and a notion specific to this framework but that relies on an objective fact, that is Theorem 5.1. This does not mean that no other property is possible (especially a less general one) and that Definition 6.2 cannot be questioned. It is still a matter of choice, but there is evidence that this is a reasonable one.

We also see that

Corollary. If \(\mathcal{M}(R, G) \) is finite and parallel independent then \(G \rightarrow^*_G G|_M \) and \(G \equiv_R G|_M \).

Hence in this case full parallel rewriting deterministically chooses one among the graphs reachable from \(G \) by sequential rewriting.
References

Appendix: Proofs

Lemma 6.3. For every rule \(r = (L, K, R) \), graph \(G \) and \(\mu \in \mathcal{M}(r, G) \), the graphs \(G \) and \(\hat{G} \mu_{G} \) are joinable, \(\mu(R \cap K) \triangleleft G \cap \hat{G} \mu_{G} \) and \(G \cap \hat{G} \mu_{G} \) has the same underlying graph as \(\mu(R \cap K) \).

Proof. It is obvious that \(\hat{G} \cap \hat{G} \mu_{G} = \hat{G} \cap \hat{G} \mu = \emptyset \) and \(\hat{G} \cap \hat{G} \mu_{G} = \mu(R \cap K) \), hence for all \(g \in \hat{G} \cap \hat{G} \mu_{G} \) there is a \(f \in \hat{R} \cap \hat{K} \) such that \(g = \mu(f) = \mu \cdot (f) \), hence

\[
\hat{G} \mu_{G}(g) = \hat{G} \mu \circ \mu \cdot (f) = \mu \circ \hat{R}(f) = \hat{G} \circ \mu \cdot (f) = \hat{G}(g)
\]

so that \(\hat{G} \mu_{G} \) and \(\hat{G} \) are joinable and similarly for \(\hat{G} \mu_{G} \) and \(\hat{G} \), hence \(\hat{G} \mu_{G} \) and \(G \) are joinable.

We have \(\mu(R \cap K) \triangleleft \mu(K) \triangleleft G \) and

\[
\mu(R \cap K) = \mu \cdot (R \cap K) \triangleleft \mu \cdot (R) = \hat{G} \mu_{G},
\]

hence \(\mu(R \cap K) \triangleleft G \cap \hat{G} \mu_{G} \). Besides, for all \(y \in \hat{G} \cap \hat{G} \mu_{G} = \mu(R \cap K) \) there exists a \(x \in \hat{R} \cap \hat{K} \) such that \(\mu(x) = y \), hence \(\hat{G} \cap \hat{G} \mu_{G} \subseteq \mu(R \cap K) \) and similarly \(\hat{G} \cap \hat{G} \mu_{G} \subseteq \mu(R \cap K) \), hence the graphs \(G \cap \hat{G} \mu_{G} \) and \(\mu(R \cap K) \) have the same underlying graph.

Lemma 6.4. For all \(I \)-indexed families \((G_i)_{i \in I} \) of pairwise joinable graphs, for all sets \(V, A \) and all attributions \(l \),

\[
\left(\bigsqcup_{i \in I} G_i \right) \setminus [V, A, l] = \bigsqcup_{i \in I} G_i \setminus [V, A, l].
\]

Proof. Since \(G_j \triangleleft \bigsqcup_{i \in I} G_i \) for all \(j \in I \) then \(G_j \setminus [V, A, l] \triangleleft \left(\bigsqcup_{i \in I} G_i \right) \setminus [V, A, l] \), hence \(\bigsqcup_{j \in I} G_j \setminus [V, A, l] \triangleleft \left(\bigsqcup_{i \in I} G_i \right) \setminus [V, A, l] \).

Conversely, let \(H \triangleleft \bigsqcup_{i \in I} G_i \) such that \(H \) is disjoint from \(V, A, l \). For all \(f \in \hat{H} \) and all \(a \in \hat{H}(x) \) there exists an \(i \in I \) such that \(f \in \hat{G}_i \) and \(a \in \hat{G}_i(f) \). Let \(x = \hat{H}(f) \) and \(y = \hat{H}(f) \), so that \(f \) is an arrow from \(x \) to \(y \). Obviously \(f \not\in A \) and \(x, y \not\in V \). Since \(H \triangleleft \bigsqcup_{i \in I} G_i \), then the graph with vertices \(x, y \) with attributes \(\emptyset \) and arrow \(f \) with attribute \(\{ a \} \) is a subgraph of \(G_i \) disjoint from \(V, A, l \), hence is a subgraph of \(G_i \setminus [V, A, l] \) and therefore of \(\bigsqcup_{j \in I} G_j \setminus [V, A, l] \).

