M. , Multivalent Glycoconjugates as Anti-Pathogenic Agents, Chem. Soc. Rev, vol.42, pp.4709-4727, 2013.

Y. C. Lee and R. T. Lee, Carbohydrate-Protein Interactions: Basis of Glycobiology, Acc. Chem. Res, vol.28, pp.321-327, 1995.

M. Mammen, S. Choi, and G. M. Whitesides, Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors, Angew. Chem., Int. Ed, vol.37, pp.2755-2794, 1998.

J. J. Lundquist and E. J. Toone, The Cluster Glycoside Effect, Chem. Rev, vol.102, pp.555-578, 2002.

C. Ortiz-mellet, J. Nierengarten, and J. M. Fernandez, Multivalency as an Action Principle in Multimodal Lectin Recognition and Glycosidase Inhibition: A Paradigm Shift Driven by CarbonBased Glyconanomaterials, J. Mater. Chem. B, pp.6428-6436, 2017.

C. Mu?-ller, G. Despras, and T. K. Lindhorst, Organizing Multivalency in Carbohydrate Recognition, Chem. Soc. Rev, vol.45, pp.3275-3302, 2016.

M. C. Bryan, F. Fazio, H. K. Lee, C. Y. Huang, A. Chang et al., Covalent Display of Oligosaccharide Arrays in Microtiter Plates, J. Am. Chem. Soc, vol.126, pp.8640-8641, 2004.

M. D. Disney and P. H. Seeberger, The Use of Carbohydrate Microarrays to Study Carbohydrate-Cell Interactions and to Detect Pathogens, Chem. Biol, vol.11, pp.1701-1707, 2004.

M. B. Biskup, J. U. Mu?-ller, R. Weingart, and R. R. Schmidt, New Methods for the Generation of Carbohydrate Arrays on Glass Slides and Their Evaluation, ChemBioChem, vol.6, pp.1007-1015, 2005.

C. Ortiz-mellet, J. M. García-ferna?ndezferna?ndez, and . Microarrays, , vol.3, pp.819-822, 2002.

B. T. Houseman and M. Mrksich, Carbohydrate Arrays for the Evaluation of Protein Binding and Enzymatic Modification, Chem. Biol, vol.9, pp.443-454, 2002.

V. I. Dyukova, N. V. Shilova, O. E. Galanina, A. Y. Rubina, and N. V. Bovin, Design of Carbohydrate Multiarrays, Biochim. Biophys. Acta, pp.603-609, 1760.

N. Dendane, A. Hoang, O. Renaudet, F. Vinet, P. Dumy et al., Surface Patterning of (Bio)Molecules onto the Inner Wall of Fused-Silica Capillary Tubes, Lab Chip, vol.8, pp.2161-2163, 2008.

S. Park, M. R. Lee, and I. Shin, Fabrication of Carbohydrate Chips and Their Use to Probe Protein-Carbohydrate Interactions, Nat. Protoc, 2007.

J. Y. Hyun, J. Pai, and I. Shin, The Glycan Microarray Story from Construction to Applications, Acc. Chem. Res, vol.50, pp.1069-1078, 2017.

N. Laurent, J. Voglmeir, and S. L. Flitsch, Glycoarrays-Tools for Determining Protein-Carbohydrate Interactions and Glycoenzyme Specificity, Chem. Commun, pp.4400-4412, 2008.

O. Sulak, E. Lameigne?-re, M. Wimmerova, and A. Imberty, Specificity and Affinity Studies in Lectin/Carbohydrate Interactions. In Carbohydrate Chemistry, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00440005

O. Blixt, S. Head, T. Mondala, C. Scanlan, M. E. Huflejt et al., Printed Covalent Glycan Array for Ligand Profiling of Diverse Glycan Binding Proteins, Multivalent Carbohydrate Recognition on a Glycodendrimer-Functionalized Flow-through Chip. ChemBioChem, vol.101, pp.1836-1844, 2004.

P. Pera, N. Branderhorst, H. M. Kooij, R. Maierhofer, C. Van-der-kaaden et al., Rapid Screening of Lectins for Multivalency Effects with a Glycodendrimer Microarray, ChemBioChem, vol.11, 1896.

