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QUALITATIVE AND NUMERICAL ANALYSIS OF A SPECTRAL

PROBLEM WITH PERIMETER CONSTRAINT

BENIAMIN BOGOSEL, ÉDOUARD OUDET

Abstract. We consider the problem of optimizing the k
th eigenvalue of the Dirichlet

Laplace operator under perimeter constraint. We provide a new method based on a Γ-
convergence result for approximating the corresponding optimal shapes. We also give
new optimality conditions in the case of multiple eigenvalues. We deduce from previous
conditions the fact that optimal shapes never contain flat parts in their boundaries.

1. Introduction

Many works adress the shape optimization problem

min{λk(Ω) : Ω ⊂ R
d, |Ω| = 1}, (1.1)

where λk is the kth eigenvalue of the Dirichlet Laplacian on Ω. Faber and Krahn proved
that for k = 1 the minimizer is a ball of unit volume and Polya and Szego proved that for
k = 2 the minimizer consists of two balls of volume one half. For the case k ≥ 3 the shapes
of the minimizers are unknown. Numerical studies of the optimal shapes were performed,
initially by É. Oudet in [25], and more recently improved by P. Antunes, P. Freitas [3].

In recent articles [12],[15] authors switched from the measure constraint to a perimeter
constraint:

min{λk(Ω) : Ω ⊂ R
d,Per(Ω) = 1}. (1.2)

It is not difficult to see that problem (1.2) is equivalent to

min{λk(Ω) + Per(Ω) : Ω ⊂ R
d} (1.3)

in the sense that any solution of (1.2) is homothetic to a solution of (1.3) and conversely.
We will use freely these two equivalent formulations.

In the case k = 1, the solution to problem (1.2) is obviously a ball as a consequence of
the isoperimetric inequality and the Faber-Krahn inequality. The case k = 2, d = 2 was
considered by D. Bucur, G. Buttazzo and A. Henrot in [12]. The authors provided existence,
regularity, qualitative and numerical results. Recently G. De Philippis and B. Velichkov
[15] proved that the shape optimization problem (1.2) has a solution for any k ∈ N

∗ and
for any dimension d. They also proved that the solution is bounded, connected, open with
boundary of class C1,α outside a closed set of Hausdorff dimension d − 8. We underline
the fact that it is not necessary to consider sets Ω contained in a bounding box D ⊂ R

d

in order to have the existence result. Furthermore, in [15] it is proved that the optimizer
found in the absence of a box constraint is bounded. Therefore, if the bounding box D is
large enough, the optimizer is the same as in the general case Ω ⊂ R

d.
The numerical studies performed by É. Oudet [25] and P. Antunes, P. Freitas [3] for

problem (1.1) show that the expected minimizers do not have an obvious geometric structure
for k ≥ 5. In [12] it is proved that the optimal shape for (1.2) in the case k = 2, d = 2
does not contain any segment or any arc of circle in its boundary. This suggests that we
cannot hope to find a simple geometric description of the solution of (1.2) even in the case
of k = 2.

In this context it is relevant to introduce new numerical approaches which provide a
precise description of optimal candidates in two and three dimensions. One numerical
approach which has been successfully used in the last few years is the following Fourier
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parametric method. Considering the formulation (1.3) we note that the monotonicity of λk
and the fact that in R

2 convexification decreases perimeter imply that every solution of the
problem (1.2) in the plane is convex. Thus we can represent any optimal candidate in the
plane using its radial function r(θ). Furthermore, we can approximate the radial function r
by its truncated Fourier series rn (n sine and cosine coefficients). Doing this truncation, we
don’t perturb the eigenvalues too much. B. Osting gives an estimate of this error in [23].
In this way we can represent a good approximation of the boundary of a star convex shape
by a finite number of parameters. It is possible to find the partial derivatives of λk(Ωrn)
with respect to the Fourier coefficients. Then a gradient descent algorithm can be used
in order to find the optimal shape candidate in terms of first 2n + 1 Fourier coefficients.
This method is very precise and gives reliable estimates of computed eigenvalues. The same
method is used in [3]. The method can be generalized to the three dimensional case and
P. Antunes and P. Freitas announced a result in this direction [4]. A possible drawback of
using this method in three or more dimensions is the fact that we do not know apriori that
the solutions of (1.2) are star-convex in dimension greater than two.

A different approach consists of representing the shape Ω as a density function ϕ :
D → [0, 1] (where D is a bounded, open set of R

2). In recent works of É. Oudet [26]

and B. Bourdin, D. Bucur, É. Oudet [8], some Γ-convergence results are used in order to
approximate the perimeter of Ω and the eigenvalue λk(Ω) by relaxed functionals calculated
on a density approximation of Ω. As stated above, choosing a large enough bounding boxD,
does not modify the optimizer. In the case of the Γ-convergence approximation presented
in Section 3, considering a bounding box D simplifies the proofs.

The first main contribution of this article is to prove that we can combine the two results
above in order to produce a relaxation by Γ-convergence of λk(Ω)+Per(Ω). We implement
this method for d = 2 and d = 3 and we obtain comparable results with the Fourier
parametrization approach, in the two dimensional case. The advantage of our method is
the fact that we do not make any topological assumptions on the optimal shape. Moreover,
the numerical implementation in dimension three or greater is very similar to the one in
dimension two.

