Z. Wang and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, vol.312, pp.242-248, 2006.

X. Wang, J. Song, J. Liu, and Z. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science, vol.316, pp.102-107, 2007.

Z. Wang, Towards self-powered nanosystems: from nanogenerators to nanopiezotronics, Adv. Funct. Mater, vol.18, pp.3553-67, 2008.

J. Briscoe and S. Dunn, Piezoelectric nanogenerators-a review of nanostructured piezoelectric energy harvesters, Nano Energy, vol.14, pp.15-29, 2015.

Z. Wang, X. Pan, Y. He, Y. Hu, H. Gu et al., Piezoelectric nanowires in energy harvesting applications, Adv. Mater. Sci. Eng, p.165631, 2015.

M. Malakooti, B. Patterson, H. Hwang, and H. Sodano, ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting, Energy Environ. Sci, vol.9, pp.634-677, 2016.

Ü. Özgür, Y. Alivov, C. Liu, A. Teke, M. Reshchikov et al., A comprehensive review of ZnO materials and devices, J. Appl. Phys, vol.98, p.41301, 2005.

R. Hinchet, S. Lee, G. Ardila, L. Montes, M. M. Wang et al., Performance optimization of vertical nanowire-based piezoelectric nanogenerators, Adv. Funct. Mater, vol.24, pp.971-978, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01002254

M. Malakooti, Z. Zhou, J. Spears, T. Shankwitz, and H. Sodano, Biomimetic nanostructured interfaces for hierarchical composites, Adv. Mater. Interfaces, vol.3, p.1500404, 2016.

M. Malakooti, Z. Zhou, and H. Sodano, Enhanced energy harvesting through nanowire based functionally graded interfaces, Nano Energy, vol.52, pp.171-82, 2018.

Y. Sun, G. Fuge, and A. , Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett, vol.396, pp.21-27, 2004.

M. Huang, Y. Wu, H. Feick, N. Tran, W. E. Yang et al., Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater, vol.13, pp.113-119, 2001.

Z. Pan, Z. Dai, and Z. Wang, Nanobelts of semiconducting oxides Science, vol.291, pp.1947-1956, 2001.

Y. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. Norton et al., Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy, Appl. Phys. Lett, vol.81, pp.3046-3054, 2002.

J. Wu and S. Liu, Low-temperature growth of wellaligned ZnO nanorods by chemical vapor deposition, Adv. Mater, vol.14, pp.215-223, 2002.

W. Park, D. Kim, S. Jung, and Y. , Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett, vol.80, pp.4232-4236, 2002.

M. Zheng, L. Zhang, G. Li, and W. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett, vol.363, pp.123-131, 2002.

L. Vayssieres, K. Keis, S. Lindquist, and A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, J. Phys. Chem. B, vol.105, pp.3350-3352, 2001.

S. Xu and Z. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties Nano Res, vol.4, pp.1013-98, 2011.

S. Guillemin, V. Consonni, E. Appert, E. Puyoo, L. Rapenne et al., Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires, J. Phys. Chem. C, vol.116, pp.25106-25117, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00781306

S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Brémond et al., Formation mechanisms of ZnO nanowires: the crucial role of crystal orientation and polarity, J. Phys. Chem. C, vol.117, pp.20738-20783, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067047

S. Guillemin, E. Appert, H. Roussel, B. Doisneau, R. Parize et al., Controlling the structural properties of single step, dip coated ZnO seed layers for growing perfectly aligned nanowire arrays, J. Phys. Chem. C, vol.119, pp.21694-703, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01545111

S. Guillemin, R. Parize, J. Carabetta, V. Cantelli, D. Albertini et al., Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition, Nanotechnology, vol.28, p.95704, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02073055

J. Liu, P. Fei, J. Song, X. Wang, C. Lao et al., Carrier density and Schottky barrier on the performance of DC nanogenerator, Nano Lett, vol.8, pp.328-360, 2008.

M. Allen, M. Alkaisi, and S. Durbin, Metal Schottky diodes on Zn, vol.89, p.103520, 2006.

R. Liu, A. Vertegel, E. Bohannan, T. Sorenson, and J. Switzer, Epitaxial electrodeposition of zinc oxide nanopillars on single, Chem. Mater, vol.13, pp.508-520, 2001.

K. Govender, D. Boyle, O. 'brien, P. Binks, D. et al., Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition, Adv. Mater, vol.14, pp.1221-1225, 2002.

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao et al., A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties, Nanotechnology, vol.16, pp.2567-74, 2005.

P. Gao, J. Lee, and Z. Wang, Multicolored ZnO nanowire architectures on trenched silicon substrates, J. Phys. Chem. C, vol.111, pp.13763-13772, 2007.

