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Abstract

Both x-ray tomography and neutron tomography give very detailed insight in

the microstructure of concrete. However, their different contrasts, due to dif-

ferent compositional sensitivities, make one modality more relevant for some

features. The present study shows that both types of images acquired on the

same specimen may be registered onto each other, after the statistical joint dis-

tribution of absorption coefficients has been learned. A Gaussian mixture model

has been used to identify up to five different phases having different signatures.

A staggered algorithm consisting in i) adjusting the joint histogram to fit phases

and their variances and ii) registering the two 3D images onto each other, within

a multi-scale algorithm is presented in details. The analysed experimental data

illustrates the benefit of using jointly both modalities as compared to their par-

allel usage.
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1. Introduction

Concrete is a multiphase 3D material. It is now widely recognised that

important mechanisms such as failure or fluid percolation reflect this hetero-

geneity and play out at the meso-scale, where the phases can be identified as

aggregates and pores embedded within a mortar matrix. A correct description5

of the material morphology at this scale is therefore crucial for elucidating these

mechanisms. Furthermore, the increasing descriptive power of meso-models

i.e., which explicitly take the morphology into account, [1] or morphological

models [2] requires the injection of increasingly accurate physical information.

X-ray tomography allows a non destructive access to a 3D field (x-ray at-10

tenuation coefficient) at the scale of interest. Due to the large difference in

contrast, pores can easily be identified, however, the x-ray attenuation coeffi-

cients of aggregates and cement paste are normally very close, making it difficult

to distinguish them from each other but not impossible, see [3, 4], as shown in

Figure 1, left. Furthermore x-rays are not sensitive to water, a key ingredient15

of concrete-like materials.

Neutrons interact differently with matter which means that neutron and

x-ray attenuation coefficients can be very different for the same material. A

striking example is that neutrons are sensitive to water which allows both of

the x-ray’s limitations to be tackled — however with a limitation on the spa-20

tial resolution. The presence and movement of water (of more generally fluids)

within concrete is of major interest for the mechanical behaviour of concrete

under high stresses [5, 6, 7], for speed of chemical degradation [8], for resistance

to fire [9] as well as for its quality as a material for containment [10, 11]. A

number of studies have been carried out on concrete using neutron radiogra-25

phy, allowing water infiltration to be measured with ease. In the context of

tomography on concrete, the sensitivity to water leads to a different field for

the phase description, as shown in Figure 1, right. Ref. [12] presents an excellent

example of the interest of neutron tomography for concrete, where the loss of

water during a simulated fire can easily be quantified. Furthermore, the isotope30
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sensitivity of neutrons allows flow paths to be measured in saturated conditions

such as in Ref. [13], which incidentally is the source of the data that will be

studied herein.
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Figure 1: Figure adapted from [13].The top row presents the similar horizontal slices of the

sample studied coming from reconstruction of x-ray (a) and neutron (b) tomographies. Please

note that for compatibility with a white background in print, the colour map has been inverted

compared to the conventional for reconstructed volumes, such that low attenuation is white

and high attenuation is black. Furthermore attenuation values for both fields have been scaled

and offset to fit in the [0, 1] range. The field of x-ray attenuation is called fx and the neutrons

fn. They are both defined over a Cartesian coordinate system x. The bottom row (c) and

(d) presents the corresponding natural logarithm histogram ln(p) of the two fields calculated

inside the specimen.

The authors believe that the combination of x-ray and neutron tomogra-

phy provides an extremely valuable tool for the study of numerous meso-scale35
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mechanisms in concrete. In fact, in recent years, a number of neutron centres

offer coupled x-ray and neutron tomography [14, 15, 16, 17], providing comple-

mentary fields of attenuation. A better description of the phases of concrete

can thus be obtained by combining both fields on the condition that they are

spatially commensurable (i.e., with a common coordinate system). Indeed, due40

to a number of uncontrollable variables (mechanical noise, small variations in

the source, etc.) after separate reconstruction, the two resulting fields will not

be perfectly aligned. One might think that alignment by eye using recognisable

morphological features (such as the top right external pore in Figure 1) would

yield sufficient well aligned image, but experience shows that, even with a rigid45

body motion constraint, 3D rotations are very hard to gauge. A change of pixel

size between the two images leads to even more complex transformations (non

rigid-body motion) that render alignment even more difficult.

