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Central tendency bias in belief elicitation∗

Paolo Crosetto† Antonio Filippin‡ Peter Katuščák§ John Smith¶
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Abstract

We conduct an experiment in which subjects participate in a first-price auction against an automaton that
bids randomly in a given range. The subjects first place a bid in the auction. They are then given an
incentivized elicitation of their beliefs of the opponent’s bid. Despite having been told that the bid of the
opponent was drawn from a uniform distribution, we find that most of the subjects report beliefs that have a
peak in the interior of the range. The result is robust across seven different experimental treatments. While
not expected at the outset, these single-peaked beliefs have precedence in the experimental psychology
judgments literature. Our results suggest that an elicitation of probability beliefs can result in responses
that are more concentrated than the objectively known or induced truth. We provide indicative evidence
that such individual belief reports can be rationalized by well-defined subjective beliefs that differ from
the objective truth. Our findings offer an explanation for the conservatism and overprecision biases in
Bayesian updating. Finally, our findings suggest that probabilistic forecasts of uncertain events might have
less variance than the actual events.
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1 Introduction

Often when experimenters describe a stochastic distribution to subjects, it is assumed that they accept the

distribution as given.1 We conduct an experiment where the subjects participate in a first-price auction against

a random-draw opponent with a strategy known by the subject: their opponent’s bid is uniformly distributed

on a given range. The subjects first place a bid in the auction. They are then given an incentivized elicitation of

their beliefs of the opponent’s bid. Despite having been told that their opponent’s bid is drawn from a uniform

distribution, we find that subjects tend to report beliefs that have a single peak in the interior of the range.

While not expected at the outset, these single peaked beliefs have precedence in the judgments literature.

When subjects estimate physical quantities (length, weight, loudness, etc.), the judgments2 often exhibit

a bias toward the mean of the distribution of the stimuli (Hollingworth, 1910; Poulton, 1979). For instance,

if subjects are tasked to make judgments of lengths of lines, lines longer than the mean tend to be underesti-

mated and lines shorter than the mean tend to be overestimated. In other words, there is a tendency to judge

physical quantities to be closer to the mean than they actually are. This effect is sometimes referred to as the

central tendency bias.3 Considered in aggregate, the reported distribution of judgments of line lengths tends to

be less variable than the true distribution of line lengths.

The central tendency bias has been found in various other judgment settings, for instance weight (Jones

and Hunter, 1982), distance (Radvansky, Carlson-Radvansky, and Irwin, 1995), loudness (Algom and Marks,

1990), and temporal duration (Jazayeri and Shadlen, 2010). Huttenlocher, Hedges, and Vevea (2000) also find

the central tendency bias in judgments of the fatness of computer-generated images of fish, the greyness of

squares, and the lengths of lines.4 We say that the elicitation of beliefs in our experiment exhibits the central

1One exception is Camerer and Weigelt (1988), who find that subjects can bring “homemade” priors to the experiment that are
different from those specified in the experiment. We also note that Prospect Theory (Kahneman and Tversky, 1979) suggests that
subjects can behave as if probabilities were different from those given by the experimenter. This relationship is characterized by the
probability weighting function.

2While judgments of uncountable physical quantities are common in the psychology literature, see Duffy, Gussman, and Smith
(2019) for an experiment where subjects estimate line lengths in a choice setting.

3This is also sometimes referred to as the regression effect (Stevens and Greenbaum, 1966) or the contraction bias (Jou et al., 2004).
The representativeness heuristic (Kahneman and Frederick, 2002; Kahneman and Tversky, 1973) makes similar predictions. Finally,
the extremeness aversion literature (Simonson and Tversky, 1992; Chernev, 2004; Neumann, Böckenholt, and Sinha, 2016) finds that
subjects tend to avoid extreme options in choice settings.

4Huttenlocher el al. (2000) also offer an explanation for this experimental regularity. Also see Huttenlocher, Hedges, and Duncan
(1991). The authors propose a category adjustment model, which posits that subjects compensate for their imperfect memory and
imperfect perception by employing information about the distribution of stimuli. We note that, according to the category adjustment
model, subjects learn the distribution through experience. Huttenlocher et al. refer to this as a Bayesian model since the information
about the distribution is employed to maximize the precision of the judgments. However, Duffy and Smith (2019a) analyze data from
a replication of Huttenlocher et al. (2000) and find that non-Bayesian explanations have more support in the data than the category
adjustment model. Duffy and Smith (2018) analyze the data from Duffy, Huttenlocher, Hedges, and Crawford (2010), and come to a
similar conclusion about the predictions of the category adjustment model. See also Crawford (2019) and Duffy and Smith (2019b).
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tendency bias because there appears to be such a bias toward the mean of the distribution.

The central tendency bias is not commonly studied in economics settings. However, some authors report

a bias toward the center of an ordered action space in games. For instance, Arad and Rubinstein (2012) and

Arad and Penczynski (2018) find a tendency to overweight the central battlefields in Colonel Blotto games,

despite there being no strategic advantage of doing so.

In the domain of beliefs, Kareev, Arnon, and Horwitz-Zeliger (2002) find that subjects tend to perceive a

stochastic distribution learned through sampling to be less variable than it truly is.5 Theoretically, they explain

this finding by arguing that subjects estimate the true variance by sample variance, which, if uncorrected for

the degrees of freedom, is a downward-biased estimate of variance. The main contribution of this paper is the

finding that underestimation of true variance is present also when the distribution is learned by description

rather than by sampling. The theoretical justification described above does not apply in this case. Our finding

therefore suggests that the central tendency bias in reporting of judgments in general and beliefs in particular

might be driven by an intrinsic reporting bias toward the center of the support range.

We also go a step further and investigate where such bias might come from in our setting. We first rule out

that it is an artefact of experimental design operating through incentive incompatibility of the belief elicitation

procedure or through payoff hedging. We then provide indicative evidence that such individual belief reports

can be rationalized by well-defined subjective beliefs that differ from the objective truth. This view is also

supported by a finding that, between subjects, beliefs are correlated with auction bids.

Apart from contributing to the literature documenting biases in reported judgments and beliefs, our find-

ing, if corroborated by future research, has a profound implication for designing experiments. It implies that

subjects do not necessarily accept the distribution as given by the experimenter, even when the distribution is

as simple as the uniform distribution. Moreover, our findings offer another explanation for the conservatism

and overprecision biases in Bayesian updating. To the extent that our results generalize to other distributions,

our findings also suggest that probabilistic forecasts (rather than point forecasts) of events will have less vari-

ance than the true variance of these events. We hope to stimulate more empirical work on these issues.

5Also see Marchiori, Di Guida, and Erev (2015).
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2 Experimental design

2.1 Overview

We conducted an experiment where subjects engaged in a first-price auction. Subjects were told the distribu-

tion of their random-draw opponent’s strategy: a uniform distribution on a range of possible integer bids. The

subjects then placed a bid in the auction. Subsequently, subjects were given an incentivized elicitation of their

beliefs of the random-draw opponent’s strategy and their beliefs of winning the auction. The random-draw

opponent’s bid was determined by a physical draw of a token at the end of the experiment. A total of 379

subjects participated in the experiment.

2.2 Belief elicitations

After submitting a bid in the auction, subjects reported their beliefs of the distribution of their random-draw

opponent’s strategy. The strategy space of the random-draw opponent was divided into 5 bins of equal

size. Subjects allocated probability weights into the bins. An automatic checker verified that these amounts

correctly summed to 100. Screenshots of the elicitation procedures are provided in Appendix D.6

It is well-known that eliciting beliefs from subjects, particularly the full distribution of beliefs, can be a

difficult matter.7 We elicited the distribution of beliefs of the opponent’s strategy by using the quadratic

scoring rule (QSR), apparently first suggested by Brier (1950). As the QSR can be difficult for subjects to

understand, instead of presenting the payoff formula, we provided subjects with general and intuitive advice

on how to perform well on this task.8 We also prepared a sheet with the payoff formula to be shown to

subjects who requested seeing it after the experiment.9 The maximum that subjects could earn on this task

was 20 ECUs, where 1 ECU=e0.20.

Subjects were also asked to report their beliefs of winning (and not winning) the auction given their bid.

Given the known distribution of the strategy of their opponent, there is a well-defined objective probability

6Figure D1 shows a treatment in which the random-draw opponent’s strategy was the uniform distribution on {1, . . . , 60}. Figures
D2 and D3 show situations in which random-draw opponent’s strategy was the uniform distribution on {1, . . . , 100} and the values
did not sum to 100 or the cells were empty.

7See Winkler and Murphy (1970), Savage (1971), Matheson and Winkler (1976), Allen (1987), Manski (2004), Karni (2009), Offer-
man, Sonnemans, Van de Kuilen, and Wakker (2009), Blanco, Engelmann, Koch, and Normann (2010), Armantier and Nicolas (2013),
Hossain and Okui (2013), Schlag and van der Weele (2013), Andersen, Fountain, Harrison, and Rutström (2014), Schotter and Trevino
(2014), Schlag, Tremewan, and van der Weele (2015), Schlag and van der Weele (2015), and Harrison, Martı́nez-Correa, Swarthout,
and Ulm (2017).

8See Question 1 in Appendix C for the complete instructions. We note that Qiu and Weitzel (2016) also do not show their subjects
the formal expression for the scoring rule.

9This information sheet is available on OSF at https://osf.io/fy3mt/. Only 2 out of 379 subjects requested this information.
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of winning the auction given the bid. Similar to the previous elicitation, there was an automatic checker that

verified that the weights correctly summed to 100.10 These beliefs were also incentivized with the QSR. The

maximum that subjects could earn on this task was 20 ECUs. Screenshots are provided in Appendix D.11

2.3 Auction treatments

Subjects placed a bid against a random-draw opponent in one of seven different auction treatments in a

between-subject design. In every treatment, the payoff was an induced value known by the subject minus

the bid in the event of winning the auction, and 0 otherwise. Ties were resolved in favor of subjects.