Our second contribution is to provide new optimality conditions (Corollary 5.4) for this
spectral shape optimization problem which are also relevant in a non differentiable context.
As a matter of fact, the difficulty that arises very often in problem (1.2) is the fact that
the cost function is not differentiable anymore when the optimizer does not have a simple
kth eigenvalue. This fact was observed in our computations presented in Section 4. Notice
that the question of finding the multiplicity at the optimum is still open even for problem
(1.1). Thanks to these new optimality conditions, we are able to generalize the qualitative
results obtained in [12] in our general setting: for every k and any d, the optimal shape
does not contain flat parts in its boundary. The optimality condition is obtained under
the hypothesis that Ω is of class C3, which is stronger than the result proved in [15]. The
optimality relation allows us to use a bootstrap argument, similar to the one used in [12], in
order to prove that if Ω is of class C3, then Ω is of class C∞. Thus, in order to completely
solve the regularity issue for problem 1.2, it only remains to fill the gap between C1,α and
C3.

2. Preliminaries

In the proof of our results we will need different theoretical tools, which are recalled
below.

2.1. Spectrum of a measurable set. For well posedness reasons, it is convenient to
extend the notion of Sobolev space to any measurable set Ω ⊂ R

d by defining

H̃1
0 (Ω) = {u ∈ H1(Rd) : u = 0 a.e. on Ωc}.
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In general we have H1
0 (Ω) ⊂ H̃1

0 (Ω) and we have equality if, for instance, Ω has Lipschitz
boundary. Furthermore, it is proved in [19, Chapter 4] that there exists a quasi-open set

ω ⊂ Ω such that H̃1
0 (Ω) = H1

0 (ω). More technical details about the choice of this space,
and why is it suitable in the study of problem (1.2), can be found in [12] and [15].

For any Ω ⊂ R
d of finite measure and any f ∈ L2(Rd) we define RΩ(f) ∈ H̃1

0 (Ω) as the

weak solution in H̃1
0 (Ω) of the equation

−∆u = f, u ∈ H̃1
0 (Ω)

or equivalently as the unique minimizer in H̃1
0 (Ω) of

u 7→ 1

2

∫

Ω
|∇u|2 −

∫

Ω
fu.

Then RΩ is a positive, self-adjoint and compact operator. As a consequence, its spectrum
is discrete and its eigenvalues form a sequence converging to zero. Thus we can set

λk(Ω) =
1

Λk(RΩ)

where 0 < ... ≤ Λk(Ω) ≤ ... ≤ Λ1(Ω) are the eigenvalues of RΩ.
If µ is a capacitary measure (i.e. µ(A) = 0 if cap(A) = 0) then λk(µ) is defined as the

kth eigenvalue of the operator −∆+ µI. The corresponding Rayleigh formulas are

λn(µ) = min
E∈Sn

max
u∈E\{0}

∫
D
|∇u|2dx+

∫
D
u2dµ∫

D
u2dx

,

where the minimum is taken over n dimensional subspaces of H1
0 (D) ∩ L2(D;µ). Using

this formula we immediately deduce the following monotonicity property: if µ ≤ ν then
λk(µ) ≤ λk(ν). We note that the eigenvalues of a shape Ω correspond to the eigenvalues of
the measure +∞Ωc .

The notion which is well suited to the study of the convergence of Dirichlet eigenvalues
is the γ-convergence. If (µn), µ are capacitary measures we say that µn γ-converges to µ if

|Rµn −Rµ|L(L2(D)) → 0.

We have denoted Rµ the resolvent of the operator −∆+µI. In particular, if µn γ-converges
to µ, then

λk(µn)→ λk(µ).

A useful characterization of the γ-convergence of a sequence of sets (Ωn) to another set
Ω is the Mosco convergence of the spaces H1

0 (Ωn) to H1
0 (Ω). We suppose that Ωn,Ω are

contained in a bounded open set D. We say that H1
0 (Ωn) converges to H1

0 (Ω) in the sense
of Mosco if the two following conditions are satisfied:

(M1) For all u ∈ H1
0 (Ω) there exists a sequence un ∈ H1

0 (Ωn) such that un converges
strongly in H1

0 (D) to u.
(M2) For every sequence unk

∈ H1
0 (Ωnk

) weakly convergent in H1
0 (D) to a function u we

have u ∈ H1
0 (Ω).

For more details we refer to [11, Chapter 6] and [19].
For every measurable set Ω of finite measure we denote wΩ the weak solution of the

equation

−∆wΩ = 1, wΩ ∈ H̃1
0 (Ω).

We have wU ≤ wΩ whenever U ⊂ Ω and

H1
0 ({wΩ > 0}) = H̃1

0 ({wΩ > 0}) = H̃1
0 (Ω).

We refer to [12], [15] for further details.
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2.2. Γ-convergence and Modica Mortola Theorem. In shape optimization, many nu-
merical methods replace the shape variable by some unknown function. One main difficulty
in our context is to associate to this kind of functional framework a way to compute the
perimeter of the set. To achieve this goal, the characteristic function χΩ will be approxi-
mated by a regular function u ∈ H1(Ω) and the perimeter of Ω will be replaced by some
smooth functional. This smooth functional is chosen from a sequence of functionals which
Γ-converges to the perimeter.

The notion of Γ-convergence, introduced by de Giorgi, is a suitable tool for the study
of the convergence of variational problems. For the sake of completeness, we present its
definition and some of its main properties.

Definition 2.1. Let X be a metric space and Fε, F : X → [0,+∞] a sequence of functionals

on X (defined for ε > 0). We say that Fε Γ-converges to F and we denote Fε
Γ−→ F if the

following two properties hold:

(LI) For every x ∈ X and every (xε) ⊂ X with xε → x we have

F (x) ≤ lim inf
ε→0

Fε(xε) (2.1)

(LS) For every x ∈ X there exists (xε) ⊂ X such that (xε)→ x and

F (x) ≥ lim sup
ε→0

Fε(xε). (2.2)

Given x0 ∈ X we will call recovery sequence a sequence (xε), which satisfies property
(2.2). This sequence satisfies, in particular, the relation

lim
ε→0

Fε(xε) = F (x).