This article presents the technical details of the algorithm proposed in [18]

and applies it to neutron and x-ray tomographies of concrete (those shown in50

Figure 1). This yields a registered neutron image that matches the x-ray im-

age with subpixel accuracy. This procedure can be seen as a generalisation of a

classical DVC registration [19] to fields obtained with multiple modes of acquisi-

tion (i.e., multimodal registration). The final result is therefore a 3 dimensional

vector-valued “image” containing two attenuation coefficients. In this paper, we55

use the “Gaussian Mixture” representation of the different phases which, as a

bonus, naturally provides an identification of the phases [20].

2. X-ray and neutron image of concrete

2.1. Description of data

Figure 1 shows two horizontal slices from tomographies of the same sam-60

ple — which has been prepared with heavy water (D2O) to facilitate neutron

penetration.

The x-ray attenuation field — which is closely related to material density

— presents three different phases. Voids (filled with air or D2O) have a very
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different value (white) from that of the solid phase and are thus easily identifi-65

able. The aggregate and the mortar matrix can easily be distinguished by eye,

more because of their texture than due to contrast since the values (black) are

very close. The neutron attenuation field — which does not track density — has

different contrast between the phases which clearly discriminates the aggregates

from the matrix. The spatial disposition of the aggregates in both images is in70

rough agreement since they have been aligned by eye.

In the following, the value of the x-ray attenuation field at 3D spatial posi-

tion x = (x, y, z)> is noted fx(x) (fx for short). The neutron attenuation field

is referred to as fn. It is important to note that in this case, these fields come

from the reconstruction of attenuation measurements made with polychromatic75

beams meaning that the resulting field represents a frequency-lumped attenu-

ation coefficient which introduces a certain degree of arbitrariness in the field.

In the grey level fitting that follows, beam hardening is likely to have a strong

adverse effect. Both fields are normalised so that they take values in [0, 1]. For

convenience, vector notation referring to the same spatial position in both x-ray80

and neutron attenuation fields ϕ = (fx, fn)> is used.

For each image, a histogram of grey levels can be computed showing the

probability distribution p of grey levels — distribution of p(fx) or p(fn) inside

the Region Of Interest (ROI) — corresponding to attenuation fields. In Figure 1,

the two histograms show peaks corresponding to the phases mentioned above.85

A very rough approximation of the mean values of the attenuation fields for each

phase can be obtained by taking an average over a small area wholly within the

phase (see Table 1).

2.2. Joint histogram

Since both images have the same format and have been put roughly in co-90

incidence, a joint histogram of p(ϕ) can therefore be computed over the ROI

collecting the fx and fn values at the same pixel location. Both grey levels are

discretised into a number nbins of grey level intervals (called bins), so that p is

discretised to a nbins × nbins matrix denoted [p].
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Table 1: Approximate mean values µx and µn of fx and fn for the three main phases identified.

It is important to note that these values have been offset and rescaled, and are therefore

expressed in arbitrary units.

X-ray attenuation

(µx)

Neutron attenuation

(µn)

Aggregates 0.77 0.48

Voids 0.12 0.18

Mortar 0.72 0.68

Applied to the images above, and taking the inside of the specimen as ROI,95

the two-dimensional joint histogram [p] is shown in Figure 2. Because registering

the circular cross section is easily done, and as is apparent in Figure 1, the main

source of misalignment appears to be a rotation whose axis is normal to the

plane of the slices presented. Given both the size and the volume fraction of the

aggregates in the material, even for this relatively severe misalignment, some100

x point to aggregates in both images or mortar in both images. This leads to

two high spots in Figure 2 (left) that represent the ϕ = (fx, fn)> couplets for

aggregates and for the mortar matrix, at approximately the values in Table 1.

However, due to misalignment, many x will point to different phases, which

spreads out the peaks. A clear example is the absence of a peak for voids, which,105

due to their small sizes almost never share a common x. Indeed, the zone around

fx ≈ 0.1 and fn ∈ [0.45, 0.8] corresponds to voids in the x-ray intersecting with

solids in the neutron image. Similarly, the zone around fn ≈ 0.2 and fx ≈ 0.7

corresponds to voids in the neutrons intersecting with the (similarly-valued)

solids in the x-ray image. The absence of peak for fx ≈ 0.1 and fn ≈ 0.2 is110

simply the result of a misalignment of the two images.