Similarly, for all \(x \in \hat{H} \) and all \(a \in \hat{H}(x) \) the graph with vertex \(x \) attributed by \(\{ a \} \) is a subgraph of \(\bigsqcup_{j \in I} G_j \setminus [V, A, l] \). Since \(H \) is the union of all such graphs then \(H \triangleleft \bigsqcup_{j \in I} G_j \setminus [V, A, l] \), and this holds for \(H = \left(\bigsqcup_{i \in I} G_i \right) \setminus [V, A, l] \).

Proof of Theorem 6.2. Let \(H = \hat{G} \square M \). We first assume that \(M \) is parallel coherent. Since \(V_M \subseteq \hat{G} \) then by Lemma 6.3 we have

\[
\hat{H} \cap V_M = \bigcup_{\nu \in M} \nu(\hat{R}_\nu \cap \hat{K}_\nu) \cap V_M
\]

\[
= \bigcup_{\mu, \nu \in M} \nu(\hat{R}_\nu \cap \hat{K}_\nu) \cap \mu(\hat{I}_\mu) \setminus \mu(\hat{K}_\mu)
\]

\[
\subseteq \bigcup_{\mu \neq \nu \in M} \nu(\hat{I}_\nu) \cap \mu(\hat{I}_\mu) \setminus \mu(\hat{K}_\mu),
\]

11
since $\nu(\bar{R}_\nu \cap \bar{K}_\nu) \subseteq \nu(\hat{K}_\nu) \subseteq \nu(\hat{L}_\nu)$.

Since M is parallel independent then $\mu(L_{\mu}) \cap (\nu(L_{\nu}) \cup G^*_\nu) \prec \mu(K_{\mu}) \cup G^*_\mu$, for all $\mu \neq \nu$, hence $\mu(L_{\mu}) \cap \nu(L_{\nu}) \prec \mu(K_{\mu}) \cup (G^*_\mu \cap G)$ and again by Lemma 6.3 $\mu(L_{\mu}) \cap \nu(L_{\nu}) \subseteq \mu(\hat{K}_{\mu}) \cup \mu(\hat{R}_{\mu} \cap K_{\mu}) = \mu(K_{\mu})$. Hence $H \cap V_M = \emptyset$ and similarly $\hat{H} \cap A_M = \emptyset$.

In order to prove that H is disjoint from V_M, A_M, $\ell_M \setminus \ell^*_M$, there only remains to prove that $H(x) \cap \ell_M(x) \setminus \ell^*_M(x) = \emptyset$ for all $x \in H \cup \hat{H}$. This is true if $x \not\in \hat{G} \cup \hat{G}$ since then $\ell_M(x) = \emptyset$, hence we assume that $x \in \hat{G} \cup \hat{G}$, so that $H(x) \cap \ell_M(x) = \bigcup_{\mu \in M} \bigcup_{\nu \in M} \mu \circ R_{\mu} \cap \mu^{-1}(x) \cap \ell_M(x)$ and we need to prove that $\mu \circ R_{\mu} \cap \mu^{-1}(x) \cap \ell_M(x) \setminus \ell^*_M(x) = \emptyset$ for all $\mu \in M$, or equivalently

$$\bigcup_{\nu \in M} \mu \circ R_{\mu} \cap \mu^{-1}(x) \cap \nu \circ L_{\nu} \cap \nu^{-1}(x) \setminus \nu \circ K_{\nu} \cap \nu^{-1}(x) \subseteq \ell^*_M(x).$$

We first see that for any sets A and B we have $\hat{\mu}(A) \setminus \hat{\mu}(A \cap B) \subseteq \hat{\mu}(A \setminus B)$, hence

$$\nu(\bar{R}_\nu \cap \bar{K}_\nu) \subseteq \nu(\hat{K}_\nu) \subseteq \nu(\hat{L}_\nu).$$