Here are three main properties of the Γ-convergence.

Proposition 2.2. If Fε
Γ−→ F in X then the following properties hold:

(i) F is lower semicontinuous;
(ii) If G : X → [0,∞) is a continuous functional then

Fε +G
Γ−→ F +G.

(iii) Suppose xε minimizes Fε over X. Then every limit point of (xε) is a minimizer for
F .

The last property suggests that we could approximate a minimizer of F by a minimizer
of Fε for ε small enough. This method was successfully used in [8, 26].

Sometimes it is difficult to prove the (LS) property (2.2) for every x ∈ X. Having
an element x with some good regularity properties may aid in constructing the recovery
sequence. The following procedure, of reducing the class of elements x for which we prove
(2.2) to a dense subset of {F < +∞}, is classical (see for example [9],[10]).

Proposition 2.3. Let D ⊂ {F < +∞} be a dense subset of X, such that for every x ∈
{F < +∞} and (un) ⊂ D, with (un)→ x we have

lim sup
n→∞

F (un) ≤ F (x).

Suppose that for every x ∈ D, the property (2.2) is verified. Then (2.2) is verified in general.

The result stated below is due to Modica and Mortola [20], and it provides an approxi-
mation of the perimeter using Γ-convergence.
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Theorem 2.4. Let D be a bounded open set and let W : R → [0,∞) be a continuous

function such that W (z) = 0 if and only if z ∈ {0, 1}. Denote c = 2
∫ 1
0

√
W (s)ds. We

define Fε, F : L1(D)→ [0,+∞] by

Fε(u) =

{
ε
∫
D
|∇u|2 + 1

ε

∫
D
W (u) u ∈ H1(D)

+∞ otherwise

and

F (u) =

{
cPer(u−1(1)) u ∈ BV (D; {0, 1})
+∞ otherwise

then

Fε
Γ−→ F

in the L1(D) topology.

For a proof we refer to [1] or [13]. In the numerical simulations we fix the potential

W (s) = s2(1− s)2

which imposes the corresponding constant c = 1/3.

Remark 2.5. In general if Fε
Γ−→ F and Gε

Γ−→ G we cannot conclude that Fε + Gε
Γ−→

F + G. Thus, the result proved in Section 3 is not trivial. One sufficient condition for
the above implication to hold would be that for each u we could find the same recovery
sequence for F and G. For more details and examples see [9].

2.3. Perturbation theory for eigenvalues. Let (fε) be a family of diffeomorphisms
of Rd which depend analytically of ε, such that f0 is the identity. Each such family of
diffeomorphisms determines a sequence of perturbations (Ωε) = (fε(Ω)) of Ω. The vector
field V = d

dε
fε|ε=0 is called the direction of the perturbation. One natural question is to

see whether the map

ε 7→ λk(Ωε) (2.3)

is differentiable at ε = 0. It is known that the above map is differentiable if and only if
λk(Ω) is simple. Nevertheless, it is possible to prove that if λk(Ω) has multiplicity p > 1 and
if we consider an analytic perturbation Ωε = fε(Ω), then the p corresponding eigenvalues
move on p smooth curves as ε varies. The differentiability is lost because the p eigenvalues
change their places on the p smooth curves as ε passes through zero, due to their ordering.
We could recover some informations on differentiability if we relabel them. This method
has been used in [17]. We present below some of the results needed to derive our optimality
conditions.

Consider Ω a bounded, open set of class C3 in R
d; therefore the mean curvature H is well

defined and continuous. We denote by n the outer normal to Ω. Any perimeter preserving
perturbation Ωε = fε(Ω) induces a function v = 〈 d

dε
fε|ε=0, n〉 on ∂Ω satisfying

∫
∂ΩH v dσ =

0. We denote by P0(∂Ω) the set of C1 functions on ∂Ω such that
∫
∂ΩH v dσ = 0. We

denote by divΓ the tangential divergence with respect to Γ. We refer to [19, Section 5.4.3],
for a precise description of divΓ.

Lemma 2.6. Let v ∈ P0(∂Ω). Then there exists an analytic perimeter preserving defor-
mation Ωε = fε(Ω) such that v = 〈 d

dε
fε|ε=0, n〉.

Proof: Let U be an open neighborhood of Ω and ṽ, ñ be C1 extensions of v, n to U .
For ε sufficiently small, the map ϕε(x) = x + εṽ(x)ñ(x) is a diffeomorphism from Ω to
ϕε(Ω) (local inversion theorem). This deformation is analytic in ε, but is not necessarily
perimeter-preserving.
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Let X be an analytic vector field on U such that
∫
∂Ω div∂ΩX 6= 0 and let ut be the one

parameter group of diffeomorphisms associated to X. Define (t, ε) 7→ G(t, ε) = Per(ut ◦
ϕε(Ω)). Using the fact that dut

dt
|t=0 = X and Proposition 5.4.18 from [19] we obtain

∂G

∂t
(0, 0) =

d

dt
Per(ut(Ω)) =

∫

∂Ω
div∂ΩXdσ 6= 0.

Therefore we can apply the implicit function theorem around (0, 0) to see that there exists
an analytic function ε 7→ t(ε) defined on a neighborhood (−η, η) of 0 such that

G(t(ε), ε) = G(0, 0) = Per(Ω).

Thus the deformation gε = ut(ε) ◦ϕε is perimeter preserving. Moreover, using Propositions
5.4.9 and 5.4.18 from [19], we have

t′(0) = −
d
dε

Per(ϕε(Ω))|ε=0

d
dt
Per(ut(Ω))|t=0

= −
∫
∂Ω div∂Ω ṽñdσ∫
∂Ω div∂ΩXdσ

= −
∫
∂ΩH v dσ∫

∂Ω div∂ΩXdσ
= 0.