An approximate (estimated by eye) initial guess of a −15° rotation is applied

to the fn field to increase spatial coherence, yielding the joint histogram in

Figure 2 (right). The intensity of the peaks for aggregates and mortar are not

significantly improved, but the appearance of a peak corresponding to voids is115
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(a) Without initial guess (b) With initial guess

Figure 2: Joint histogram of the two normalised 3D fields presented in Figure 1 which has

been computed considering the inside of the specimen as the ROI

a sign of better alignment (a misalignment smaller than the size of the biggest

voids).

The lack of separation between the mortar and aggregate peaks is probably

due to fact that the sand particles embedded in the mortar are not yet well

aligned, due to their small size. It is of clear interest to be able to quantify the

similarity between two images. Equation (15) in [18] presents a way in which

this can be quantified by a scalar L (referred to as likelihood) defined (when

correlation is ignored) by

L ∝
∏

x∈ROI

p(ϕ(x)) (1)

In practice, the discrete version of p, i.e., the binned joint histogram, [p], is

used to compute L. The logarithm of this quantity [Equation (16) in Ref. 18]

“assumes a convenient form” in that it turns the product into a simple sum

ln (L) =
∑

x∈ROI

ln (p(ϕ(x))) + constant (2)

Incidentally, this explains the choice of the logarithm of counts in the joint

histogram plotted in Figure 2. Applied to the left image (with constant = 0)

this yields a value of approximately 33600 (arb. units) where with the initial120

guess of −15° this improves to approximately 34900 (arb. units).
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At this point, let us emphasise a subtlety: p is known only when the two

images are exactly registered. Otherwise, the joint histogram being approxima-

tive, the likelihood is erroneous. However, because of the spatial correlations

in the real microstructure, the error in L is limited, and it will be shown in125

the following section 3, that even using an imperfect likelihood, one may better

register images and thus gain access to a more accurate joint distribution, and

hence a better L.

2.3. Fitting the joint histogram

With the objective of obtaining a better alignment between the two images,130

an image correlation method will be developed in the next section. Regular

image correlation cannot be applied directly in this context due to the incon-

sistency of the values of the fields fx and fn. Fitting the relevant peaks of the

joint histogram will allow any pair of values ϕ = (fx, fn)> to be assigned to a

given fitted peak and therefore a phase.135

Let us consider Nphase phases, each characterised by a bivariate Gaussian

distribution, pi(ϕ) for phase i, where bivariate refers to the two 3D measure-

ments of their absorption coefficient for x-rays and neutrons, gathered into a

vector ϕ = (fx, fn)>. In other words, pi represents the probability distribution

of possible pairs of grey values knowing that, at this specific point, the material

phase is i. As a probability distribution, its sum over all possible ϕ is 1. Each

phase i has a corresponding mean vector µi = (µx, µn)>, and covariance matrix

Ci such that the probability distribution for ϕ within this phase i is

pi(ϕ) =
1

2πdet(Ci)
exp

(
−(1/2)(ϕ− µi)

>(Ci)
−1(ϕ− µi)

)
(3)

The i individual probability maps for each phase can be combined in order to

give the probability of measuring a given ϕ. In order to do this, the probability

maps for each phase need to be weighted, and this is done by the relative

quantities in the material being studied, i.e., the weights to use are naturally

the volume fractions of each phase. Introducing qi the volume fraction of phase
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i, the probability to measure a specific ϕ, is therefore

p(ϕ) =

Nphase∑
i=1

qipi(ϕ), (4)

whose sum is again 1 over all possible ϕ, due to the weighting by each phases’

volume fraction qi. Although volume fractions are an initial microstructural

measurement of interest, without an initial segmentation these cannot be ob-

tained accurately, but they can be computed from the fitting of each phase.

With φi as the height of the peak in p(ϕ) for each phase i

qi ≡ φi2πdet(Ci) (5)

The inverse covariance matrix for each Gaussian distribution is parametrised by

(Ci)
−1 =

 ai bi

bi ci

 (6)

Thus, each phase requires four parameters (φi, ai, bi, ci) to be defined.