Next, for all $\nu \in M$ such that $\nu \neq \mu$, since M is parallel independent then

$$\begin{align*}
\hat{\mu} \circ (\hat{R}_{\mu} \cap \hat{K}_{\mu}) \cap \hat{\nu} \circ \hat{L}_{\nu} \cap \hat{\nu}^{-1}(x) \\
\subseteq \hat{\mu} \circ \hat{L}_{\mu} \cap \hat{\nu} \circ \hat{L}_{\nu} \cap \hat{\nu}^{-1}(x) \\
\subseteq \hat{\nu} \circ \hat{K}_{\nu} \cap \hat{\nu}^{-1}(x) \cup \hat{\nu} \circ \hat{R}_{\nu} \cap \hat{\nu}^{-1}(x) \\
\subseteq \hat{\nu} \circ \hat{K}_{\nu} \cap \hat{\nu}^{-1}(x) \cup \ell^*_M(x).
\end{align*}$$

Then, we use the fact that $A = (A \cap B) \cup (A \setminus B)$ to deduce that

$$\begin{align*}
\hat{\mu} \circ (\hat{R}_{\mu} \cap \hat{K}_{\mu}) \cap \hat{\nu} \circ \hat{L}_{\nu} \cap \hat{\nu}^{-1}(x) \\
= \left(\left(\hat{\mu} \circ (\hat{R}_{\mu} \cap \hat{K}_{\mu}) \cap \hat{\nu} \circ \hat{L}_{\nu} \cap \hat{\nu}^{-1}(x)\right) \\
\cup \hat{\nu} \circ L_{\nu} \cap \nu^{-1}(x) \cap \hat{\mu} \circ (\hat{R}_{\mu} \cap \hat{K}_{\mu}) \cap \mu^{-1}(x) \cap \ell^*_M(x)\right) \\
\subseteq \hat{\nu} \circ \hat{K}_{\nu} \cap \hat{\nu}^{-1}(x) \cup (\hat{\mu} \circ (\hat{R}_{\mu} \cap \hat{K}_{\mu}) \cap \mu^{-1}(x)) \\
\subseteq \hat{\nu} \circ \hat{K}_{\nu} \cap \hat{\nu}^{-1}(x) \cup \ell^*_M(x).
\end{align*}$$

We notice that this is also true when $\nu = \mu$ since $L_{\mu} \cap R_{\mu} \prec K_{\mu}$, hence

$$\begin{align*}
\hat{\mu} \circ R_{\mu} \cap \mu^{-1}(x) \cap \hat{\nu} \circ L_{\nu} \cap \nu^{-1}(x) \setminus \nu \circ K_{\nu} \cap \nu^{-1}(x) \subseteq \ell^*_M(x)
\end{align*}$$

for all $\nu \in M$.

We now assume that M is parallel coherent. As above

$$\hat{H} \cap V_M = \bigcup_{\mu, \nu \in M} \nu(\bar{R}_\nu \cap \bar{K}_\nu) \cap (\mu(\bar{L}_\mu) \setminus \mu(\bar{K}_\mu))$$

$$= \emptyset.$$
since by parallel coherence $\nu(\bar{R}_\nu \cap \bar{K}_\nu) \cap \mu(\bar{L}_\mu) \subseteq \mu(\bar{K}_\mu)$ for all $\mu, \nu \in M$. Similarly $\bar{H} \cap \Lambda_M = \emptyset$.

For all $x \in \bar{H} \cup \bar{G}$, if $x \notin G \cup \bar{G}$ then $\ell_M(x) = \emptyset$ and obviously $\bar{H}(x) \cap (\ell_M(x) \setminus \ell_M^+(x)) = \emptyset$. Otherwise $x \in G \cup \bar{G}$ hence $\nu^{-1}(x) = \nu^{-1}(x)$ so that

$$\bar{H}(x) = (\bar{G}(x) \setminus \ell_M(x)) \cup \bigcup_{\nu \in M} \hat{\nu} \circ \bar{R}_\nu \circ \nu^{-1}(x),$$

but by parallel coherence $\hat{\nu} \circ (\bar{R}_\nu \cap \bar{K}_\nu) \circ \nu^{-1}(x) \cap \hat{\mu} \circ \bar{L}_\mu \circ \mu^{-1}(x) \subseteq \mu(\bar{K}_\mu) \circ \mu^{-1}(x)$ for all $\mu, \nu \in M$, hence