Therefore, if we set H(t, ε) = ut ◦ ϕε then

d

dε
gε(x)|ε=0 =

d

dt
H(t(0), 0)t′(0) +

d

dε
H(t(0), 0) =

dϕε

dε
|ε=0 = ṽ(x)ñ(x) = v(x)n(x)

for x ∈ ∂Ω. In conclusion, gε is the desired perturbation. �

Below we present two results from [17], which will be used freely in the rest of the article.
We omit the proofs, as they can be found in the cited article.

Lemma 2.7. Let λ be an eigenvalue of multiplicity p of the Dirichlet Laplacian on Ω.
For any analytic deformation Ωε of Ω there exist p families of real numbers (Λi,ε)i≤p and
p families of functions (ui,ε)i≤p ⊂ C∞(Ωε), depending analytically on ε, satisfying for all
ε ∈ (−ε0, ε0) and for all i ∈ {1, ..., p}:

(a) Λi,0 = λ.
(b) The family {u1,ε, ..., up,ε} is orthonormal in L2(Ωε).

(c) We have

{
−∆ui,ε = Λi,εui,ε in Ωε

ui,ε = 0 on ∂Ωε.

Lemma 2.8. Let λ be an eigenvalue of multiplicity p of the Dirichlet Laplace operator and
denote Eλ the corresponding eigenspace. Let Ωε = fε(Ω) be an analytic deformation of Ω.
Let (Λi,ε)i≤p and (ui,ε)i≤p be like in Lemma 2.7. Then Λ′

i =
d
dε
Λi,ε|ε=0 are the eigenvalues

of the quadratic form qv defined on Eλ ⊂ L2(Ω) by

qv(u) = −
∫

∂Ω

(
∂u

∂n

)2

v dσ,

where v = 〈 d
dε
fε, n〉. Moreover, the L2-orthonormal basis u1,0, ..., up,0 diagonalizes qv on

Eλ.

In the rest of the paper we use λk,ε to denote λk(Ωε). We define the following notion of
critical domain for the eigenvalues of the Dirichlet Laplacian, which generalizes the notion
of local minimum or local maximum.

Definition 2.9. The domain Ω is said to be critical for the kth eigenvalue of the Dirichlet
problem if, for any analytic perimeter-preserving deformation Ωε of Ω, the right-sided and
left-sided derivatives of λk,ε (see Lemma 2.7) at ε = 0 have opposite signs, that is

d

dε
λk,ε

∣∣
ε=0+

× d

dε
λk,ε

∣∣
ε=0−

≤ 0.
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3. The Γ-convergence result

In this section we construct a Γ-convergence approximation for λk(Ω) + Per(Ω). This
result allows us to construct a numerical method for the study of problem (1.2), which will
be presented in the next section. Consider F : Rk → R+ a continuous function which is
increasing in each variable. Let D ⊂ R

d be a bounded, open set. For every ϕ : D → R+,
measurable we define λk(ϕ) = λk(ϕ dx), where ϕ dx is seen as a capacitary measure. In
the following, q will be a fixed positive real parameter.

Theorem 3.1. Define Jε : L
1(D; [0, 1]) → R+ ∪ {+∞} by

Jε(ϕ) = F

(
λ1

(
1− ϕ
εq

dx

)
, ..., λk

(
1− ϕ
εq

dx

))
+ ε

∫

D

|∇ϕ|2 + 1

ε

∫

D

ϕ2(1− ϕ)2

if ϕ ∈ H1(D) and +∞ otherwise. Then Jε
Γ−→ J in the L1(D) topology, where

J(ϕ) =

{
F (λ1(Ω), ..., λk(Ω)) +

1
3 Per(Ω), if ϕ = χΩ ∈ BV (D)

+∞ otherwise

Proof: For simplicity, in the rest of the proof we denote the quantity F (λ1(Ω), .., λk(Ω))
by F (Ω). With this notation, F becomes decreasing for the inclusion, as a function of Ω.
We make the same convention when instead of Ω we have a measure µ. Let us begin by
proving the Γ− lim sup part of our result.

1. Reduction to regular domains. This part of the proof is a standard step in the
proof of the Γ− lim sup property (see Proposition 2.3). We refer to [9],[10] for more details
and examples. If Ω is regular, the construction of a recovery sequence is straightforward
(see Part 2 of the proof). We are left to prove that regular sets are a dense subset D of
{F < +∞} and that they satisfy the following property: for each Ω ∈ {F < +∞} we can
find (Ωn) ⊂ D such that χΩn → χΩ in L1(D) topology and lim sup

n→∞
J(χΩn) ≤ J(χΩ).

In [2], Thm 3.4.2 it is proved that the sets with boundary of class C∞ are dense in the
class of finite perimeter sets, when considering the L1 topology. Thus we can choose our
dense set D to be the family of subsets of D with finite perimeter and smooth boundary.
If ϕ is the characteristic function χΩ of Ω and it belongs to BV (D) then Ω is a set of
finite perimeter. The theorem we cited above says that each finite perimeter Ω set can be
approximated in the L1(D) topology with a sequence (Ωn) of finite perimeter sets having
smooth boundaries such that Per(Ωn) → Per(Ω). At this point it is not clear if we have
lim sup
n→∞

F (Ωn) ≤ F (Ω). The objective of the following paragraphs is to construct (Ωn) in

such a way that the previous inequality holds.
If we denote (ρk) a sequence of mollifiers, we have