The presence of Gaussian distributions in the joint histogram can have dif-

ferent origins:

• Uncorrelated Gaussian noise in each measurement of uniform x-ray and

neutron attenuation fields (implying in that case bi = 0).140

• A real Gaussian distribution of x-ray and neutron attenuation fields due

to some properties of the material phases (such as a compositional ran-

domness at a lower scale than resolved with the voxels).

However, even if there is no justification from basic principles that the dis-

tribution should assume a Gaussian mixture form, it should also be noted that145

if enough phases are taken into account, such a description is not restrictive.

Moreover, this assumption is very convenient mathematically (see appendix).

The fit is performed on the discrete (binned) joint histogram [p], the position

(µx, µn) and value φ of the peaks come from a maxima finder, leaving just

Ci (or ai, bi and ci) as free variables (see Algorithm 1). Setting a minimum150
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distance between fitted peaks is a good way of avoiding spurious peaks in [p].

Furthermore, a convenient sanity check for the fitted peaks is the positiveness

of the matrix Ci (meaning that both determinant and trace should be positive,

or equivalently that the two eigenvalues of Ci are positive) which indicates that

the fitted Gaussian represents indeed a maximum.155

Algorithm 1 Gaussian fitting

Compute joint histogram

Select number of phases Nphases

for k in [1..Nphases] do

Find the position of the highest maxima µi

Select a neighbourhood of µi

Fit the joint histogram in this neighbourhood as a second-order polynomial

Sanity check that the polynomial has a positive curvature tensor

Subtract off the fitted Gaussian from the joint distribution

(or cut-out region based on the probability value qipi)

end for

In this particular case, only two peaks are selected for fitting since despite

the appearance of a (void, void) peak, the third highest peak is still due to a

misalignment of voids. Table 2 gives the values found by the Gaussian fit for

the histogram shown in Figure 2 (right), and Figure 3(a) shows the result of the

Gaussian fit of these two peaks.160

It can be noted from Table 2, that since b is small compared to a and c, it can

be deduced that the correlation between x-ray and neutron attenuation fields

is also small. This is particularly the case for the mortar which is consistent

with an uncorrelated random noise as being at the origin of a Gaussian distribu-

tion. This may be less true for the aggregates indicating some minor correlation165

between the two attenuation coefficients. In any case, imposing b = 0 in the

correlation matrix in the algorithm for both distributions neither improves nor

degrades the quality of the registration.
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(a) Value of the Gaussians

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

2

phase0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fx

f n

(b) Phase map for 100% of voxel coverage
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(c) Phase map for 99% of voxel coverage
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(d) Phase map for 98% of voxel coverage

Figure 3: (a): Fit of the joint histogram with two Gaussians corresponding to aggregates and

mortar (see Figure 2, right). The value shown for each fx and fn is the maximum of both

fits. (b-d): phase map for different voxel coverage.

2.4. Phase identification

It is reminded here that every (qi weighted) Gaussian in [p] represents a170

material phase. Given at least two well-fitted Gaussians, it is of primary impor-

tance to our objective to estimate the probability πi(ϕ) that a pair of greylevels

ϕ belongs to phase i, allowing for classification.

Bayes’ rule leads to

πi(ϕ) =
qipi(ϕ)∑Nphases

j=1 qjpj(ϕ)
(7)

so that the most likely phase is simply the one that maximises qipi(ϕ) among

all phases i. Thus, in the coordinate system of the joint histogram ϕ, a phase
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Table 2: Table of parameters for Gaussian fit of the joint histogram in Figure 2 (right) to be

compared to the approximate values in Table 1

Fit Value Phase 1

(Aggregates)

Phase 2

(Mortar)

φ (q) 0.046 (0.304) 0.025 (0.404)

µx 0.76 0.75

µn 0.48 0.68

a 3154.2 901.0

b 495.9 25.0

c 835.9 441.4

map γ(ϕ) can be established by “labelling” each combination of greyvalues of

ϕ with the most likely phase i:

γ(ϕ) = Argmax
i

[πi(ϕ)] = Argmax
i

[qipi(ϕ)] (8)

The phase map deduced from Figure 3(a) can be seen in Figure 3(b), for all

combinations of ϕ. It can be observed that every grey level pair is associated175

to a phase, even those far from a peak. This can be improved by selecting a

more appropriate number of phases being fitted, which in turns requires a better

alignment of the images.