$$\hat{\nu} \circ (\bar{R}_\nu \cap \bar{K}_\nu) \circ \nu^{-1}(x) \cap \ell_M(x) = \bigcup_{\mu \in M} \hat{\nu} \circ (\bar{R}_\nu \cap \bar{K}_\nu) \circ \nu^{-1}(x) \cap \hat{\mu} \circ (\bar{L}_\mu \cap \bar{K}_\mu) \circ \mu^{-1}(x) = \emptyset$$

and therefore

$$\bar{H}(x) \cap \ell_M(x) = \bigcup_{\nu \in M} \hat{\nu} \circ \bar{R}_\nu \circ \nu^{-1}(x) \cap \ell_M(x)
= \bigcup_{\nu \in M} \left((\hat{\nu} \circ \bar{R}_\nu \circ \nu^{-1}(x)) \setminus (\hat{\nu} \circ (\bar{R}_\nu \cap \bar{K}_\nu) \circ \nu^{-1}(x)) \right) \cap \ell_M(x).
\leq \bigcup_{\nu \in M} \hat{\nu} \circ (\bar{R}_\nu \setminus \bar{K}_\nu) \circ \nu^{-1}(x) \cap \ell_M(x)
\leq \ell_M^+(x)$$

hence again $\bar{H}(x) \cap (\ell_M(x) \setminus \ell_M^+(x)) = \emptyset$. M therefore has the effective deletion property. \(\square\)

Proof of Theorem 5.1. Only if part. For all $M' \subseteq M$ and $\mu \in M \setminus M'$, let $R = \bigcup_{\nu \in M'} G^\nu_\nu$, so that $G||_{M'} = G \setminus [M', A_{M'}, \ell_{M'}] \sqcup R$. For all $\nu \in M'$ we have $\mu(\bar{L}_\mu) \cap \nu(L_\nu) < \nu(\bar{K}_\nu) \sqcup G^\nu_\nu$ and $\mu(\bar{L}_\mu) \cap \nu(L_\nu) \triangleq G$, hence by Lemma 6.3

$$\mu(\bar{L}_\mu) \cap \nu(\bar{L}_\nu) \subseteq \nu(\bar{K}_\nu) \cup \nu(\bar{R}_\nu \cap \bar{K}_\nu) = \nu(\bar{K}_\nu)$$

or equivalently $\mu(\bar{L}_\mu) \cap \nu(\bar{L}_\nu) \setminus \nu(\bar{K}_\nu) = \emptyset$. Thus

$$\mu(\bar{L}_\mu) \cap V_{M'} = \bigcup_{\nu \in M'} \mu(\bar{L}_\mu) \cap \nu(\bar{L}_\nu) \setminus \nu(\bar{K}_\nu) = \emptyset$$

and therefore $\mu(\bar{L}_\mu) \subseteq G||_{M'}$. Similarly we get $\mu(\bar{L}_\mu) \subseteq G||_{M'}$. Then, for all $x \in \mu(\bar{L}_\mu) \cup \mu(\bar{L}_\mu)$, we have

$$\hat{\mu} \circ \bar{L}_\mu \circ \mu^{-1}(x) \cap \hat{\nu} \circ \bar{L}_\nu \circ \nu^{-1}(x) \subseteq \hat{\nu} \circ \bar{K}_\nu \circ \nu^{-1}(x) \cup G^\nu_\nu(x)$$

hence

$$\hat{\mu} \circ \bar{L}_\mu \circ \mu^{-1}(x) \cap \hat{\nu} \circ \bar{L}_\nu \circ \nu^{-1}(x) \setminus \hat{\nu} \circ \bar{K}_\nu \circ \nu^{-1}(x) \subseteq G^\nu_\nu(x) \subseteq \hat{R}(x).$$

Thus

$$\hat{\mu} \circ \bar{L}_\mu \circ \mu^{-1}(x) \cap \ell_{M'}(x) = \bigcup_{\nu \in M'} \hat{\mu} \circ \bar{L}_\mu \circ \mu^{-1}(x) \cap \bar{R} \circ \bar{L}_\nu \circ \nu^{-1}(x) \subseteq \hat{R}(x).$$