Per(Ω) =

∫

Rd

|DχΩ| = lim
k→∞

∫

Rd

|∇χΩ ∗ ρk| =

= lim
k→∞

∫ 1

0
Per({χΩ ∗ ρk > t})dt ≥

∫ 1

0
lim inf
k→∞

Per({χΩ ∗ ρk > t})dt (3.1)

where we have applied the co-area formula and Fatou’s lemma. By applying Chebyshev’s
inequality we obtain that

|{χΩ ∗ ρk > t} \ Ω| = |{χΩ ∗ ρk − χΩ ≥ t}| ≤
1

t

∫

Rd

|χΩ ∗ ρk − χΩ|

and

|Ω \ {χΩ ∗ ρk > t}| = |{χΩ − χΩ ∗ ρk ≥ 1− t}| ≤ 1

1− t

∫

Rd

|χΩ ∗ ρk − χΩ|.
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Therefore χ{χΩ∗ρk>t} converges to χΩ in the L1(D) topology for almost every t ∈ (0, 1). By
the lower semicontinuity of the perimeter we deduce that

lim inf
k→∞

Per({χΩ ∗ ρk > t}) ≥ Per(Ω).

Combining this with (3.1) we obtain

lim inf
k→∞

Per({χΩ ∗ ρk > t}) = Per(Ω).

for almost every t ∈ (0, 1). Sard’s theorem tells us that the level sets of χΩ ∗ ρk are smooth
for almost every t. Moreover, Lemma 2.95 from [2] tells us that almost all level sets of
χΩ ∗ ρk are transversal, i.e. Hn−1(∂{χΩ ∗ ρk} ∩ ∂D) = 0. In this way, we can choose the
smooth, transversal approximating sets at almost every level t ∈ (0, 1).

Denote w = RΩ(1) = Rω(1) where ω ⊂ Ω is a quasi open set with the property that

H1
0 (ω) = H̃1

0 (Ω). We can assume that ‖w‖∞ ≤ 1 (or otherwise rescale it) so that we get
w ≤ χΩ which implies that w∗ρk ≤ χΩ∗ρk and as a consequence {w∗ρk > t} ⊆ {χΩ∗ρk > t}.

We want to prove that lim sup
k→∞

F ({w ∗ ρk > t}) ≤ F ({w > t}). Denote Ak = {w ∗ ρk >
t} ∩ {w > t}. It is enough to prove that (Ak) γ-converges to {w > t}. Indeed, if this holds,
then

lim sup
k→∞

F ({w ∗ ρk > t}) ≤ lim
k→∞

F (Ak) = F ({w > t})

To prove this γ-convergence result it suffices to prove the first Mosco condition, since the
second one comes from Ak ⊂ {w > t}. For more details we refer to [11, Section 4.5]. To
prove the first Mosco condition it is enough to prove it on a dense subset of H1

0 ({w > t}).
One such dense subset is given in [14] Prop 5.5 and is {C∞

c (Rd)·(w−t)+}. Let ϕ ∈ C∞
c (Rd).

Then if ϕk = ϕ · min{(w ∗ ρk − t)+, (w − t)+} we have ϕk → ϕ · (w − t)+ in H1
0 (D) and

ϕk ∈ H1
0 (Ak). This concludes the proof of the fact that Ak γ-converges to {w > t}.

Therefore we have found a sequence

Bt
k = {w ∗ ρk > t} ⊆ Ct

k = {χM ∗ ρk > t}

with Ct
k → χΩ in L1(D), lim inf

k→∞
Per(Ct

k) = Per(Ω) for almost every t, F (Ct
k) ≤ F (Bt

k) and

lim sup
k→∞

F (Bt
k) ≤ F ({w > t}).

Thus, we can choose a diagonal sequence Ek = Ctk
k with tk → 0 such that χEk

→ χΩ in
L1(D), Per(Ek)→ Per(Ω) in order to obtain

lim sup
k→∞

F (Ek) ≤ F ({w > 0}) = F (ω) = F (Ω).

2. Proof of the Γ− lim sup part. Using the previous density result, it suffices to prove
the Γ − lim sup only for characteristic functions of smooth sets with finite perimeter. Let
ϕ ∈ L1(D; [0, 1]) with J(ϕ) < +∞. Then ϕ is the characteristic function of a set Ω with
finite perimeter. We assume, as mentioned above, that Ω has smooth boundary and that
Hn−1(∂Ω ∩ ∂D) = 0.

We take (ϕε) ⊂ H1(D) to be a recovery sequence associated to the Modica-Mortola
approximation (see Theorem 2.4). We recall that this sequence can be chosen to satisfy
χΩ(x) = ϕε(x) for dΩ(x) /∈ [0, ε] (see [13]; here dΩ represents the signed distance from a
point to ∂Ω). We have ϕε → ϕ in L1(D) and

lim
ε→0

[
ε

∫

D

|∇ϕε|2dx+
1

ε

∫

D

ϕ2
ε(1− ϕ2

ε)dx

]
=

1

3
Per(Ω).
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Since for every x ∈ Ω we have ϕε(x) = 1, we observe that +∞D\Ω ≥
1− ϕε

εq
. By the

monotonicity of λj we have

λj(Ω) = λj(+∞D\Ω) ≥ λj
(
1− ϕε

εq
dx

)
.

Using the monotonicity of F we obtain

lim sup
ε→0

F

(
1− ϕε

εq
dx

)
≤ F (Ω).

3. Proof of the Γ − lim inf part. Let ϕ ∈ L1(D; [0, 1]) and (ϕε) ∈ L1(D; [0, 1]) such
that ϕε → ϕ in L1(D). We assume that lim inf

ε→0
Jε(ϕε) < +∞ since otherwise the result is

obvious. The Γ− lim inf part of the Modica-Mortola theorem tells us that

+∞ > lim inf
ε→0

ε

∫

D

|∇ϕε|2 +
1

ε

∫

D

ϕ2
ε(1− ϕε)

2 ≥ 1

3

∫

D

|Dϕ|.