The auction 100/100 treatment is our baseline.12 Subjects’ value of the object was 100 ECUs. The random-

draw opponent had a strategy of placing a bid drawn from the uniform distribution on {1, ..., 100}. Subjects

selected a bid from {1, ..., 100}. This treatment elicited bids using a visual representation of the strategy space

and of the lottery induced by each choice.

The auction 100/100 without visualization treatment was identical to the baseline except that auction bids

were elicited simply by typing a response from {1, ..., 100} rather than with the aid of the visual representation.

In the BRET treatment, we implemented the Bomb Risk Elicitation Task (BRET, Crosetto and Filippin,

2013). In the BRET, subjects faced a 10× 10 matrix with 100 numbered boxes. Of these, 99 were empty, while

one contained a time bomb programmed to “explode” at the end of the task, i.e., after choices have been made.

The bomb had an equal probability to be in any of the 100 boxes. Subjects decided how many of the 100 boxes

to collect in the increasing order of their numbers. If the collection did not contain the bomb, the payoff

was equal to the number of collected boxes, and 0 otherwise. The BRET is isomorphic to the auction 100/100

treatment, with the number of uncollected boxes corresponding to the bid, and the same visual representation

as the baseline.

In the auction 80/100 treatment, subjects’ value of the object was 80 ECUs. The strategy of the computerized

opponent and subjects’ bidding space was identical to the baseline. The bid was elicited using the same visual

representation as in the baseline, and included the possibility of overbidding. The instructions contained a

warning against bidding more than 80.

The auction 60/100 treatment is identical to the auction 80/100 treatment with the exception that subjects’

10See Question 2 in Appendix C for the complete instructions.
11See Figures D4, D5 and D6 for screenshots where values sum up to 100, do not sum to 100 or the input boxes are empty.
12In the name of the treatments, the number before “/” refers to the subject’s value of the object and the number after “/” to the

upper bound of the bidding range of the automaton.
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value of the object was 60 ECUs and the instructions contained a warning against bidding more than 60.

The auction 60/60 treatment set the subjects’ value of the object to 60 ECUs. The computerized opponent bid

uniformly on {1, ..., 60}. Subjects selected a bid from {1, ..., 60}. Bids were elicited with a visualization analo-

gous to the baseline, but with the size of the matrix reduced to 10× 6 boxes that were numbered {1, ..., 60}.

The auction 60/60 expand treatment is identical to the auction 60/60 treatment with the exception that sub-

jects selected a bid from {1, ..., 100} and the visualization accommodated this by presenting a 10 × 10 ma-

trix. However, the difference from the baseline is that the auction winning probabilities were derived from

the random-draw opponent bidding range being {1, ..., 60} rather than {1, ..., 100}. Instructions contained a

warning against bidding more than 60.

2.4 Experimental details and earnings

The timing of the experiment is as follows. First, subjects were required to pass an unincentivized test of

their understanding of first-price auctions and uniform probability distributions.13 The subjects then placed

their auction bid under 1 of the 7 experimental treatments. The subjects then responded to an elicitation of

their beliefs of the distribution of the random-bid opponent’s strategy and their beliefs of the probability of

winning the auction given their bid.

The auction values, bids and prices were expressed in ECUs, where 1 ECU=e0.20. Each belief elicitation

question could earn as many as 20 ECUs. One of these two elicitations was randomly selected for payment.

Subjects were paid their earnings in the auction, the randomly drawn belief elicitation and a e2.50 show-up

fee.

The sessions were conducted in German in the laboratory of the Max Plank Institute for Economics in Jena,

Germany.14 They lasted approximately 30 minutes and subjects earned e8.50 on average. We note that this

amount was above the the hourly wage available to our student subjects at the time of the experiment.

13See Appendix C for the complete list of questions the subjects had to accurately complete.
14Appendix C contains the English translation of the instructions given to the subjects. The original German wording is available

from the corresponding author upon request.
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Table 1: Mean weights within bins

Treatment Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Auction 100/100 11.92 21.92 30.38 23.72 12.07
Auction 100/100 w/o 11.68 21.39 28.98 23.05 14.90
BRET 18.16 25.87 23.82 18.45 13.69
Auction 80/100 16.53 26.09 28.72 18.06 10.59
Auction 60/100 15.85 25.77 28.08 18.95 11.35
Auction 60/60 12.25 19.03 29.68 23.59 15.44
Auction 60/60 expand 14.94 22.45 24.15 21.61 16.85

Pooled 14.33 23.02 27.65 21.27 13.73

Notes: We list the means of the weights reported within each of the 5 bins for each
treatment and pooled across all treatments.

3 Results

3.1 Summary statistics

We define a response to be the collection of probability weights allocated to the 5 bins. The response in the

lowest bin is labeled Bin 1, next, Bin 2, and so on. The 5 bins in auction 60/60 and auction 60/60 expand treatments

refer to ranges 1− 12, 13− 24, 25− 36, 37− 48, 49− 60. The 5 bins in the remaining treatments refer to ranges

1− 20, 21− 40, 41− 60, 61− 80, 81− 100. Table 1 summarizes the means of the weights within each bin. Figure

1 gives an overview of the full dataset, with each point representing the weight allocated by a subject to the

given bin and the boxplots representing the distribution. The central tendency is robust and immediately

evident at the aggregate level.

Analyzing the data at the individual level, we first explore the extent of the general deviation from the

payoff-optimal uniform response. We define a response to be non-uniform if a distribution of weights other

than (20, 20, 20, 20, 20) was given. Results are reported in Table 2. Despite there being incentives for correctly

responding with uniform weights, more than 72% of subjects give a response other than the uniform distri-

bution. To capture how far the response is from the uniform distribution, we measure the largest vertical

distance (d) of the cdf of the reported belief from the cdf of the uniform distribution at the four boundaries

dividing the 5 bins. Cumulative beliefs of more than two thirds of subjects deviate from the uniform distribu-

tion by at least 10 percentage points, those of more than two fifths by at least 20 percentage points and those

of more than a fifth by at least 30 percentage points.15 This result is robust to different specifications, see Table

15Interestingly, not having the visualization (in the Auction 100/100 w/o) does not make the deviation from the uniform worse. If
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Figure 1: The full dataset at a glance. Each point represents the weight allocated by a subject to the given bin.
The boxplots show the 25 th, 50th and 75th percentile of the distribution.

B1 in Appendix B.

3.2 Central single peaked distributions

We next explore to what extent deviations from the uniform distribution are due to the central tendency bias.

We define a response to have a strict central single peak (Strict-CSP) if the weight in Bin 1 is strictly less than that

in Bin 2, the weight in Bin 2 is strictly less than that in Bin 3, the weight in Bin 4 is strictly less than that in Bin 3,

and the weight in Bin 5 is strictly less than that in Bin 4. If we define wi as the weight allocated into Bin i, then

we can write the definition of Strict-CSP as w1 < w2 < w3 > w4 > w5. To loosen this definition such that it

anything, the deviation rate and the threshold distance rates are lower than the average of the other 6 treatments, but the difference
is not statistically significant using the Fisher’s exact test (the p-values corresponding to the four statistics presented in Table 2 are
0.427, 0.880, 0.474 and 0.177, respectively).
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Table 2: Non-uniform responses and distances from the uniform distribution

Treatment Non-Uniform d > 0.1 d > 0.2 d > 0.3 Subjects

Auction 100/100 46 (76.7%) 41 (68.3%) 20 (33.3%) 11 (18.3%) 60
Auction 100/100 w/o 40 (67.8%) 39 (66.1%) 22 (37.3%) 9 (15.3%) 59
BRET 44 (71.0%) 39 (62.9%) 20 (32.3%) 13 (21.0%) 62
Auction 80/100 25 (78.1%) 25 (78.1%) 18 (56.3%) 11 (34.4%) 32
Auction 60/100 40 (72.7%) 39 (70.9%) 28 (50.9%) 14 (25.5%) 55
Auction 60/60 41 (69.5%) 38 (64.4%) 29 (49.2%) 16 (27.1%) 59
Auction 60/60 expand 39 (75.0%) 35 (67.3%) 23 (44.2%) 10 (19.2%) 52

Pooled 275 (72.6%) 256 (67.5%) 160 (42.2%) 84 (22.2%) 379

Notes: We list the number (and percentage) of subjects who report non-uniform responses. We also list the
number (and percentage) of subjects whose reported beliefs deviate from the uniform distribution by at least a
threshold sup-norm distance d ∈ {0.1, 0.2, 0.3}.

allows a multi-bin peak that includes Bin 3, we define a response to have a weak central single peak (Weak-CSP)

if the inequalities are allowed to be weak, but the weight in Bin 1 is strictly less than the weight in Bin 3 and the

weight in Bin 5 is strictly less than the weight in Bin 3.16 To loosen the definition of Strict-CSP in a different

direction, namely by allowing a strict peak also in other non-boundary bins, we define a response to have

a strict semi-central single peak (Strict-Semi-CSP) if it satisfies the conditions for Strict-CSP or there is a strict

single peak in either Bin 2 or Bin 4.17 Finally, in the least restrictive definition, that subsumes both Weak-CSP

and Strict-Semi-CSP, we define a response to have a weak semi-central single peak (Weak-Semi-CSP) if it satisfies

the conditions for Weak-CSP or there is a weak single peak in either Bin 2 or Bin 4.18 Table 3 describes the

distribution of responses according to these definitions. Within each treatment and across all treatments, there

appears to be a single peak in the interior of the distribution. Over 50% of responses satisfy our definition of a

weak semi-central single peak. Figure 2 gives a visual feeling of the data by plotting the allocation of subjects

to types of peaked response by treatment, assigning subjects to the most restrictive type.19

To further explore incidence of a central single peak in the responses, we take pairwise tests of the differ-

ences of the weights between adjacent bins (w2 − w1; w3 − w2; w4 − w3; w5 − w4). We perform this analysis

with paired t-tests and signed rank tests. Since we make multiple pairwise tests, we perform the Bonferroni

16In other words, a response is Weak-CSP if w1 ≤ w2 ≤ w3 ≥ w4 ≥ w5, w1 < w3, and w3 > w5. Note that if a response is an
Strict-CSP, it is also a Weak-CSP.