13
and then
\[\hat{\mu} \circ \hat{L}_\mu \circ \mu^{-1}(x) \subseteq \hat{\mu} \circ \hat{L}_\mu \circ \mu^{-1}(x) \setminus \ell_M'(x) \cup \hat{R}(x) \subseteq G_M''. \]
Therefore, \(\mu(L_\mu) \rho G_M''. \)

Let \(j \) be the canonical injection from \(\mu(L_\mu) \) to \(G_M'' \) and \(\mu' = j \circ \mu \), so that \(\mu' \in \mathcal{M}(r_\mu, G_M'') \). \(\mu'(L_\mu) = \mu(L_\mu) \) and \(\mu'(K_\mu) = \mu(K_\mu) \), hence \(\nu_\mu = \nu_\mu \), \(\Delta_\mu' = \Delta_\mu \) and \(\ell_{\mu'} = \ell_\mu \). Let \(H = G \sqcup R \sqcup \mu'(R_\mu) \) and \(H' = G \sqcup R \sqcup \mu'^{(r_\mu)} \).

Note that \(G_M' \cup (\mu) \rho H \), and also that \(R_{\mu'} = R_\mu \) hence \(\mu'^{(r_\mu)}(R_\mu) = (G_M')_{\mu'} \)
and (using Lemma 6.4)
\[(G_M'')_{\mu'} = (G \setminus \ell_M') \cup \bigcup_{\nu \in M'} G_{\nu'} \setminus \ell_M' \cup \mu'^{(r_\mu)}(R_\mu) \]
\[= [V_M', A_M, \ell_M] \cup \bigcup_{\nu \in M'} G_{\nu'} \setminus \ell_M' \cup \mu'^{(r_\mu)}(R_\mu) \]
\[\rho H'. \]

By Theorem 6.2 \(M \) has the effectiveletion property, i.e., \(G_M'' \) is disjoint from \(V_M, A_M, \ell_M \setminus \ell_M' \) hence in particular \(G_\nu'' \) is disjoint from \(V_\nu, A_\nu, \ell_\nu \setminus \ell_M' \) for all \(\nu \in M' \), so that
\[G_\nu'' \setminus \ell_\nu'' \setminus (V_\nu, A_\nu, \ell_\nu'' \setminus (\ell_\nu \setminus \ell_\nu')) = G_\nu'' \setminus \ell_M'. \]

For all \(x \in \hat{G}_\nu'' \cup \hat{\ell}'_\nu \), if \(x \notin \hat{G} \cup \hat{\ell} \) then \(\ell_\nu(x) = \emptyset \), otherwise \(\hat{G}_\nu''(x) = \hat{\mu} \circ \hat{R}_\mu \circ \mu^{-1}(x) = \hat{\mu} \circ \hat{R}_\mu \circ \mu'^{-1}(x) \). Since \(\mu(L_\mu) \cap G_\nu'' \rho \mu'(K_\mu) \cup \mu'(R_\mu) \) we have
\[\hat{G}_\nu''(x) \cap \hat{\mu} \circ \hat{L}_\mu \circ \mu^{-1}(x) \subseteq \hat{\mu} \circ \hat{K}_\mu \circ \mu'^{-1}(x) \cup \hat{G}_\nu''(x) \]
or equivalently \(\hat{G}_\nu''(x) \cap \ell_\nu(x) \subseteq \hat{G}_\nu''(x) \cap \ell_M'(x) \subseteq \mu'^{(r_\mu)}(R_\mu) \).

We thus see that \(G_\nu'' \setminus (V_\nu, A_\nu, \ell_\nu) \) has all the vertices and arrows of \(G_\nu'' \), and the attributes that are removed are all in the graph \(\mu'^{(r_\mu)}(R_\mu) \), hence
\[G_\nu'' \setminus (V_\nu, A_\nu, \ell_\nu) \cup \mu'^{(r_\mu)}(R_\mu) = G_\nu'' \cup \mu'^{(r_\mu)}(R_\mu) \]
and therefore \(\mu'' = G \setminus (V_\nu, A_\nu, \ell_\nu) \cup R \cup \mu'^{(r_\mu)}(R_\mu) \). It is then easy to build an isomorphism \(\alpha : H \to H' \) such that \(\alpha(G_M'' \cup (\mu)) = (G_M'')_{\mu'} \) and \(\alpha|_{G_M'} = 1_G \).