Thus ϕ has is a characteristic function with bounded variation. This implies that Ω =
ϕ−1(1) is a set of finite perimeter relative to D, and

lim inf
ε→0

ε

∫

D

|∇ϕε|2 +
1

ε

∫

D

ϕ2
ε(1− ϕε)

2 ≥ 1

3
Per(Ω).

It remains to prove that

lim inf
ε→0

F

(
1− ϕε

εq
dx

)
≥ F (Ω).

Since F is increasing in each variable, it is enough to prove that

lim inf
ε→0

λi

(
1− ϕε

εq
dx

)
≥ λi(Ω).

Let wε be the solution of
{
−∆wε +

1−ϕε

εq
wε = 1 in D

wε ∈ H1
0 (D).

Without loss of generality we can replace lim inf with lim by taking a sequence εk which
realizes the lim inf. Denoting ϕk = ϕεk , we have to prove that

lim
n→∞

λi

(
1− ϕk

εqk
dx

)
≥ λi(Ω).

By compactness there is a subsequence of (wnk
) converging weakly in H1

0 (D) to w. We
can choose a subsequence of this sequence which converges almost everywhere to w. For
simplicity we relabel this subsequence (wk). It is enough to prove the inequality for (ϕk)
(the corresponding functions for this new sequence (wk)).

Taking wk as test functions in the weak form of the partial differential equation we get
∫

D

1− ϕk

εqk
w2
k =

∫

D

wk −
∫

D

|∇wk|2 ≤
∫

D

wk ≤
∫

D

wD,

where wD is the solution of {
−∆wD = 1 in D

wD ∈ H1
0 (D).

We know that

lim inf
k→∞

1− ϕk(x)

εqk
= +∞
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for x ∈ Ωc since 1 − ϕk(x) → 1 a.e. on Ωc and εk → 0+. Therefore since wk → w almost
everywhere, if w(x) > 0, x /∈ Ω and wk(x)→ w(x) then

lim inf
k→∞

1− ϕk(x)

εqk
w2
k(x) = +∞.

Fatou’s Lemma tells us that

+∞ > lim inf
k→∞

∫

D

1− ϕk

εqk
w2
k ≥

∫

D

lim inf
k→∞

1− ϕk

εqk
w2
k ≥

∫

Ωc

lim inf
k→∞

1− ϕk

εqk
w2
k

This inequality and the previous remarks impliy that the set Ωc ∩ {w > 0} is of measure

zero, and therefore w ∈ H̃1
0 (Ω). Since the γ-convergence is compact, up to a subsequence

we have

µε =
1− ϕk

εqk

γ→ µ ≥ +∞Ωc .

As a consequence, we have

lim
k→∞

λi

(
1− ϕk

εqk
dx

)
= λi(µ) ≥ λi(Ω),

which finishes the proof of the Γ− lim inf part. �

4. Numerical study of problem (1.2)

The method we developed for studying problem (1.2) combines the Γ-convergence meth-
ods used in approximating the perimeter (used in [26]) and the eigenvalues of the Laplace
operator (used in [8]). The combination of the two cited methods is made possible by
the Γ-convergence result proved in the previous section. As it has been underlined, our
Γ-convergence method is very flexible with respect to both the dimension and the topology
of the shapes. In order to evaluate the quality of our solution we recall in subsection 4.2
the method used successfully by B. Osting [23] and P. Antunes, P. Freitas [3]. In Table
1 we illustrate that both methods give the same results in the easy context of the two
dimensional case. Finally, we extend previous results in the three dimensional case, where
we notice that some of the optimal shapes found seem to be non-convex. This behaviour
has been conjectured in [12].

4.1. Method based on the Γ-convergence result. We relax our shape optimization
problem with respect to Ω by an optimization problem of an unknown function ϕ : D →
[0, 1]. In our computations we choose D = [0, a]2 and impose periodic boundary conditions
(so that the perimeter of Ω is not influenced by the boundary of D). We consider a N ×N
uniform grid and we represent the function ϕ by its values (ϕi,j)

N
i,j=1 on this grid. We

approximate

ϕ 7→ ε

∫

D

|∇ϕ|2 + 1

ε

∫

D

ϕ2(1− ϕ)2

by using centred finite differences on the considered grid. This approximation is equivalent
to considering a piecewise linear function associated to the grid values.

For the eigenvalue approximation we consider the discrete form of

−∆uk +
1− ϕ
ε2

uk = λkuk.

In order to obtain a matrix formulation, we fix an ordering on the N ×N grid. We denote
by ψ̄ the vector which contains the values on the grid of the function ψ with respect to this
fixed ordering. We defineA to be theN2×N2 matrix associated to the discrete Laplacian on
the considered grid, with respect to the fixed ordering. The discretized eigenvalue problem
becomes [

A+
1− ϕ̄
ε2

I

]
ūk = λkūk.
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We used the Matlab solver eigs to solve this matrix eigenvalue problem. The expression
of the discrete gradient of our functional with respect to each component of ϕ̄ is

− 1

ε2
ū2k.