For safety, ϕ pairs in γ(ϕ) that are far from fitted peaks can be excluded —

i.e., assigned a “non-phase”. A threshold on the minimum Mahalanobis distance180

[21] of each greyscale pair to the each Gaussian fit is made, rather than a cut-off

on the probability level. This is justified by the fact that excluding ϕ values

requires the identification of unrealistic greyvalues, which should not depend

on the quantity of the detected phase. More pragmatically, it has been found

that in the presence of phases with small volume fractions (such as the voids in185

this case) reasonable probability cut-offs for the more probable phases coincide

with the peak for the voids, and thus completely erase them. This threshold,

applied to the fit of a bivariate Gaussian distribution, represents a cut-off value
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based on the distance from the mean (the equivalent to a standard deviation

cutoff in 1D), and is independent of the fitted height. A useful metric for the190

evaluation of the impact of this threshold is the quantification of the number of

retained voxel pairs (i.e., in this case being in phase 1 or 2) that we call “voxel

coverage”. Figures 3(c-d) represent two different thresholds that yield a 99%

and 98% voxel coverage.

Finally, a useful output of the fitting is the ability to obtain the spatial195

distribution of the phases within the scanned specimen. This can be computed

by using the phase map to classify the phase of all the voxels in space γ(x) =

γ(ϕ(x)).

The fitting of the phases therefore yields a mapping of the correspondences

of grey levels between modalities. This information is essential to allow the200

alignment of the images to be pursued with a DVC-based image registration

technique adapted to multimodality that will be presented in the next section

and applied to the test case in the section after.

3. Multimodal registration

The multimodal registration algorithm in [18] is essentially an extension

of classical Digital Image Correlation methods, whose aim is to determine the

linear transformation operator F (not to be confused with the greyvalue field fx)

affecting the coordinates of one modality image, say fn, so that it matches the

reference one, fx. In order to account for noise and other sources of imperfection,

a variational formulation is proposed through the minimisation of the functional

T

T (F ) =
∑

x∈ROI

Φ2(fx(x), fn(F · x)) (9)

representative of the quality of the match between the two images. To this end,

Equation 2 provides the necessary ingredients based on the joint histogram,

yielding the following definition (with a negation to ensure the function is at a

minimum at the best match)

Φ2(ϕ) = − ln(p(ϕ)) (10)
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In Equation 4, p was proposed to be approximated by the sum of a few

Gaussian distributions, thus finally giving a Φ2 potential of the form

Φ2(ϕ) = − ln
(∑

i φi exp(−(1/2)(ϕ− µi)
>(Ci)

−1(ϕ− µi))
)

≈ (1/2) mini

[
(ϕ− µi)

>(Ci)
−1(ϕ− µi))− ln(φi)

] (11)

where i accounts for all the fitted peaks and the minimum depends on the values205

of ϕ = (fx, fn).

The registration algorithm itself is presented in [18, equations 5 to 14] and

developed in more detail in the appendix of this paper.

In the interests of robustness and speed, we start the registration on highly

downscaled images which allows high frequency variations to be erased and210

guarantees the applicability of the Taylor expansion in the case of large dis-

placements. Registrations are repeated on progressively more detailed images,

using previously obtained transformation as initial conditions [“multiscale” ap-

proach in 18].

Images are thus low-pass filtered, and because the high frequency informa-215

tion has been (temporarily) erased, it is no longer necessary to sample the image

pixel per pixel. Thus if a filter of size 2 pixels in each space dimension is used,

then the image can be downsampled by a factor 23 = 8, allowing faster and less

memory demanding data manipulation. Different types of filters may be used,

the easiest of which is known as “binning”. “N -binning” means N×N×N voxels220

are averaged together. 1-binning therefore is the original image (no downscal-

ing), 2-binning halves the number of voxels in each direction, 4-binning divides

by 4 the number of voxels in each direction, etc. Usually bin levels are chosen as

a geometric series as 2I values through a recursive procedure. Once “2i-binned”

images are registered, higher frequencies can be restored and registration can225

be performed more accurately while the largest displacements are already ac-

counted for. The final step of the registration is performed with the original

images, thus without loss of information, and yet benefiting from the robustness

offered by the coarsest resolution. Alternatively a Gaussian filtering followed by

down sampling can be used following a classical Gaussian multiscale pyramidal230
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approach. It has been found unnecessary here.