S. Xu, C. Lao, W. B. Wang, and Z. , Densitycontrolled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces, J. Mater. Res, vol.23, pp.2072-2079, 2008.

S. Xu, N. Adiga, S. Ba, T. Dasgupta, C. Wu et al., Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments, ACS Nano, vol.3, pp.1803-1815, 2009.

G. Niarchos, E. Makarona, and C. Tsamis, Growth of ZnO nanorods on patterned templates for efficient, large-area energy scavengers Microsyst, Technol, vol.16, pp.669-75, 2010.

S. Xu, Y. Qin, C. Xu, Y. Wei, Y. R. Wang et al., Nat. Nanotechnol, vol.5, pp.366-73, 2010.

J. Tian, J. Hu, S. Li, F. Zhang, J. Liu et al., Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires, Nanotechnology, vol.22, p.245601, 2011.

C. Opoku, A. Dahiya, C. Oshman, F. Cayrel, G. Poulin-vittrant et al., Fabrication of ZnO nanowire based piezoelectric generators and related structures Phys. Procedia, vol.70, pp.858-62, 2015.

M. Alenezi, S. Henley, and . Silva-s-r-p, On-chip fabrication of high performance nanostructured, ZnO UV detectors Sci. Rep, vol.5, p.8516, 2015.

S. Boubenia, A. Dahiya, G. Poulin-vittrant, F. Morini, K. Nadaud et al., A facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations Sci, p.15187, 2017.

L. Shen, N. Bao, K. Yanagisawa, Y. Zheng, K. Domen et al., Direct growth of comet-like superstructures of Au-ZnO submicron rod arrays by solvothermal soft chemistry process, J. Solid State Chem, vol.180, pp.213-233, 2007.

Y. Kim, C. Lee, Y. Hong, Y. Kim, S. Cheong et al., Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method, Appl. Phys. Lett, vol.89, p.163128, 2006.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai et al., Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst, J. Am. Chem. Soc, vol.130, pp.14958-14967, 2008.

J. Volk, T. Nagata, R. Erdélyi, I. Bársony, A. Tóth et al., Highly uniform epitaxial ZnO nanorod arrays for nanopiezotronics, Nanoscale Res. Lett, vol.4, pp.699-704, 2009.

R. Erdélyi, T. Nagata, D. Rogers, F. Teherani, Z. Horváth et al., Investigations into the impact of the template layer on ZnO nanowire arrays made using low temperature wet chemical growth Cryst, Growth Des, vol.11, pp.2515-2524, 2011.

G. Li, L. Jiang, S. Wang, X. Sun, C. X. Wu et al., Buffer-layer-assisted epitaxial growth of perfectly aligned oxide nanorod arrays in solution Cryst, Growth Des, vol.11, pp.4885-91, 2011.

V. Consonni, E. Sarigiannidou, E. Appert, A. Bocheux, S. Guillemin et al., Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity, ACS Nano, vol.8, pp.4761-70, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01067043

T. Cossuet, E. Appert, J. Thomassin, and V. Consonni, Polarity-dependent growth rates of selective area grown ZnO nanorods by chemical bath deposition Langmuir, vol.33, pp.6269-79, 2017.

J. Cui and U. Gibson, Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures, Nanotechnology, vol.18, p.155302, 2007.

B. Weintraub, Y. Deng, and Z. Wang, Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis, J. Phys. Chem. C, vol.111, pp.10162-10167, 2007.

S. Zhang, Y. Shen, H. Fang, S. Xu, S. J. Wang et al., Growth and replication of ordered ZnO nanowire arrays on general flexible substrates, J. Mater. Chem, vol.20, p.10606, 2010.

P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen Nachrichten Von Ges, Wiss. Zu Gött.-Math.-Phys. Kl, vol.98, p.100, 1918.

J. Rouvière and E. Sarigiannidou, Theoretical discussions on the geometrical phase analysis Ultramicroscopy, vol.106, pp.1-17, 2005.

M. Hÿtch, S. E. Kilaas, and R. , Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, vol.74, pp.131-177, 1998.

J. Liu, B. Qiao, Y. Song, Y. Huang, and J. Liu, Heteroepitaxially anchoring Au nanoparticles onto ZnO nanowires for CO oxidation, Chem. Commun, vol.51, pp.15332-15337, 2015.

C. Thompson, Solid-state dewetting of thin films, Annu. Rev. Mater. Res, vol.42, pp.399-434, 2012.

G. Barmparis and I. Remediakis, Dependence on CO adsorption of the shapes of multifaceted gold nanoparticles: a density functional theory, Phys. Rev. B, vol.86, p.85457, 2012.

J. Cheng, S. Nicaise, K. Berggren, and S. Grade?ak, Dimensional tailoring of hydrothermally grown zinc oxide nanowire arrays, Nano Lett, vol.16, pp.753-762, 2016.