We refer to [8] for more details.
We can compute the gradient of ϕ 7→ ε

∫
D
|∇ϕ|2 + 1

ε

∫
D
ϕ2(1 − ϕ)2 with respect to a

perturbation θ of ϕ ∈ H1(D) as follows:

d

dt

[
ε

∫

D

|∇(ϕ+ tθ)|2 + 1

ε

∫

D

(ϕ+ tθ)2(1− (ϕ+ tθ))2
]

t=0

=

= 2ε

∫

D

〈∇ϕ,∇θ〉+ 1

ε

∫

D

(2ϕ− 6ϕ2 + 4ϕ3)θ

=

∫

D

[
−2ε∆ϕ+

1

ε
(2ϕ− 6ϕ2 + 4ϕ3)

]
θ

Thus the discrete gradient of ϕ 7→ ε
∫
D
|∇ϕ|2 + 1

ε

∫
D
ϕ2(1 − ϕ)2 with respect to ϕ is given

by

2ε(4ϕ̄i,j − ϕ̄i+i,j − ϕ̄i−1,j − ϕ̄i,j+1 − ϕ̄i,j−1) +
1

ε
(2ϕ̄i,j − 6ϕ̄2

i,j + 4ϕ̄3
i,j). (4.1)

To obtain a solution ϕ0 of the problem

min

[
ε0

∫

D

|∇ϕ|2 + 1

ε0

∫

D

ϕ2(1− ϕ)2 + λk

(
1− ϕ
ε20

dx

)]

we start from a random configuration with a concentration around the center of the grid.
Numerical experiments have shown that starting from a totally random configuration tends
to lead to a shape consisting of k disks. This configuration is a local minimum, but not the
global one, since we know that the optimal shape is connected [15]. We think this behaviour
is due to the fact that when we approximate Ω by density functions, the optimization of λk
tends to separate Ω into nodal domains. Then the perimeter, which is optimized locally,
transforms those domains into disks. This observation motivates our previous initialization.
For the optimization part, we used the quasi-Newton algorithm LBFGS implemented in
[27],[28].

The choice of the initial parameter ε0 is important for the algorithm to converge. Nu-
merical experiments have shown that ε0 ∈ [ 1

N
, 4
N
] are suitable for obtaining the expected

results. This observation is well known in the phase-field community. Note that the main
Γ-convergence result holds for any exponent q positive. In our computations we choose
q = 2, because we observed a good numerical behaviour with this parameter. This good
behavior could be explained by a well balanced effect of the cost values for q = 2 in the
scale of our discretization.

4.2. The approach of B. Osting [23] and P. Antunes, P. Freitas [3]. In order to
verify our results, we compare them with the ones obtained using the Fourier boundary
parametrization method mentioned in the introduction. This method is well known, and
was applied in [3],[23] and [24]. We present it below for the sake of completeness.

We know that the solutions to problem (1.2) in R
2 are convex shapes, so every such

shape is uniquely defined by its radial function r(θ), θ ∈ [0, 2π). B. Osting proved in [23,
Prop. 3.1] that the error |λk(Ωr) − λk(Ωrn)| can be made arbitrarily small if we choose n
big enough, where rn is the truncation of the Fourier series representation of r to 2n + 1
coefficients:

rn(θ) = a0 +

n∑

k=1

ak cos(kθ) +

n∑

k=1

bk sin(kθ).
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Algorithm 1 General form of optimization algorithm for minϕ Jε(ϕ)

Require: k ∈ N, ε0 > 0, pmax ∈ N, N ∈ N, ω ∈ (0, 1), tol ∈ (0, 1)
1: ε = ε0;
2: Choose a random initial shape ϕ concentrated around the center of D;
3: repeat

4: p = 1;
5: repeat

6: Compute the eigenpair (λk, uk) of A+ 1−ϕ̄
ε2
I and the gradient ∇λk(ϕ) = − 1

ε2
ūk;

7: Compute the gradient of ϕ 7→ ε
∫
D
|∇ϕ|2 + 1

ε

∫
D
ϕ2(1 − ϕ)2 with respect to the

components of ϕ̄ on the grid using formula (4.1);
8: Do a step of the LBFGS algorithm: update descent direction and do a linesearch;
9: ϕ← ϕ− dp;

10: p← p+ 1;
11: until p = pmax or |dp| < tol;
12: ε = (1− ω)ε;
13: until ε < 1/N .

This allows us to write λk(Ω) as a function of 2n+1 variables λk(a0, a1, ..., an, b1, ..., bn).
Furthermore, using the fact that the derivative of λk(Ω) with respect to a perturbation V
of the boundary is

dλk(Ω)

dV
= −

∫

∂Ω

(
∂uk
∂n

)2

(V.n)dσ

(proofs and other references can be found in [18, 19]) we can find that

∂λk
∂ak

= −
∫ 2π

0
r(θ) cos(kθ)

(
∂u

∂n
(r(θ), θ)

)2

dθ

∂λk
∂bk

= −
∫ 2π

0
r(θ) sin(kθ)

(
∂u

∂n
(r(θ), θ)

)2

dθ.

We can find similar formulas for the derivatives of the perimeter in terms of Fourier coef-
ficients. For computing the eigenvalues and normal derivatives of the eigenfunctions it is
possible to use the publicly available software MpsPack [5].

4.3. Our numerical results. In order to solve numerically problem (1.2), in its equivalent
form (1.3), we search the solutions of the relaxed problem

min

[
ε0

∫

D

|∇ϕ|2 + 1

ε0

∫

D

ϕ2(1− ϕ)2 + λk

(
1− ϕ
ε20

dx

)]

We use the method presented in subsection 4.1 on the square D = [0, a]2 (where a is chosen
such that the solution of (1.3) fits inside D).

Since the method presented in subsection 4.2 was used successfully in the study of the
problem (1.1), we employ it to find the numerical solutions of (1.2). These solutions are a
benchmark to which we compare the results we found using our Γ-convergence methods.