A further advantage of the multiscale pyramidal approach is that noise is

depressed as higher and higher degrees are considered. In the images shown,

4-binning or even 8-binning can be applied without loosing the coarse texture

provided by the cement paste and the aggregates. See [18] Algorithm 1 for235

details.

4. Application to concrete

4.1. Initial registration

The ROI is defined as a crop of the data presented in figure 1 to avoid the

textureless background outside the specimen. This crop yields a 4003 voxel240

volume at full-scale (1-binning).

The data is first downscaled to 4-binning (i.e., a 1003 voxel volume). To

start with, the joint histogram [p] shown on the top left of Figure 4 is computed

by applying the initial guess of −15° to fn. It is important to note the difference

with the histogram presented in Figure 2 (right) which also takes into account245

the initial guess but at a different binning level. The applied binning has two

effects: it denoises the data — giving sharper peaks — and erases the small

features such as pores — peak missing at (fx, fn) ≈ (0.1, 0.2) for example. From

this histogram two maxima are identified (marked by white crosses) and two

Gaussian ellipsoids are fitted. Using these fits the phase diagram is computed250

with a target voxel coverage of 99%. Avoiding pairs of values far from peaks

appears to allow slightly faster convergence of the registration. The two main

phases appeared clearly (in order of descending peak value): the mortar matrix

and the aggregates.

Over the iterations F is updated and from it, translation and rotation are255

extracted. The convergence condition is set to be ‖δF ‖ < 5.10−4 and 27 itera-

tions are needed to reach convergence at the 4-binning level. Figure 5 shows the

evolution of both rotation and translation and Table 3 the value at convergence

(for all scales).
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After convergence at this binning level, the F operator is rescaled (transla-260

tion part multiplied by 2) and used as an initial guess for 2-binning level (i.e., a

2003 voxel volume). As before, the joint histogram is computed by applying this

initial guess to fn. As shown in Figure 4, the guess is sufficiently good and the

scale is sufficiently fine to see a new peak corresponding to the pores. This new

phase is added to the list of phases to be fitted by Gaussian ellipsoids which265

results in a 3 phases diagram: 1 being the aggregates, 2 the mortar matrix and

3 the pores. The registration is continued at this binning level, converging after

11 iterations to the values shown in Table 3.

As above, the previous converged F is used as an initial guess for 1-binning

level (i.e., a 4003 voxel volume). A new joint histogram is computed and the270

same 3 peaks are fitted leading to the values shown in Table 3 after 16 iterations.

The difference between the joint histograms for 2-binning and 1-binning is

not mainly due to the change in F (which is small) but rather to a combination

of both decreasing partial volume effects and increasing spatial resolution.

Figure 5 reveals the significant interest in performing binning where the ma-275

jority of the registration is performed at the lowest binning level and therefore

at high speed. However, the downscaled registrations seem to converge to a dif-

ferent solution than the higher scale. This is especially true for the z component

of the translation.

The registration run directly on the original images without downscaling280

approach converges after 212 computationally expensive iterations (to be com-

pared to a total of 57 iterations with the multiscale approach), to a transforma-

tion which is close to that obtained with the downscaling approach (i.e., within

0.05 pixels displacement and 0.005°).

In order to visually check the commensurability of the registered fields,285

checkerboard patterns mixing the two fields fx and fn are presented in Fig-

ure 6 on the full image (including the background). On the top left, the initial

guess of -15° shows the lack of similarity between the two fields. On the top

right, the result of first registration at this binning level already shows a good

correspondence, as seen above. On the next two checkerboards at finer resolu-290
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Figure 4: Joint histograms (left) and phase maps (right) before entering registration algorithm

for each binning level

tions, the continuity of the phases is visually satisfactory.

4.2. Final phase identification at full-scale

To identify the phases present in this material, the final transformation ob-

tained above at the binning 1 scale with three phases is used as an initial guess

for another run of the registration approach with an increased number of phases.295

This run is expected to converge quickly. In this case, 5 phases are selected with
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Figure 5: Rotation angle (top) and translation (bottom) over the cumulative iterations of the

registration over the three binning level. Translation of binning 4 and 2 are scaled to binning

1 voxel size (i.e., multiplied by 4 and 2, respectively). The inset of (a) is a magnified view of

the data contained in the dotted box.