17A response is Strict-Semi-CSP if it is Strict-CSP or it is a response where w1 < w2 > w3 > w4 > w5 or w1 < w2 < w3 < w4 > w5.
18A response is Weak-Semi-CSP if it is Weak-CSP or it is a response where w1 < w2 ≥ w3 ≥ w4 ≥ w5 and w2 > w5, or it is a

response where w1 ≤ w2 ≤ w3 ≤ w4 > w5 and w1 < w4. Note that if a response is a Strict-Semi-CSP, it is also a Weak-Semi-CSP.
19For instance, a Strict-CSP subject is, by definition, also a Weak-CSP subject; in this case, the subject is assigned to the Strict-CSP

type.
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Figure 2: Non-uniform responses at a glance. Each piece-wise line represents a subject. The percentages are
frequencies of the types within a treatment.
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Table 3: Frequency of peaked responses

Treatment Strict-CSP Weak-CSP Strict-Semi-CSP Weak-Semi-CSP Subjects

Auction 100/100 15 (25.0%) 26 (43.3%) 25 (41.7%) 39 (65.0%) 60
Auction 100/100 w/o 14 (23.7%) 21 (35.6%) 21 (35.6%) 32 (54.2%) 59
BRET 12 (19.4%) 16 (25.8%) 17 (27.4%) 28 (45.2%) 62
Auction 80/100 4 (12.5%) 15 (46.9%) 5 (15.6%) 18 (56.3%) 32
Auction 60/100 10 (18.2%) 21 (38.2%) 12 (21.8%) 31 (56.4%) 55
Auction 60/60 17 (28.8%) 25 (42.4%) 21 (35.6%) 32 (54.2%) 59
Auction 60/60 expand 6 (11.5%) 15 (28.8%) 11 (21.2%) 26 (50.0%) 52

Pooled 78 (20.6%) 139 (36.7%) 112 (29.6%) 206 (54.4%) 379

Notes: We list the number (and percentage) of responses that we categorize as having a strict central single peak, a weak
central single peak, a strict semi-central single peak, and a weak semi-central single peak.

Table 4: Paired t-tests and signed rank tests of differences in weights between adjacent
bins

Bin 2 - Bin 1 Bin 3 - Bin 2 Bin 4 - Bin 3 Bin 5 - Bin 4

t-statistic 10.83 4.81 −6.68 −11.00
Corrected p-value < 0.001 < 0.001 < 0.001 < 0.001

Signed rank statistic 10664.5 4747.5 −7276 −10037
Signed rank z-statistic 12.26 5.44 −7.30 −12.52
Corrected p-value < 0.001 < 0.001 < 0.001 < 0.001

Notes: We list the t-statistic for a paired t-test and the signed rank test statistic for adjacent bins. We report
the Bonferroni corrected p-values of these tests. Since we have 4 pairwise tests, we multiply each p-value by
4. Each test is based on 379 observations.

correction. As we make four pairwise comparisons, we multiply every p-value by 4. We summarize this

analysis in Table 4. We note that each statistic involving Bins 1 or 2 is positive and each statistic involving

Bins 4 or 5 is negative. This suggests that the weights tend to be increasing below Bin 3 and decreasing above

Bin 3. In other words, this is evidence of a central single peak. Moreover, even with the Bonferroni correction

of multiplying every pairwise p-value by 4, each test is significant at 0.001. This result is robust to different

specifications, see Table B2 in Appendix B.

4 What Drives the Non-Uniform Responses?

In this section, we try to shed light on what drives the non-uniform responses, and particularly CSP responses.

In subsections 4.1 and 4.2, we examine the possibility that such responses are an artifact of the experimental
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design. In 4.1, we ask whether such responses might be driven by the impact of risk non-neutrality within

the Quadratic Scoring Rule (QSR) belief elicitation. In 4.2, we analogously examine a potential role of payoff

hedging. In subsections 4.3 and 4.4, we examine the extent to which such responses might reflect truly held

beliefs. In 4.3, we ask whether such responses are consistent with bids. In 4.4, we examine whether the

non-uniform responses are consistent with reported probabilities of winning the auction.

4.1 Impact of Risk Non-neutrality on Belief Elicitation via the QSR

In this subsection, we investigate the possibility that a subject holding the uniform true belief provides a

non-uniform response because of incentives inherent in the QSR and its description.

We begin by noting that the instructions do not provide a payoff formula for the QSR. Instead, subjects are

told: “You will be paid based on how closely your estimates match your opponent’s bid. The exact formula (the so-called

quadratic scoring rule) is complicated and the experimenters will be happy to explain it after the end of the experiment to

those who are interested. However, in order to maximize your expected earnings from this procedure, you should report

these likelihoods truthfully according to what you believe.” Subjects are then also advised to make their reported

probabilities strictly increasing in their truly believed probabilities and to not under- or over-concentrate their

reports relative to what they believe. Given this description, it is hard to see why a subject holding the uniform

belief would provide a non-uniform response.

However, we consider how subjects with both knowledge of the QSR payoff formula and understanding of

its incentive properties would report given their true belief of the bid of the opponent. It is widely known that

the QSR is incentive compatible for risk-neutral expected utility (EU) maximizers, whereas it is not incentive

compatible for risk-averse or risk-loving EU maximizers. What is crucial for our purpose is to see whether the

non-uniform responses could be driven by such deviations from risk neutrality despite the underlying true

belief being uniform.

Formally, suppose that the state space is partitioned into n mutually exclusive and exhaustive events (5 in

our setting). Let p1, ..., pn be the truly believed probabilities and let r1, ..., rn be the reported probabilities of the

individual events. Any report must satisfy r1 + ...+ rn = 1. The realized payoff is given by a constant minus a

penalty linear in the square of the Euclidian distance between the realized and the reported probability vector.

The former one is given by (0, ..0, 1, 0, .., 0), with “1” on the position of the realized state. That is, the payoff if

12



state i is realized is given by

πi ≡ α− β

(
(1− ri)

2 + ∑
j 6=i

(0− rj)
2

)

= (α− β) + 2βri − β
n

∑
j=1

r2
j

with α, β > 0. Note that the minimum possible value of πi is α− 2β and it is attained when rj = 1 for some

j 6= i, whereas the maximum possible value of πi is α and it is attained when ri = 1. In our setting α = 20 and

β = 10 imply a possible payoff range from 0 to 20 ECUs. Consider an EU maximizer with a strictly increasing

and twice continuously differentiable utility function u(·). We then have the following result (proof of which

can be found in Appendix A):20

Proposition 1 Suppose that u′(·) is bounded away from 0 and ∞ on [α− 2β, α]. Then any optimal report (r∗1 , .., r∗n)

satisfies:

1. for any event i, r∗i = 0 if and only if pi = 0, 0 < r∗i < 1 if and only if 0 < pi < 1 and r∗i = 1 if and only if

pi = 1;

2. for any two distinct events i and j, if pi > pj, then r∗i > r∗j ; by a contrapositive, if r∗i = r∗j , then pi = pj;

3. for any two distinct events i and j, if u′′(x)/u′(x) ≤ β−1 for any x ∈ [α− 2β, α] and pi = pj, then r∗i = r∗j ;

4. for any two distinct events i and j with pi > pj > 0, if u(·) is linear, then r∗i = pi and r∗j = pj; if u(·) is strictly

concave, then r∗i /r∗j < pi/pj; and if u(·) is strictly convex, then r∗i /r∗j > pi/pj.

The most important implication of this proposition is that if a subject believes that all 5 bins are equally

likely, then, barring a sufficiently high risk-loving, it is optimal to provide the uniform response. That is,

the non-uniform responses that we observe cannot be a consequence of deviations from risk neutrality if the

underlying true belief is uniform.21

20This proposition is similar to the theoretical results presented in Harrison et al. (2017). However, there are three novelties here:
(1) the first statement in part 2; while the same result follows from Lemma 1 in Harrison et al. (2017) under risk aversion, we prove it
generally for any risk preference (the contrapositive statement in part 2 is identical to Lemma 4 in Harrison et al. (2017)); (2) the upper
bound on risk-loving in part 3; while Harrison et al. (2017) prove the same result under risk aversion (Lemma 3), we partially extend
it to risk loving as well; (3) part 4; in comparison to Proposition 4 in Harrison et al. (2017), this is a different way of expressing the
result that risk aversion leads to a “flattening” of reported beliefs toward equal reports, whereas risk loving has the opposite effect;
implications of the two approaches for data inference are arguably identical, though.

21To gauge what is meant by “sufficiently high risk-loving”, note that by part 3 of Proposition 1, the result of equal reporting of
equal true probabilities goes through for any utility function with constant absolute risk loving of at most β−1 = 0.1 if payoffs are

13



Proposition 1 also implies that if a subject has a well-defined non-uniform subjective belief, they optimally

provide a non-uniform report whose shape mirrors the belief in terms of ordinal comparisons of probabilities.

Risk aversion has the effect of “flattening” the response relative to the belief, whereas risk loving has a “mag-

nifying” effect instead. Either way, however, the shape of the response mirrors the shape of the underlying

belief. Therefore, if being an EU maximizer, a report exhibiting a central tendency implies that the subjective

belief exhibits a central tendency, too. The empirical regularity that most of the subjects are risk averse implies

that, if risk preferences play a role, what we measure is likely a lower bound of the true central tendency. 22

4.2 Hedging

Next, we investigate the possibility that subjects holding the uniform true belief provide a non-uniform re-

sponse because they use their payoff from the belief elicitation as a hedge for their payoff from the auction.

Obviously, only a risk-averse subject desires to hedge.23

The first comment is analogous to the previous subsection. Given that the instructions do not provide a

payoff formula for the QSR and given what subjects were advised, the possibility of hedging is arguably not

salient to subjects. However, analogously the previous subsection, we consider how subjects with the knowl-

edge of the QSR payoff formula, understanding of its incentive properties and understanding of incentives for

hedging would report given their true belief of the bid of the opponent. In particular, we want to see whether

the non-uniform responses could be due to risk-aversion-driven hedging despite the underlying true belief

being uniform.