Y. Chevolot, C. Bouillon, S. Vidal, F. Morvan, A. Meyer et al., DNA-Based Carbohydrate Biochips: A Platform for Surface GlycoEngineering, Angew. Chem., Int. Ed, vol.46, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00137357

A. Goudot, G. Pourceau, A. Meyer, T. Gehin, S. Vidal et al., Quantitative Analysis (Kd and IC50) of Glycoconjugates Interactions with a Bacterial Lectin on a Carbohydrate Microarray with DNA Direct Immobilization (DDI), Biosens. Bioelectron, vol.40, pp.153-160, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00788052

A. Angeli, M. Li, L. Dupin, G. Vergoten, M. Noe?-l et al., Design and Synthesis of Galactosylated Bifurcated Ligands with Nanomolar Affinity for Lectin LecA from Pseudomonas Aeruginosa, vol.18, pp.1036-1047, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533208

S. Wang, L. Dupin, M. Noe?-l, C. J. Carroux, L. Renaud et al., Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas Aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands, Chem. -Eur. J, vol.22, pp.11785-11794, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02116180

J. F. Sanchez, J. Lescar, V. Chazalet, A. Audfray, J. Gagnon et al., Biochemical and Structural Analysis of Helix pomatia Agglutinin: A Hexameric Lectin with a Novel Fold, J. Biol. Chem, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00141232

A. Hoang, E. Laigre, D. Goyard, E. Defrancq, F. Vinet et al., An Oxime-Based Glycocluster Microarray, Org. Biomol. Chem, vol.15, pp.5135-5139, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01644463

N. Berthet, B. Thomas, I. Bossu, E. Dufour, E. Gillon et al., High Affinity Glycodendrimers for the Lectin LecB from Pseudomonas Aeruginosa, Bioconjugate Chem, vol.24, 1598.
URL : https://hal.archives-ouvertes.fr/hal-00903491

C. Pifferi, D. Goyard, E. Gillon, A. Imberty, and O. Renaudet, Synthesis of Mannosylated Glycodendrimers and Evaluation against BC2L-A Lectin from Burkholderia Cenocepacia, vol.82, pp.390-398, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649375

B. Thomas, C. Pifferi, G. C. Daskhan, M. Fiore, N. Berthet et al., Divergent and Convergent Synthesis of GalNAcConjugated Dendrimers Using Dual Orthogonal Ligations, Org. Biomol. Chem, vol.13, pp.11529-11538, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01650983

N. Miller, G. M. Williams, and M. A. Brimble, Synthesis of Fish Antifreeze Neoglycopeptides Using Mcrowave-Assisted, Click Chemistry, vol.12, pp.1375-1376, 2010.

R. S. Loka, C. M. Sadek, N. A. Romaniuk, and C. W. Cairo, Conjugation of Synthetic N-Acetyl-Lactosamine to Azide-Containing Proteins Using the Staudinger Ligation, Bioconjugate Chem, vol.21, pp.1842-1849, 2010.

M. Wilczewski, A. Van-der-heyden, O. Renaudet, P. Dumy, L. Coche-gue?rentegue?rente et al., Promotion of Sugar-Lectin Recognition through the Multiple Sugar Presentation Offered by Regioselectively Addressable Functionalized Templates (RAFT): A QCM-D and SPR Study, Org. Biomol. Chem, vol.6, pp.1114-1122, 2008.

L. Dupin, F. Zuttion, T. Ge?hinge?hin, A. Meyer, M. Phaner-goutorbe et al., Effects of the Surface Densities of Glycoclusters on the Determination of Their IC50 and Kd Value Determination by Using a Microarray, ChemBioChem, vol.16, pp.2329-2336, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489380

A. Kuno, N. Uchiyama, S. Koseki-kuno, Y. Ebe, S. Takashima et al., Evanescent-Field FluorescenceAssisted Lectin Microarray: A New Strategy for Glycan Profiling, vol.2, pp.851-856, 2005.

S. Park, Shin, I. Carbohydrate Microarrays for Assaying Galactosyltransferase Activity, Org. Lett, vol.9, pp.1675-1678, 2007.

K. Godula and C. R. Bertozzi, Density Variant Glycan Microarray for Evaluating Cross-Linking of Mucin-like Glycoconjugates by Lectins, J. Am. Chem. Soc, vol.134, pp.15732-15742, 2012.

C. H. Liang, S. K. Wang, C. W. Lin, C. C. Wang, C. H. Wong et al., Effects of Neighboring Glycans on AntibodyCarbohydrate Interaction, Angew. Chem., Int. Ed, vol.50, 1608.