99% coverage, as shown in Figure 7 (left). This yields the phase identification

presented in Figure 7 (right).

The aggregate and mortar phase are easily identified as phases 1 and 2,

respectively. Phase 3 corresponds to a mineralogically different aggregate (it300

can be observed in Figure 1, bottom right of the slice, as having a lower X-

ray attenuation and higher neutron attenuation). This phase occupies a rather

18



Table 3: Converged translation and rotation values at each binning level for axes (x, y, z).

The rotations are expressed as a rotation vector in the axis and angle format.

Translation Rotation Iterations

Binning level [pixels @ Bin 1] [deg]

4 −2.03,−1.85, 5.50 −0.59, 0.11,−19.65 27

2 −1.93,−1.84, 6.12 −0.58, 0.07,−19.67 11

1 −1.88,−1.85, 6.42 −0.58, 0.07,−19.68 16

large area in the phase diagram. This may be due to the region over which

the Gaussian peak is fitted, as unfortunately, partial volume voxels between

mortar matrix and pores often fall into this zone. This explains the nonphysical305

presence of this phase around pores. The centre of large pores are well identified

as phase 4. However, it can be observed that the non phase (in white) usually is

in the vicinity of pores. Indeed, in addition to partial volume effects, artefacts

affect the reconstruction of these low attenuations more than the other phases.

Phase 5 corresponds to small, highly attenuating inclusions scattered all over310

the specimen, which may be metallic in origin.

On the whole, the meso-scale morphology of concrete can be very accurately

classified thanks to the registration procedure. Let us stress that with one single

modality, it would have been impossible to identify those phases which have a

significant overlap with other ones in a single modality histogram.315

5. Conclusions

This paper presents the technical details of an algorithm to researchers in

the field of concrete and cement research, an essential component of the ground-

breaking new measurement that combined neutron and x-ray tomography rep-

resents. The ability to register neutron and x-ray fields, as well as to obtain an320

identification of phases, allows a number of cutting-edge research questions to

be answered — for example regarding complex hydro-mechanical phenomena in

19



0 25 50 75 100

0

25

50

75

100

(a) 4-binning (before registration)

0 25 50 75 100

0

25

50

75

100

(b) 4-binning

0 50 100 150 200

0

50

100

150

200

(c) 2-binning

0 100 200 300 400

0

100

200

300

400

(d) 1-binning

Figure 6: Checkerboard pattern of fx (dark) and fn (light) as per Figure 1

concrete.

The algorithm as presented here is implemented in the Spam toolkit, an

open-source image analysis toolkit [22] where an example on another set of325

concrete images is presented. This form of release is expected to ease and

maximise its use.

Furthermore, the technique presented here, which is ideally suited to research

on concrete, also presents some interest for materials, where the coupling of

neutron and x-ray tomography is beneficial. Registrations have been successful330
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Figure 7: (a): Phase map γ(ϕ) with 99% coverage after final registration (b): and correspond-

ing identification of the phases γ(x) within the ROI (right). The pixels in white correspond

to the 1% of pixels in the non-phase. Phases, from bottom to top on the colour bar: Most

numerous aggregate type, Mortar matrix, Second aggregate type, Voids, and, Dense inclusions

(negligible volume fraction – possibly metallic)

on rocks (in the initial presentation of the technique [18]), bones with metallic

implants, roots growing in a moist granular material, and asphalt (all of these

a recent results soon to be published).

6. Perspectives

A number of further paths of development stem from this work. The phase335

allocation for partial volume voxels could certainly be improved, providing a

better assignment to uncertain voxels. At a more ambitious level, it would

be extremely desirable to incorporate spatial correlations in the analysis, with

neighbouring pixel analysis.