Formally, we follow the structure introduced in the previous subsection, but this time adapted to the

parameterization used in the experiment. That is, n = 5, α = 20 and β = 10. Moreover, the events now

correspond to the individual bins, with event i corresponding to bin i, i = 1, .., 5. Let k be the bin that contains

the bid. Also, let s be the auction surplus, that is, the difference between value and bid. We assume that this

surplus is strictly positive.24 For i < k, the belief elicitation bid is augmented by the auction surplus, resulting

denominated in ECUs, or of at most 0.5 if payoffs are denominated in Euros. Working with the constant absolute risk aversion utility
function u(x) = e0.1x when counting in ECUs (u(x) = e0.5x when counting in Euros), and considering a 50/50 lottery between the
two most extreme possible payoffs from the payoff elicitation, namely 0 and 20 (e0 and e4), the certainty equivalent of this lottery
for a decision maker with such utility function is approximately 14.34 ECUs (e2.87). Arguably, few subjects are as risk-loving as this.

22It is also useful to note that Andersen, Fountain, Harrison, and Rutström (2014) show that the magnitude of the bias in reporting
beliefs under the QSR due to risk preferences is of a second order importance.

23Recall that each subject is paid by the QSR for either eliciting beliefs of the opponent’s bid or for eliciting beliefs of winning the
auction, but not both. Therefore the payoff from the latter elicitation does not enter into consideration when thinking about hedging
using the payoff from the former elicitation.

24This is the case for all 379 subjects in our sample.
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in the overall payoff of

πi ≡ s + 10 + 20ri − 10
5

∑
j=1

r2
j .

An analogous payoff expression applies also to bin k if the bid of the opponent does not exceed the bid of the

subject. Denote this payoff πkH and let q be the objective probability of such outcome conditional on the bid

of the opponent being in bin k. Note that q > 0 by the design of the tie-breaking rule. For i > k, the belief

elicitation bid is not augmented by the auction surplus, resulting in the overall payoff of

πi ≡ 10 + 20ri − 10
5

∑
j=1

r2
j .

An analogous payoff expression applies also to bin k if the bid of the opponent exceeds the bid of the subject.

Denote this payoff πkL. The objective probability of such outcome conditional on the bid of the opponent

being in bin k is 1− q. We then have the following result (proof of which can be found in Appendix A):

Proposition 2 Suppose that u(·) is strictly concave and u′(·) is bounded away from 0 and ∞ on [0, 20 + s]. Also

suppose that the true belief of the subject is uniform. Then any optimal report (r∗1 , .., r∗5) satisfies:

1. if k > 1, then for any i < k it holds that r∗i = r∗L; moreover, if q < 1, then r∗L < r∗k and r∗L < 0.2; if q = 1 and

k < 5, then r∗L = r∗k < 0.2; if q = 1 and k = 5, then r∗L = r∗k = 0.2;

2. if k < 5, then for any i > k it holds that r∗i = rH with rH > r∗k and rH > 0.2.

In our data, subjects are not guaranteed to win the auction given their bid, ruling out the case q = 1 and

k = 5. As a result, this proposition implies that if a risk-averter has the uniform belief, then the reported

probability in all bins below k (if any) should be the same and strictly less than 20%, the reported probability

in all bins above k (if any) should be the same and strictly more than 20% and the reported probability for

bin k should be somewhere in between or, if bidding at the upper boundary of bin k, it should be equal to the

reported probability for the bins below k (if any). Among 379 subjects in our data, 7 follow the predictions of

Proposition 2 to the letter. Once we allow also for cases with rH = rk, this number increases to 9. Once we

also allow for various probability reports below the bin k or above the bin k to vary up to 1 percentage point25

or 3 percentage points or 5 percentage points, this number increases to 10 or 11 or 13 (3.4% of the sample),

respectively. Since this fraction is negligible compared to the fraction of subjects with non-uniform responses,

25This could occur, despite the subject’s best effort to equalize the reported probabilities, due to the integer reporting grid.
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we conclude that the non-uniform responses that we observe cannot be a consequence of payoff hedging if

the underlying true belief is uniform.

4.3 ”External” Inconsistency of Responses

In this and the next subsection, we try to shed light on the question of whether the non-uniform responses,

and particularly the CSP responses, reflect truly-held subjective beliefs or not. If not, such responses could

be noisy reports of underlying well-defined subjective beliefs, or they could reflect a lack of well-defined

subjective beliefs or confusion, responses we refer to as “pure noise.”

We begin by asking whether there is at least some evidence of the non-uniform responses being consis-

tent with an “external” behavior, particularly bidding. We define the response of a subject to be externally

consistent if this subject’s bid maximizes EU under some (strictly increasing) utility function and under some

belief of the opponent’s bid that, when aggregated within each of the 5 bins, results in the given response.

This is, admittedly, a fairly non-restrictive definition. However, it is arguably the only possible one in the

absence of knowledge of subject domain-specific risk attitude and in the absence of assumptions on how be-

liefs summarized by a response are distributed within the individual bins. Based on this definition, the only

subjects that might have externally inconsistent responses are: (a) those whose bid exceeds the value when

the probability of winning at this bid is strictly positive; (b) those whose bid results in a zero probability of

winning when there is a higher bid at which the auction could be profitably won with a positive probability;

(c) those whose bid does not exceed the value, but could be reduced without affecting a positive probability

of winning. No subject overbid their value, making (a) irrelevant. Only 3 subjects have a guaranteed zero

probability of winning given their response and only 2 of these fit (b). Another 4 subjects fit (c). That is, only

6 out of 379 subjects (about 1.6% of the sample) display externally inconsistent responses. The remaining 373

subjects have externally consistent responses.

Given that the concept of external consistency imposes relatively little discipline on the responses, we

also check for the relationship between responses and bids across subjects. This exercise is motivated by

considering how one’s EU-maximizing bid would change if the belief of the opponent’s bid were to shift to the

right (toward higher bids of the opponent) in the sense of first-order stochastic dominance (a downward shift

in cdf). Holding the utility function constant, such shift of beliefs might be expected to lead to a higher bid.26

26This is not the case for all possible belief shifts to the right in the sense of first-order stochastic dominance. However, a simple
sufficient, but not a necessary, condition for the bid to (weakly) increase is that the after-shift belief cdf G(·) satisfies, relative to the
pre-shift belief cdf F(·), that G(b1)/F(b1) ≤ G(b2)/F(b2) for any b1 < b2 such that F(b1) > 0. To see this, let u(·) be the utility
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To examine the extent to which this theoretical comparative static is borne in between-subject comparisons,

we rank-correlate across subjects their bid with the probability implied by the response that the bid of the

opponent does not exceed the upper boundary of Bin i, repeating the exercise for i ∈ {1, .., 4}. To make this

exercise meaningful as a reflection of the comparative static discussed above, we must assume that subjects

reporting lower probabilities up to Bin i are not systematically more risk averse than subjects reporting higher

probabilities. We perform the rank-correlation computations for four groups of subjects. In the first group, we

use all 373 externally consistent subjects. In the second group, we use only the externally consistent subjects

with non-uniform responses. Next, we split this group into subjects with Weak-Semi-CSP responses (the third

group) and others (the fourth group). In Auction 60/60 and Auction 60/60 expand, we rescale both bids and

belief bin boundaries by a factor of 100/60 so that they are comparable to the other treatments. The resulting

rank-correlations are presented in Table 5.

We observe that the rank correlations are negative and, with the exception of one case, statistically (highly)

significant (even after a Bonferroni correction for multiple testing). That is, reporting lower probabilities up

to Bin i (hence assigning higher probabilities above Bin i) is indeed significantly correlated with higher bids.

This is a very broad and robust observation. It holds within all four considered groups, which comprise both

wide and successively narrower sub-samples of the data. This observation provides further evidence that

non-uniform responses in general, and Weak-semi-CSP responses in particular, cannot be dismissed as pure

noise. However, it is unclear to what extent the responses reflect true ex ante beliefs that subjects hold before

they decide on their bid and which have a causal impact on their bids. Given that subjects had to decide on

their bids before being probed for their beliefs, their responses might also be driven by an ex-post justification

of the submitted bids.

4.4 ”Internal” Inconsistency of Responses

Despite the finding that non-uniform responses cannot in general be dismissed as pure noise, there might be

between-subject differences in whether these responses reflect truly-held subjective beliefs, or noisy reports of

underlying well-defined subjective beliefs, or pure noise. In this subsection, we provide evidence that sheds

light on these distinctions.

function normalized such that u(0) = 0. Then the expected payoff from bidding b when having the belief F(·) is u(v − b)F(b).
We then have that if for b1 < b2 with F(b1) > 0 it is the case that u(v − b1)F(b1) ≤ u(v − b2)F(b2), it must also be the case that
u(v − b1)G(b1) ≤ u(v − b2)G(b2). As a result, whenever b2 generates at least as high an expected utility as b1 under F(·), it does
so also under G(·), and a similar implication analogously holds for strict inequalities as well. Hence the peak of the expected utility
function cannot move to the left under G relative to F, and will typically move to the right.
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To streamline exposition, in this subsection we refer to one’s belief report about the bid of the opponent as

response 1 (this is what we have referred to as “response” above), and we refer to one’s winning probability

report as response 2. We define the pair of responses of a subject to be internally consistent if there exists a belief

about the opponent’s bid such that: a) it can be aggregated within the 5 bins to reconstruct response 1; b)

given these beliefs, the implied probability of winning the auction at the submitted bid is equal to response 2.

If a subject’s responses are internally consistent, there is an argument for considering such responses to reflect

truly held beliefs.