If part. For all \(\mu, \nu \in M \) such that \(\mu \neq \nu \), we have \(\nu(L_\mu) \rho G_M'' = G \setminus (V_\nu, A_\nu, \ell_\nu) \cup G_\nu'' \). Since \(\mu(K_\mu) \rho \nu(L_\mu) \rho G_M'' \), then
\[\nu(L_\nu) \cap \mu(L_\mu) \rho G_M'' \cap \mu(L_\mu) = \mu(L_\mu) \setminus (V_\nu, A_\nu, \ell_\nu) \cup (G_\nu'' \cap \mu(L_\mu)) \]
\[= \mu(K_\mu) \cup (G_\nu'' \cap \mu(L_\mu)) \]
\[\rho \mu(K_\mu) \cup G_\nu''. \]

Besides, there is an isomorphism \(\alpha \) such that \(\alpha(G_M') = (G_M'')_{\mu'} \) and \(\alpha|_{G_M} = 1_G \), where \(M = \{ \mu, \nu \} \) and \(\mu' = j \circ \mu \in \mathcal{M}(r_\mu, G_M'') \), hence \(\mu' \rho \nu \rho V_\mu \), hence
\(A_\mu = A_\mu \) and \(\ell'_\mu = \ell_\mu \). Let \(H = G \|_M \cap \mu(L_\mu) \) and \(H' = (G \|_\nu) \|_M \cap \mu(L_\mu) \), since \(\mu(L_\mu) \triangleleft G \) then \(H = H' \). We see that
\[
H = \mu(K_\mu) \setminus [V_\nu, A_\nu, \ell_\nu] \cup (G_\nu \cap \mu(L_\mu)) \cup (G_\mu \cap \mu(L_\mu))
\]
and similarly (using Lemma 6.4) that
\[
H' = \mu(K_\mu) \setminus [V_\nu, A_\nu, \ell_\nu] \cup (G_\nu \cap \mu(L_\mu)) \cup (G_\mu \cap \mu(L_\mu))
\]

We therefore have \(\dot{H} = \dot{H'} \). By Lemma 6.3 we have
\[
\dot{H}' \cap \mu(L_\mu) = \nu(\dot{R}_\nu \cap K_\mu) \cap \mu(L_\mu) \text{ and } \mu'\hat{\tau}(\dot{R}_\mu \cap \mu(L_\mu)) = G_\mu \cap \mu(L_\mu). \]
Hence \(\dot{H}' \setminus \mu(K_\mu) = \emptyset \) and \(\dot{H} \setminus \mu(K_\mu) = G_\nu \cap \mu(L_\mu) \setminus \mu(K_\mu) \). Thus \(G_\nu \cap \mu(L_\mu) \subseteq \mu(K_\mu) \). Similarly, we get \(G_\nu \cap \mu(L_\mu) \subseteq \mu(K_\mu) \).

For all \(x \in \dot{H} \cup \dot{H}' \) we have \(\dot{G}_\nu(x) = \dot{\mu} \circ \dot{R}_\nu \circ \mu^{-1}(x) = \mu' \circ \dot{R}_\mu \circ \mu^{-1}(x) \), hence obviously \(\dot{H}' \setminus (\dot{\mu} \circ \dot{K}_\mu \circ \mu^{-1}(x) \cup \dot{G}_\mu(x)) = \emptyset \) and \(\dot{H} \setminus (\dot{\mu} \circ \dot{K}_\mu \circ \mu^{-1}(x) \cup \dot{G}_\mu(x)) = \dot{G}_\nu(x) \cap \dot{\mu} \circ \dot{L}_\nu \circ \mu^{-1}(x) \). Thus \(\dot{G}_\nu(x) \cap \dot{\mu} \circ \dot{L}_\nu \circ \mu^{-1}(x) \subseteq \dot{\mu} \circ \dot{K}_\mu \circ \mu^{-1}(x) \). We conclude that \(G_\nu \cap \mu(L_\mu) \triangleleft \mu(K_\mu) \cup G_\nu \).