A path further in the future for advanced experiments on concrete is the340

development of a combined image correlation minimisation, taking into account

two fields. In the case where a neutron and x-ray scans of a reference state,

and subsequent scans of a deformed state have been acquired (and after due

application of the algorithm discussed herein) a measurement of the kinematics

that map one phase into the next would be extremely valuable to exploit the345
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highly complementary information provided. It may also offer new opportuni-

ties, such as speeding up neutron tomography, which would imply to deal with a

higher amount of noise.However, because x-ray tomography would be performed

simultaneously, a prior guess of “neutron contrast” image can be proposed to a

neutron tomographic reconstruction algorithm leading to a much more robust350

and noise-tolerant tool. In a similar spirit, these two modalities can also be used

with different spatial resolution, allowing the finer one to inform the coarser one.
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Appendix A. Registration algorithm

Appendix A.1. Multi-modal registration

It is reminded here that the goal of the registration algorithm is the find the

best transformation F that deforms fn to minimise T . To do so an iterative

approach is adopted which involves a progressive correction of an initial F by

δF . The correction at iteration (n+ 1) is

F (n+1) = (I + δF (n+1)) · F (n) (A.1)

The small quantity δF invites a first order Taylor expansion of fn(F (n+1) ·x):

fn(F (n+1) · x) = fn(F (n) · x) +∇fn(F (n) · x) · δF (n+1) · F (n) · x (A.2)

This equation is made more compact by introducing x(n) = F (n) · x, and the

corrected image f̃n
(n)

(x) ≡ fn(x(n)) with the current transformation so that

fn(F (n+1) · x) = f̃n
(n)

(x) +∇f̃n
(n)

(x) · δF (n+1) · x(n) (A.3)

For the same reason, Φ2 is expanded to the second order, with respect to

the fn above. This yields the functional:

T
(
F (n+1)

)
=

∑
x∈ROI

[
Φ2(fx(x), f̃n

(n)
(x))

+
∂Φ2(fx(x), f̃n

(n)
(x))

∂fn

(
∇f̃n

(n)
(x) · δF (n+1) · x(n)

)

+
1

2

∂2Φ2(fx(x), f̃n
(n)

(x))

∂f2n

(
∇f̃n

(n)
(x) · δF (n+1) · x(n)

)2
]

(A.4)

The unknown is δF . The minimum of the functional T (and not necessarily

a zero) is looked for, and hence we solve for δF where its derivative is zero. The

derivative of Equation A.4 yields:445
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dT
(
F (n+1)

)
dδF (n+1)

=
∑

x∈ROI

[
∂Φ2(fx, f̃n

(n)
)

∂fn

+
∂2Φ2(fx, f̃n

(n)
)

∂f2n

(
∇f̃n

(n)
· δF (n+1) · x(n)

)]
(
∇f̃n

(n)
(x)⊗ x(n)

)
(A.5)

Solving for the zero-point of this derivative naturally leads to the following

system

M (n)δF (n+1) = A(n) (A.6)

where
A(n) = −

∑
x∈ROI

∂Φ2(fx, f̃n
(n)

)

∂fn

(
∇f̃n

(n)
⊗ x(n)

)

M (n) =
∑

x∈ROI

∂2Φ2(fx, f̃n
(n)

)

∂f2n

(
∇f̃n

(n)
⊗ x(n)

)
⊗
(
∇f̃n

(n)
⊗ x(n)

) (A.7)

Equation A.6 is now developed for the potential function Φ2 defined in the

case of joint histogram fitted by bivariate Gaussian distributions. Deriving Φ2

in Equation A.7 gives
∂Φ2(fx, fn)

∂fn
=b(fx − µx) + c(fn − µn)

∂2Φ2(fx, fn)

∂f2n
=c

(A.8)

where b, c, µx, µn are those associated with the phase selected by ϕ in the phase

map (where each pixel is “labelled” with the most likely phase) and thus depend

on each voxel position x. In the interest of computational time, this composition

map is computed in advance, and corrected when registration and phase fitting

are estimated. This corresponds to a pre-calculation of what is presented in the450

voxel coverage maps in Figure 3. It is important to note that the voxel pairs

falling into the non-phaseare simply excluded from the ROI.
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Appendix A.2. Note on same-modality DVC

With images acquired with the same modality, the joint histogram will be

essentially aligned along the fx = fn diagonal line of [p]. This can be described

as a single bivariate Gaussian distribution with parameters a = 1, b = −1 and

c = 1, which aligns it along the diagonal. Inserted into Equation A.7, this

yields the classical DVC operators A and M as obtained with the potential for

same-modality DVC

Φ2(ϕ) =
1

2
(fx − fn)

2
(A.9)

This can be seen as a relaxation of classical DVC, and may present, for

example a convenient way to take into account global changes of grey levels455

within the same modality.
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