If a subject’s responses are not internally consistent, we next ask whether they could be considered to

be noisy reports of well-defined subjective beliefs. In such case, assuming that noise in the two responses

is independent, we expect the two responses to become internally consistent once noise is removed from

response 1 (correction 1) or response 2 (correction 2). If the pair of responses of an internally inconsistent

subject becomes internally consistent after at least one of the two corrections, we consider that subject to have

well-defined subjective beliefs. In the opposite case, we consider that subject’s beliefs not to be well defined

and hence the responses to be pure noise.27

Applicability of this methodology is limited by the fact that the only way to identify the parts of the two

responses accounted for by noise is to posit the true subjective beliefs. If such beliefs were allowed to be

subject-specific, one could obtain a 100% internal consistency rate after correction 1 or after correction 2 by

choosing a subjective belief that perfectly matches response 2 or response 1, respectively. Hence to render the

exercise meaningful, we restrict attention to subject non-specific beliefs. Among infinitely many possibilities,

we restrict attention only to the case of the subjective beliefs being uniform. This choice is motivated by the

shape of the objective distribution. This means that, under correction 1, response 1 is replaced by the uniform

response. Analogously, under correction 2, response 2 is replaced by the objective probability of winning the

auction at the submitted bid given the uniform distribution of the opponent’s bid. As a consequence, we

might end up classifying the responses of some internally inconsistent subjects with non-uniform subjective

beliefs as pure noise as opposed to noisy reports of well-defined subjective beliefs just because we did not

consider the correct subjective beliefs. Also, we might end up with such erroneous pure-noise classification

even if the true subjective beliefs are uniform but the noise in the two responses is so large that none of the two

corrections establishes internal consistency. Hence the incidence of pure noise responses in our data should

27Performing both noise corrections simultaneously mechanically establishes internal consistency. That is why we do not consider
such exercise.
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be taken as an upper bound on the true incidence of not-well-defined beliefs.

Table 6 reports results of the consistency and correction classification. We observe that, overall, about

65% of responses are internally consistent. For the uniform-response subjects, it is almost 77%, whereas for

the non-uniform-response subjects, it is about 60%. For the Weak-Semi-CSP subjects in particular, 66% of

responses are internally consistent. This implies that about three quarters of uniform responses, two thirds

of single-peaked responses and 60% of non-uniform responses can be thought of as representing true beliefs.

Performing one or the other correction establishes internal consistency for about another quarter of responses

in each of these three groups (for the uniform response group, this happens by construction). That is, (at least)

about a quarter of the non-uniform responses in general, and the single-peaked responses in particular, can

be thought of as being noisy reports of a well-defined underlying (uniform or non-uniform) subjective belief.

Finally, (at most) about 14% of the non-uniform responses in general and 10% of the single-peaked responses

in particular can be thought of as pure noise.

This exercise implies that a majority of non-uniform responses might indeed reflect true subjective beliefs.

Only for a minority (at most one seventh) of non-uniform responses there is little evidence of any other expla-

nation but pure noise. And as discussed above, even this fraction should be taken as an upper bound on the

true incidence of pure noise responses in the data.

5 Implications for biases in Bayesian updating

In this section, we discuss implications of the central tendency bias on reported biases in Bayesian updating

when there are more than 2 ordered states of the world. It is well-known that subjects often have difficulty

properly executing the Bayes’ rule.28 One well-documented bias is conservatism, i.e., the tendency of subjects to

insufficiently adjust their posteriors to new information (Phillips and Edwards, 1966).29 Our results suggest an

explanation for conservatism in settings where the new information is relatively extreme. If subjects perceive

the prior distribution to be less variable than that which the experimenter attempts to induce, we should

observe, in response to extreme new information, subjective posteriors closer to priors than the experimenter

28A sample of this large literature would include Kahneman and Tversky (1973), Bar-Hillel (1980), Grether (1980, 1992), Weber
(1994), Gigerenzer and Hoffrage (1995), El-Gamal and Grether (1995), Zizzo, Stolarz-Fantino, Wen, and Fantino (2000), Sedlmeier and
Gigerenzer (2001), Kahneman and Frederick (2002), Charness, Karni, and Levin (2007, 2010), Oechssler, Roider, and Schmitz (2009),
Achtziger and Alós-Ferrer (2013), Hawkins et al. (2015), and Cassey et al. (2016).

29Also see Beach (1968), Marks and Clarkson (1972), De Swart, J. H. (1972), Griffin and Tversky (1992), Erev, Wallsten, and Budescu
(1994), Oechssler, Roider, and Schmitz (2009), and Corner, Harris, and Hahn (2010).
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expects.30 To see how our results can imply behavior consistent with conservatism, consider the following

example. Suppose that there are 5 ordered states of the world, ωi = i for every i ∈ {1, ..., 5}. Also suppose

that there is a uniform prior on the states, Pr(ωi) = 0.2 for every i ∈ {1, ..., 5}. The subject will receive one

signal, si ∈ {1, ..., 5}. The signal matches the state with probability 0.8, i.e., Pr(si|ωj) = 0.8 if i = j. The

signal does not match the state with probability 0.2, where there is a uniform on the remaining states, i.e.,

Pr(si|ωj) = 0.05 if i 6= j. Therefore, upon observing the extreme signal s5, a Bayesian subject will report a

posterior of

Pr(ω5|s5) =
Pr(s5|ω5)Pr(ω5)

∑5
i=1 Pr(s5|ωi)Pr(ωi)

= 0.8.

Further, the expected value of the state will be

EV =
5

∑
i=1

ωi ∗ Pr(ωi|s5) = 4.5.

However, suppose the subject has beliefs that are not as the experimenter specified. Rather than uniform,

consider the case where the subject has prior beliefs that exhibit the central tendency bias, Pr(ω1) = 0.15,

Pr(ω2) = 0.2, Pr(ω3) = 0.3, Pr(ω4) = 0.2, and Pr(ω5) = 0.15. Upon observing the extreme signal s5, the

subject will report a posterior of Pr(ω5|s5) = 0.738 and an expected value of EV = 4.38. Since the reported

expected value is insufficiently sensitive to the extreme signal, the experimenter will conclude that the subject

exhibits behavior consistent with conservatism.

Another bias, overprecision (or Bayesian overconfidence), describes a situation where the variance of poste-

rior beliefs is less than that justified by the acquired information. For instance, there is evidence that subjects

facing a uniform distribution of events tend to hold updated beliefs that, even though unbiased on average,

are characterized by a lower variance than what Bayesian updating implies (Harrison and Swarthout, 2019).

Rather than a feature of the updating process, however, overprecision could be rooted in (or at least affected

by) the ex ante beliefs, as long as they do not reflect the assumed underlying distribution but they are instead

characterized by a central tendency bias as shown by our results.

Consider the same example above, but this time receiving the signal s3. The Bayesian posterior belief

starting from a uniform prior should be:

30See He and Xiao (2017) for a related model. Also, Benjamin, Rabin, and Raymond (2016) and Kovach (2015) propose other
models of conservatism.
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Pr(ω1|s3) = 0.05; Pr(ω2|s3) = 0.05; Pr(ω3|s3) = 0.8; Pr(ω4|s3) = 0.05; Pr(ω5|s3) = 0.05.

When the agent holds prior beliefs that exhibit the central tendency bias as in the example above, the posterior

beliefs are instead:

Pr(ω1|s3) ' 0.027; Pr(ω2|s3) ' 0.036; Pr(ω3|s3) ' 0.873; Pr(ω4|s3) ' 0.036; Pr(ω5|s3) ' 0.027.

While unbiased on average (EV = 3), posterior beliefs are characterized by overprecision. In fact, the distri-

bution is more concentrated than the Bayesian posterior beliefs given a correct prior (the variance is equal to

σ2 ' 0.29 instead of σ2 = 0.50.)

Thus the central tendency bias in prior beliefs, as found in our experiment, may offer an explanation for

conservatism and overprecision in settings where there are more than 2 ordered states of the world. In other

words, another explanation for conservatism and overprecision, rather than subjects not believing or not fully

exploiting the information received, is that subjects have prior beliefs that are more concentrated in the middle

of the ordered state space than the objective distribution.

6 Discussion

In our experiment, we describe the distribution of bids of a random-bid auction opponent as being uniform.

We subsequently elicit beliefs of this distribution. To our surprise, we find evidence that the reported beliefs

are largely non-uniform and that many tend to have a central single peak.

The judgments literature has found such a central tendency bias in other settings. Our results suggest

that the central tendency bias is more general than the collection of one-at-a-time judgments. Rather, the

central tendency bias can also be observed when subjects report their beliefs of a probability distribution that

is known to be uniform. Even more strikingly, this happens despite the subjects demonstrating the ability to

compute probabilities of events drawn from the uniform distribution. Moreover, many of the central tendency

bias experiments are not incentivized, whereas we find evidence of this bias in an incentivized belief elicitation

procedure.

We show that the central tendency bias in not an artefact of our experimental design (via incentives inher-
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ent in the QSR or multiple-stage payoff hedging). Rather, there is some indicative evidence that the reported

beliefs exhibiting a central tendency bias capture, or at least approximate, truly held beliefs for most of the

subjects. This evidence draws upon consistency of reported beliefs with another belief report and with the

auction bid. If confirmed by future research, such finding would imply that it is not easy to control beliefs in

laboratory.

The central tendency bias offers an explanation for well-known biases in Bayesian updating, such as con-

servatism and overprecision. In studies of biases in Bayesian updating, it is usually assumed that the subjects

correctly internalize the induced prior distribution. Our results suggest that this is not necessarily the case.

Conservatism and overprecision can also be rationalized by subjects holding prior beliefs that are more con-

centrated in the middle of the ordered state space than the objective distribution. The central tendency bias

also suggests that probabilistic forecasts (rather than point forecasts) of events might have less variance than

the actual events. While there is mixed evidence of this in macroeconomic forecasts (Smyth and Ash, 1981;

Stekler, 1975),31 we are interested to learn whether this implication of our results can be found in studies of

predictions of uncertain events.

Although we observe the central tendency bias in seven different experimental settings, we are interested

to learn the extent to which our results are robust to different stochastic distributions, different elicitation

specifications (for instance, bins that do not have identical sizes), and other experimental details. We hope

that future experimental work can shed light on the extent to which our results are robust.
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Schlag, Karl H. and van der Weele, Joël J. (2015): ”A method to elicit beliefs as most likely intervals,”

Judgment and Decision Making, 10(5), 456–468.

Schotter, Andrew and Trevino, Isabel (2014): ”Belief elicitation in the laboratory,” Annual Review of Eco-

nomics, 6(1), 103–128.

Sedlmeier, Peter and Gigerenzer, Gerd (2001): ”Teaching Bayesian reasoning in less than two hours,”

Journal of Experimental Psychology: General, 130(3), 380–400.

Simonson, Itamar and Tversky, Amos (1992): ”Choice in context: Tradeoff contrast and extremeness aver-

sion,” Journal of Marketing Research, 29(3), 281–295.

Smyth, David J. and Ash, J. C. K. (1981): ”The underestimation of forecasts and the variability of predic-

tions and outcomes,” Bulletin of Economic Research, 33(1), 37–44.

Stekler, Herman O. (1975): ”Why do forecasters underestimate?” Economic Inquiry, 13(3), 445–449.

Stevens, S. S. and Greenbaum, Hilda B. (1966): ”Regression effect in psychophysical judgment,” Perception

and Psychophysics, 1(5), 439–446.

Weber, Elke U. (1994): ”From subjective probabilities to decision weights: The effect of asymmetric loss

functions on the evaluation of uncertain outcomes and events,” Psychological Bulletin, 115(2), 228–242.

30



Winkler, Robert L. and Murphy, Allan H. (1970): ”Nonlinear utility and the probability score.” Journal of

Applied Meteorology, 9(1), 143–148.

Zizzo, Daniel John, Stolarz-Fantino, Stephanie, Wen, Julie, and Fantino, Edmund (2000): ”A violation of

the monotonicity axiom: Experimental evidence on the conjunction fallacy,” Journal of Economic Behavior and

Organization, 41(3), 263–276.

31



A Proofs

Proof of Proposition 1. The decision-maker solves

max
r1,..,rn∈[0,1]

n

∑
i=1

piu

(
α− β + 2βri − β

n

∑
j=1

r2
j

)
s.t. r1 + ... + rn = 1.

At the beginning, we are going to ignore the constraint r1 + ... + rn = 1 and focus on the resulting “uncon-

strained” problem subject only to the usual probability bounds of 0 and 1. Note that πi is strictly increasing

and concave in ri on [0, 1] with ∂πi/∂ri|ri=1 = 0, whereas πj, j 6= i, is strictly decreasing and concave in ri

on [0, 1] with ∂πj/∂ri|ri=0 = 0. This implies that, starting from ri = 0, a small increase in ri has a positive

first-order effect on πi without any counterbalancing negative first order effect on πj, j 6= i. Since u′(·) is

bounded away from 0 and ∞, this implies that r∗i > 0 if pi > 0. Likewise, starting from p̂i = 1, a small de-

crease in ri has a positive first-order effect on πj, j 6= i, without any counterbalancing first order effect on πi,

implying that r∗i < 1 if pi < 1. Moreover, if pi = 0, it is trivial to see that r∗i = 0 even without considering the

lower probability bound of 0, and if pi = 1, it is trivial to see that r∗i = 1 even without considering the upper

probability bound of 1. This series of observations jointly implies the equivalent of part 1 of the Proposition

for the unconstrained problem. It also implies that the probability bounds of 0 and 1 are never binding in this

problem and can therefore be ignored.

For the equivalent of part 2 of the Proposition for the unconstrained problem, suppose that pi > pj and,

by contradiction, r∗i ≤ r∗j . First, suppose that r∗i = r∗j . By part 1 of the Proposition, it then must be the case that

0 < r∗i = r∗j < 1. Now, starting from this point, consider a small increase in ri and an exactly offsetting small

decrease in rj. This change has a positive first-order effect on πi, an offsetting negative first-order effect on πj

of the same absolute size and no first-order effect on πk for k 6= i, j. Since pi > pj and u′(·) is bounded away

from 0 and ∞, such perturbation increases EU, contradicting optimality of r∗. Second, suppose that r∗i < r∗j ,

implying that π∗i < π∗j . Now consider resetting ri and rj such that ri = r∗j and rj = r∗i . This change does not

affect πk for k 6= i, j. As a result, the EU changes by

[piu(π∗j ) + pju(π∗i )]− [piu(π∗i ) + pju(π∗j )] = (pi − pj)[u(π∗j )− u(π∗i )] > 0.

But this means that such a change increases EU, contradicting optimality of r∗. Hence if pi > pj, it must be

the case that r∗i > r∗j .
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Since the probability bound constraints can be ignored as argued above, any solution (r∗1 , .., r∗n) to the

unconstrained problem must satisfy the usual first-order necessary conditions

2βpku′(π∗k )− 2βr∗k
n

∑
j=1

pju′(π∗j ) = 0, k = 1, .., n, (1)

where π∗i is the resulting payoff if state i is realized. Summing these n conditions gives

2β
n

∑
k=1

pku′(π∗k )− 2β

(
n

∑
k=1

r∗k

)
n

∑
j=1

pju′(π∗j ) = 0,

implying that r∗1 + ... + r∗n = 1. As a result, any solution to the unconstrained problem also solves the con-

strained problem. This observation hence proves the first two parts of the proposition also for the constrained

problem.

For the part 3 of the Proposition, if pi = pj = 0, then r∗i = r∗j = 0 is implied by part 1 of the Proposition.

Now suppose that pi = pj ∈ (0, 0.5]. Then part 1 of the Proposition implies that r∗i , r∗j ∈ (0, 1). By (1) it then

must be the case that
r∗i
r∗j

=
u′(π∗i )
u′(π∗j )

. (2)

Clearly, if r∗i = r∗j , then π∗i = π∗j , and (2) is satisfied. Next, we are going to show that (2) cannot be satisfied

for r∗i 6= r∗j . Suppose, by contradiction, that there exists r∗ with, without loss of generality, r∗i > r∗j and

r∗i , r∗j ∈ (0, 1) such that (2) is satisfied. Let r̄ ≡ (r∗i + r∗j )/2. Now consider a different report profile r′ which

differs from r∗ by both r∗i and r∗j being replaced by r̄, while the other reported probabilities are left unchanged.

Now, starting from r′, gradually increase ri, by the same amount gradually decrease rj, and keep all the other

reports fixed until r∗ is reached. At any point along this trajectory, we have that

d
(

ln
ri

rj

)
= d ln ri − d ln rj

=
dri

ri
+
−drj

rj

=
dri

ri
+

dri

rj

= dri

(
1
ri
+

1
rj

)
≥ 4dri.
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The last inequality follows from the constraint ri + rj ≤ 1. Equality potentially applies only at r′, otherwise a

strict inequality applies. At any point along this trajectory, we also have that

d
[

ln
u′(πi)

u′(πj)

]
= d ln u′(πi)− d ln u′(πj)

=
u′′(πi)

u′(πi)
dπi +

u′′(πj)

u′(πj)
(−dπj). (3)

Now note that

dπi = 2βdri − 2β(ridri + rjdrj)

= 2βdri − 2β(ri − rj)dri

= 2β(1− ri + rj)dri

and

−dπj = 2β(−drj) + 2β(ridri + rjdrj)

= 2βdri + 2β(ri − rj)dri

= 2β(1 + ri − rj)dri,

implying that dπi > 0, −dπj > 0 and

dπi − dπj = 4βdri.

These results and the assumption of part 3 of the Proposition imply that in (3) we have that

d
[

ln
u′(πi)

u′(πj)

]
=

u′′(πi)

u′(πi)
dπi +

u′′(πj)

u′(πj)
(−dπj)

≤ β−1(dπi − dπj)

= 4dri.

Overall, we therefore have at any point along the trajectory from r′ to r∗ that

d
[

ln
ri

rj
− ln

u′(πi)

u′(πj)

]
≥ 0,
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with equality potentially applying only at r′ and a strict inequality applying otherwise. But this result and (2)

then imply that
r̄
r̄
<

u′(π̄)

u′(π̄)
,

where

π̄ ≡ α− β + 2βr̄− β

(
∑

k 6=i,j
r∗2k + 2r̄2

)
,

a clear contradiction. Therefore if pi = pj ∈ (0, 0.5], then, under the assumption of part 3, it must be the case

that r∗i = r∗j .

For the part 4 of the Proposition, if pi > pj > 0, it follows from parts 1 and 2 of the Proposition that

r∗i > r∗j > 0. If u(·) is linear, then the result that r∗i = pi and r∗j = pj follows directly from (1) for events i and

j. If u(·) is non-linear, then (1) implies that

r∗i
r∗j

=
pi

pj

u′(π∗i )
u′(π∗j )

.

Recall that πi (πj) is strictly increasing in ri (rj). As a result, π∗i > π∗j . Hence if u(·) is strictly concave,

u′(π∗i )/u′(π∗j ) < 1, implying that r∗i /r∗j < pi/pj, whereas if u(·) is strictly convex, u′(π∗i )/u′(π∗j ) > 1,

implying that r∗i /r∗j > pi/pj.

Proof of Proposition 2. The decision-maker solves

max
r1,...,r5∈[0,1]

∑
i<k

0.2u

(
s + 10 + 20ri − 10

5

∑
j=1

r2
j

)
+ 0.2qu

(
s + 10 + 20rk − 10

5

∑
j=1

r2
j

)

+ 0.2(1− q)u

(
10 + 20rk − 10

5

∑
j=1

r2
j

)
+ ∑

i>k
0.2u

(
10 + 20ri − 10

5

∑
j=1

r2
j

)

s.t. r1 + · · ·+ r5 = 1.

Following the same steps as in the proof of part 1 of Proposition 1, it follows that the probability bounds are

never binding in this problem and can therefore be ignored. Hence any solution (r∗1 , . . . , r∗5) to the uncon-

strained problem must satisfy the usual first-order necessary conditions which, after canceling out a common
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multiplier 0.2× 20, are given by

u′(π∗i )− r∗i

[
∑
j 6=k

u′(π∗j ) + qu′(π∗kH) + (1− q)u′(π∗kL)

]
= 0, i 6= k,

[
qu′(π∗kH) + (1− q)u′(π∗kL)

]
− r∗k

[
∑
j 6=k

u′(π∗j ) + qu′(π∗kH) + (1− q)u′(π∗kL)

]
= 0,

where the asterisk denotes the resulting payoff if the corresponding state is realized. Summing these 5 condi-

tions gives

[
∑
j 6=k

u′(π∗j ) + qu′(π∗kH) + (1− q)u′(π∗kL)

]
−
(

5

∑
j=1

r∗j

)[
∑
j 6=k

u′(π∗j ) + qu′(π∗kH) + (1− q)u′(π∗kL)

]
= 0,

implying that r∗1 + ... + r∗5 = 1. As a result, any solution to the unconstrained problem also solves the con-

strained problem. The first-order conditions also imply that

r∗i
u′(π∗i )

=
r∗k

qu′(π∗kH) + (1− q)u′(π∗kL)
, i 6= k. (4)

Since πj is strictly increasing in rj and u(·) is strictly concave, it follows that: (1) if k > 1 and q < 1, then

r∗i = r∗L for any i < k for some strictly positive (part 1 of Proposition 1) r∗L and r∗L < r∗k ; (2) if k > 1 and q = 1,

then r∗i = r∗L for any i ≤ k for some strictly positive r∗L; (3) if k < 5, then r∗i = r∗H for any i > k for some strictly

positive r∗H and r∗H > r∗k . The fact that r∗1 + ... + r∗5 = 1 then implies that: (1) if k > 1, then r∗L < 0.2, unless

k = 5 and q = 1, in which case r∗L = r∗k = 0.2; (2) if k < 5, then r∗H > 0.2.

B Supplemental analysis

We now explore the extent of the general deviation from the optimal uniform responses. We define a response

to be non-uniform if a distribution of weights other than (20, 20, 20, 20, 20) was given. We also perform χ2

goodness-of-fit tests for a uniform distribution for each subject. We report the distribution of p-values below.

We summarize this analysis in Table B1.

Despite that there are incentives for correctly responding with uniform weights, a majority of subjects

offered responses that are significantly different from uniform. More than 70% of subjects gave a response

other than a uniform and more than 55% with a response that is significantly different from a uniform at
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Table B1: Non-uniform responses and corresponding results of χ2 tests of uniformity

Treatment Non-Uniform p < 0.05 p < 0.01 p < 0.001 Subjects

Focal 60 39 (75.0%) 33 (63.4%) 30 (57.7%) 26 (50.0%) 52
Sym 60 41 (69.5%) 37 (62.7%) 37 (62.7%) 34 (57.6%) 59
Asym 60 40 (72.7%) 36 (65.5%) 34 (61.8%) 33 (60.0%) 55
Asym 80 25 (78.1%) 24 (75.0%) 23 (71.9%) 21 (65.6%) 32
Auct 100 w/o 40 (67.8%) 39 (66.1%) 38 (64.4%) 35 (59.3%) 59
Auct 100 w 46 (76.7%) 42 (70.0%) 39 (65.0%) 34 (56.7%) 60
BRET w 44 (71.0%) 38 (61.3%) 34 (54.8%) 28 (45.2%) 62
Pooled 275 (72.6%) 249 (65.7%) 234 (62.0%) 211 (55.7%) 379

Notes: We list the number (and percent) of subjects who report non-uniform responses. We also list
the number of subjects who, according to a χ2 test of goodness-of-fit have p-values such that their
responses are significantly different than a uniform.

0.001.

In the analyses summarized in Tables 3 and 4, we found evidence that beliefs of the random-draw oppo-

nent’s strategy was single peaked. In order to further investigate the nature of the central single peak, we

employ another test of whether responses exhibit the central single peak. Here we perform regressions with

weight as the dependent variable and the bin as the independent variable. To accomplish this, we define the

Bin code variable as follows: Bin code for Bin 1 is − 4
5 , Bin 2 is 1

5 , Bin 3 is 6
5 , Bin 4 is 1

5 , and Bin 5 is − 4
5 . These

codes obviously have a central single peak. Further, these codes sum to zero and will therefore not affect the

intercept estimate. We summarize these regressions in Table B2

Table B2: Regressions with weight as dependent variable

(1) (2)
Intercept 20.000∗∗∗ 20.000∗∗∗

(0.303) (0.278)
Bin code − 6.999∗∗∗

(0.371)
AIC 15152.8 14827.2

Notes: Notes: We provide the coefficient estimates with the standard
errors in parentheses. Both regressions have 1895 observations. AIC
refers to the Akaike information criterion (Akaike, 1974). ∗∗∗ de-
notes p < 0.001.

As expected, we estimate the intercept to be 20 in both regressions. In regression (2) we see that the Bin

code variable is significant at 0.001. We interpret this as corroborating the evidence found in Table 4 of a
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central single peak.

C Experimental instructions

C.1 General instructions

Initial screen:

You are about to participate in an experiment in which following the instructions carefully, making good

decisions, and with a bit of luck, you can earn a considerable amount of money. Different participants may

earn different amounts according to their choices. For your participation in the experiment you will earn an

additional show-up fee of 2.5 Euro.

All the monetary values during the experiment are expressed in ECU (Experimental Currency Units).

At the end of the experiment, the ECUs you earned will be converted into a cash payoff in Euro using the

exchange rate 1 ECU = 20 euro cents and paid in cash privately.

New screen:

The experiment consists of 4 stages in the following order:

1. An Instruction Stage that we are currently going through. At the end of this stage you will be asked

some control questions to verify your understanding of the task. After everybody answers correctly, we

will proceed with the following stage.

2. A Decision Stage, in which you will make decisions and answer questions relevant towards your payoff.

3. A Demographic Questionnaire, in which you will be asked a few questions about your demographic

and academic background.

4. A Feedback Stage, in which your earnings from the experiment will be determined and announced to

you privately. You will not be given any feedback on the monetary outcome of your decisions before the

Feedback Stage.

New screen:

You are about to participate in an auction against a hypothetical opponent. In this auction, there is a

fictitious object for sale that you value at (60/80/100) ECUs. That is, if you win the auction, you obtain the
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object and receive (60/80/100) ECUs, but from this amount you have to subtract the price you will have to

pay for the object.

Your task in this auction is to place a bid. This bid can be any integer number from 1 through (60/100)

ECUs. A bid is a binding price offer to pay for the object in case you win the auction. Your opponent also

places a bid that will be randomly drawn from the set of integers 1 through (60/100) ECUs. Each of these

integers is equally likely to be drawn.

The winner of the auction is the bidder who places the highest bid. In case the two bids coincide, you are

the winner. That is, you win if your bid is at least as high as your opponent’s bid, otherwise you do not win.

The winner pays the price for the object equal to his/her bid. That is, if you win, you receive (60/80/100)

ECUs minus your bid. If you do not win, you do not receive anything and you do not pay anything either.

New screen:

Please answer the following control questions. Answers to these questions are not relevant to your earn-

ings. The computer will give you a feedback on whether your responses are correct or not. If you have any

problems in answering, please raise your hand and an experimenter will come to assist you. After everyone

answers correctly all the questions, we will proceed with the decision stage.

1. Suppose that your opponent bids 25 ECUs.

a. If you bid 21 ECUs, how much will you earn in ECU?

b. If you bid 38 ECUs, how much will you earn in ECU?

c. If you bid 62 ECUs, how much will you earn in ECU?

d. If you bid 79 ECUs, how much will you earn in ECU?

2. Now suppose that your opponent bids 75 ECUs.

a. If you bid 21 ECUs, how much will you earn in ECU?

b. If you bid 38 ECUs, how much will you earn in ECU?

c. If you bid 62 ECUs, how much will you earn in ECU?

d. If you bid 79 ECUs, how much will you earn in ECU?

3. What is the probability of your opponent’s bid being in the range:

39



a. 39 through 72

b. 22 though 47

c. 1 through 10

d. 16 through 56

e. 62 through 100

4. Your opponent’s bid depends on your bid. YES/NO

5. Suppose the bid of your opponent is identical to your bid. Will you earn a positive amount? YES/NO

Please note that the numbers used in these questions are for illustrative purposes only. They are not meant

to be a guidance for your choice.

Question 1 stage:

New screen:

Before drawing your opponent’s bid, we ask you to answer two short questions that allow you to earn

some additional money. You will be paid for one of these two questions. At the end of the experiment, one

of the participants will flip a coin to decide which question will be paid. You can earn up to 20 ECUs for the

selected question.

Question 1. Please report your belief of your opponent’s bid. We will provide five intervals. You are asked

to report how likely you think your opponent’s bid is to be in each of these intervals. The number in each

input field you are asked to fill in is your percentage estimate of the likelihood of your opponent’s bid being

in that particular interval. The five percentages need to add up to 100. There will be an automatic checker to

tell you what the current sum is as you enter the numbers.

You will be paid based on how closely your estimates match your opponent’s bid. The exact formula (the

so-called quadratic scoring rule) is complicated and the experimenters will be happy to explain it after the

end of the experiment to those who are interested. However, in order to maximize your expected earnings

from this procedure, you should report these likelihoods truthfully according to what you believe.

Here is some advice on how to fill in the five input fields:

• If you believe that your opponent’s bid is more likely to be in a certain range, then assign higher per-

centages to intervals corresponding to that range and lower percentages to intervals corresponding to

other ranges.
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• If you believe that your opponent’s bid is equally likely to be in several different intervals, then assign

the same percentages to those intervals.

• Do not over-concentrate your assigned percentages in one or two intervals if you are not quite sure that

your opponent’s bid is in these intervals. Otherwise, if it turns out that your opponent’s bid is in some

other interval, you would earn little money from answering the question.

• On the other hand, do concentrate the entire 100 percent in one or two intervals if you feel confident that

your opponent’s bid is in this (these) interval(s). This will increase your earnings from answering this

question.

New screen:

Here we repeat Question 1 for your convenience. Please provide your answer using the input fields below.

Question 1. Please report your belief of your opponent’s bid. We will provide five intervals. You are asked

to report how likely you think your opponent’s bid is to be in each of these intervals. The number in each

input field you are asked to fill in is your percentage estimate of the likelihood of your opponent’s bid being

in that particular interval. The five percentages need to add up to 100. There will be an automatic checker to

tell you what the current sum is as you enter the numbers.

Question 2 stage:

New screen:

Question 2. Please report your perceived probability of winning and of not winning the auction given the

choice you made in the main task. The number in each box you are asked to fill in is your percentage estimate

of the likelihood of that event. The two percentages need to add up to 100. There will be an automatic checker

to tell you what the current sum is as you enter the numbers. You will be paid based on how closely your

estimates match the outcome of the auction. The exact formula and the suggestions how to increase your

payoffs are the same as in Question 1.

C.2 Treatment-specific instructions

C.2.1 Auction 100/100 with visualization treatment

New screen:
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To help you visualize your decision, on your display you will see a square composed of 100 boxes num-

bered 1 through 100. One of these boxes corresponds to your opponent’s bid. You do not know which one it

is, however. You only know that it can be any of the 100 boxes with equal probability.

You initiate the bidding process by first entering your intended decision into an input field and clicking

on ”Evaluate.” At this point, the originally grey boxes change color. The boxes turning blue are those whose

number is less than or equal to your bid. The boxes turning yellow are those whose number exceeds your bid.

If the opponent’s bid corresponds to one of the blue boxes, you will earn the difference between 100 ECUs

and your bid. If the opponent’s bid corresponds to one of the yellow boxes, your will earn zero. You are free

to evaluate different bids in this way.

When you are confident about your choice, submit it by clicking on the ”Submit” button and then recon-

firm it by clicking on ”Confirm”.

At the end of the experiment, after answering some questions and filling out a short questionnaire, we

will randomly determine the number of the box corresponding to your opponent’s bid. This will be done by

one of the participants randomly drawing a token from a bag containing 100 tokens numbered 1 through 100.

New screen:

Please choose your bid. Using the input field and the ”Evaluate” button, you are free to evaluate as many

different bids as you wish. The boxes turning blue are those whose number is less than or equal to your

bid. The boxes turning yellow are those whose number exceeds your bid. If the opponent’s bid corresponds

to one of the blue boxes, you will earn the difference between 100 ECUs and your bid. If the opponent’s bid

corresponds to one of the yellow boxes, your will earn zero. When you are ready to submit your final decision,

click on the ”Submit” button and then confirm your choice by clicking on ”Confirm”.

C.2.2 Auction 100/100 without visualization treatment

Identical to Auction 100/100 with visualization treatment but without visualization or mentions of visualiza-

tion.

C.2.3 Bomb Risk Elicitation Task treatment

New screen:

Your task is to decide on the number of boxes to collect out of 100 such boxes numbered 1 through 100. You
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collect the boxes starting from box number 1, continuing until the box whose number is equal to the number

of boxes you decide to collect. Exactly one of these 100 boxes contains a bomb. You do not know the bomb’s

location. You only know that it is equally likely to be in any of the 100 boxes.

If the number of the box in which the bomb is located is higher than the number of boxes you collected,

you do not collect the bomb and you earn 1 ECU for each collected box. If the number of the box in which the

bomb is located is lower than or equal to the number of boxes you collected, you do collect the bomb and you

earn zero.

New screen:

To help you visualize your decision, on your display you will see a square composed of 100 numbered

boxes. There is a bomb in one of these boxes. You do not know which one it is, however. You only know that

it can be in any of the 100 boxes with equal probability.

You initiate the decision process by first entering your intended decision into an input field and clicking

on ”Evaluate.” At this point, the originally grey boxes change color. The boxes turning yellow are those that

you are deciding to collect. The boxes turning blue are those you are deciding to not collect. If the bomb is in

one of the yellow boxes, you will earn zero. If the bomb is in one of the blue boxes, you will earn 1 ECU for

every (yellow) box collected. You are free to evaluate different numbers of collected boxes in this way.

At the end of the experiment, after answering some questions and filling out a short questionnaire, we will

randomly determine the number of the box containing the bomb. This will be done by one of the participants

randomly drawing a token from a bag containing 100 tokens numbered 1 through 100.

Instructions from Questions 1 and 2:

Identical to the Auction 100/100 with visualization treatment but ”your opponent’s bid” was replaced by

”the position of the bomb” and ”winning and of not winning the auction” was replaced by ”collecting and

not collecting the bomb.”

C.2.4 Auction 80/100 treatment

Identical to Auction 100/100 with visualization treatment but the value to the subject was 80.

Added to first screen in Auction 100/100 with visualization treatment:

Note that if you bid more than 80 you make losses in case you win.
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Added to second screen in Auction 100/100 with visualization treatment:

In case you bid more than 80 the boxes in excess turn red signaling that you would make losses if you win.

C.2.5 Auction 60/100 treatment

Identical to Auction 80/100 with visualization treatment but the value to the subject was 60 and the warnings

were for bids greater than 60.

C.2.6 Auction 60/60 treatment

New screen:

In this treatment both the value of the subject and of the opponent are set to 60.

Subjects bid choosing a number from 0 to 60, and report beliefs of the opponent’s bid which is uniformly

distributed in the interval 0-60.

New screen:

You are about to participate in an auction against a hypothetical opponent. In this auction, there is a

fictitious object for sale that you value at 60 ECUs. That is, if you win the auction, you obtain the object and

receive 60 ECUs, but from this amount you have to subtract the price you will have to pay for the object.

Your task in this auction is to place a bid. This bid can be any integer number from 1 through 60 ECUs.

A bid is a binding price offer to pay for the object in case you win the auction. Your opponent also places a

bid that will be randomly drawn from the set of integers 1 through 60 ECUs. Each of these integers is equally

likely to be drawn.

The winner of the auction is the bidder who places the highest bid. In case the two bids coincide, you are

the winner. That is, you win if your bid is at least as high as your opponent’s bid, otherwise you do not win.

The winner pays the price for the object equal to his/her bid. That is, if you win, you receive 60 ECUs minus

your bid. If you do not win, you do not receive anything and you do not pay anything either.

New screen:

To help you visualize your decision, on your display you will see a rectangle composed of 60 boxes num-

bered 1 through 60. One of these boxes corresponds to your opponent’s bid. You do not know which one it is,

however. You only know that it can be any of the 60 boxes with equal probability.
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You initiate the bidding process by first entering your intended decision into an input field and clicking

on ”Evaluate.” At this point, the originally grey boxes change color. The boxes turning blue are those whose

number is less than or equal to your bid. The boxes turning yellow are those whose number exceeds your bid.

If the opponent’s bid corresponds to one of the blue boxes, you will earn the difference between 60 ECUs and

your bid. If the opponent’s bid corresponds to one of the yellow boxes, you will earn zero. You are free to

evaluate different bids in this way.

At the end of the experiment, after answering some questions and filling out a short questionnaire, we

will randomly determine the number of the box corresponding to your opponent’s bid. This will be done by

one of the participants randomly drawing a token from a bag containing 60 tokens numbered 1 through 60.

C.2.7 Auction 60/60 expand treatment

New screen:

You are about to participate in an auction against a hypothetical opponent. In this auction, there is a

fictitious object for sale that you value at 60 ECUs. That is, if you win the auction, you obtain the object and

receive 60 ECUs, but from this amount you have to subtract the price you will have to pay for the object.

Your task in this auction is to place a bid. This bid can be any integer number from 1 through 60 ECUs.

A bid is a binding price offer to pay for the object in case you win the auction. Your opponent also places a

bid that will be randomly drawn from the set of integers 1 through 60 ECUs. Each of these integers is equally

likely to be drawn.

The winner of the auction is the bidder who places the highest bid. In case the two bids coincide, you are

the winner. That is, you win if your bid is at least as high as your opponent’s bid, otherwise you do not win.

The winner pays the price for the object equal to his/her bid. That is, if you win, you receive 60 ECUs minus

your bid. Note that if you bid more than 60 you make losses in case you win. If you do not win, you do not

receive anything and you do not pay anything either.

New screen:

To help you visualize your decision, on your display you will see a square composed of 100 boxes num-

bered 1 through 100. One of these boxes corresponds to your opponent’s bid. You do not know which one it

is, however. You only know that it can be any of the 60 boxes with equal probability.

You initiate the bidding process by first entering your intended decision into an input field and clicking
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on ”Evaluate.” At this point, the originally grey boxes change color. The boxes turning blue are those whose

number is less than or equal to your bid. In case you bid more than 60 the boxes in excess turn red signaling

that you would make losses if you win. The boxes turning yellow are those whose number exceeds your bid.

If the opponent’s bid corresponds to one of the blue or red boxes, you will earn the difference between 60

ECUs and your bid. If the opponent’s bid corresponds to one of the yellow boxes, your will earn zero. You

are free to evaluate different bids in this way.

At the end of the experiment, after answering some questions and filling out a short questionnaire, we

will randomly determine the number of the box corresponding to your opponent’s bid. This will be done by

one of the participants randomly drawing a token from a bag containing 60 tokens numbered 1 through 60.
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D Screenshots

Figure D1: Screenshot of the belief elicitation of the random-draw opponent’s strategy after a subject reports
weights that correctly sum to 100.
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Figure D2: Screenshot of the belief elicitation of the random-draw opponent’s strategy where the values do
not sum to 100.

Figure D3: Screenshot of the belief elicitation of the random-draw opponent’s strategy where the input boxes
are empty.
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Figure D4: Screenshot of the belief elicitation of the probability of winning the auction where the values sum
to 100.

Figure D5: Screenshot of the belief elicitation of the probability of winning the auction where the values do
not sum to 100.
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Figure D6: Screenshot of the belief elicitation of the probability of winning the auction where the values are
empty.
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