The optimal shapes obtained with the Γ-convergence method coincide with the ones
found using the Fourier boundary parametrization method. The numerical results can be
seen in Figure 1. To compare the accuracy of the results, we took the optimal shapes
obtained with the Γ-convergence method and we isolated the 0.5 level set. We choose a
point in its convex hull, the centroid G of a discretization {x1, ..., xl} of the boundary, and
computed the distances from that point to the contour, denoted by {ρ1, ..., ρl} as well as
the angles made by Gxi with the positive x-axis, denoted by {θ1, ..., θl}. This procedure
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gives us a radial parametrization of our domain. Using a least squares fit

min
(aj)nj=0

,(bj)nj=0

l∑

i=1


a0 +

n∑

j=1

aj cos(jθi) +

n∑

j=1

sin(jθi)− ρi




2

we are able to find the first 2n+1 Fourier coefficients of this radial function. We use these
coefficients to construct the radial function of our shape Ω∗. We use MpsPack to compute
λk(Ω

∗) + Per(Ω∗) and we compare the results, which can be seen in Table 1. We can see
that the results agree, and in general the ones obtained with the Γ-convergence method are
a bit weaker, in the sense that the minimal value is higher. Still, the fact that we obtain
the same shapes, with small errors, shows that the Γ-convergence method is a suitable tool
for the study of problem (1.2). Furthermore, it gets close enough to the optimizer without
imposing any topological constraints.

One interesting question that has been addressed in several papers ([3],[25]) is the mul-
tiplicity of λk at the optimum. We noticed in our computations that the optimal shape
for (1.3) does not always have multiple kth eigenvalue. This was already proved for k = 2
in [12] and our computations have shown that for k = 6, 9, 13, 15 the optimal eigenvalues
should be simple. This behaviour is different from the one observed for problem (1.1). It
is known that if a local minimizer of problem (1.1) would have simple eigenvalue then its
eigenfunction would satisfy the overdetermined problem





−∆u = λu in Ω

u = 0 on ∂Ω
∂u
∂n

= c on ∂Ω,

(4.2)

where c > 0 is a constant. There is a conjecture due to Bernstein [6], concerning the above
overdetermined problem. The problem has been revisited in [29].

Conjecture 4.1. If problem (4.2) has a solution, then Ω is a disk.

This is true in the case of λ1, but the arguments used in the proof rely essentially on the
fact that the first eigenfunction can be chosen positive. In the case k ≥ 2, the eigenfunctions
corresponding to λk are not positive, so the argument used for k = 1 does not work here.
Still, to the our knowledge, no counter-example of this conjecture is known.

A recent result by A. Berger [7] says that in two dimensions, the only positive integers k
for which the ball is a local minimizer for λk under volume constraint are k = 1, 3. Thus,
we have the following interesting fact:

• Suppose that for some k /∈ {1, 3} the shape which Ω is solution to (1.1) has simple kth

eigenvalue. Then the kth corresponding eigenfunction uk satisfies an overdetermined
problem of the type (4.2). The result of A. Berger says that Ω cannot be a disk.
Thus Conjecture 4.1 is contradicted.

Thus, Conjecture 4.1 together with the result of [7], imply that in the case of problem (1.1),
if k ≥ 2 the multiplicity is greater than one at the optimum.

In the case of the perimeter constraint, the situation is different. We can find shapes Ω,
which are not disks, such that the overdetermined problem





−∆u = λu in Ω

u = 0 on ∂Ω
∂u
∂n

= H on ∂Ω.

has a non-trivial solution. Such examples are the shape described in [12] as well as the
shapes we found numerically for k = 6, 9, 13, 15.

We notice that the numerical optimal shape obtained for k = 3 is the disk. This is to be
expected, since it is a direct consequence of the conjecture that the disk minimizes λ3(Ω)
under volume constraint. This is still an open problem.
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We observe that all the optimal shapes computed have one or more axes of symmetry,
while this is not the case for the volume constraint where the optimal shape for k = 13 is
suspected to be non-symmetric [3].

The fact that we can immediately generalize the method in three dimensions is a big
advantage. One drawback is the fact that we were not able to obtain very high resolution
due to the fact that the matrices involved have extremely large dimensions. The shapes
presented in Figure 2 were obtained using a 40× 40× 40 grid on D = [0, a]3. As previously,
the initial shape was concentrated around the center of the cube D. In the paper [12] a few
conjectures were stated regarding the minimizers in higher dimensions. The first conjecture
was that the optimal shape for λ2(Ω)+Per(Ω) has cylindrical symmetry and is not convex
in the three dimensional case. This can be observed in our results. To conclude that a shape
is convex or not we simply apply the following procedure : we first compute a discretization
of the isosurface {ϕ = 1/2} and estimate the exact measure of its volume (up to roundoff
error). Then, in a second step we compute the convexhull of this discretized isosurface
and again estimate its volume. When the volume of the convex hull is 5% greater than
the volume of the original isosurface we conclude that the computed optimal profile is not
convex. We have obtained non-convex shapes for k = 2, 5, 6, 7. Cylindrical symmetry can
be observed for k = 2, 3, 4, 5. For k = 8 we observe a symmetry by a rotation of angle π/2
and for k = 10 we observe a tetrahedral symmetry. We notice that the numerical optimal
shape for k = 4 is the approximately a ball. This is a direct consequence of the conjecture
that the ball minimizes λ4(Ω) under volume constraint in three dimensions. The optimal
computed value of λ4, in this case, is 255.56, while the actual eigenvalue of a ball of same
surface area is approximately 253.72. We provide for each shape the value of the scale
invariant expression λk(Ω)Per(Ω), calculated using a finite element method.

We discussed our results with P. Antunes and P. Freitas, who made computations for
problem (1.2) for k ≤ 50 in two dimensions and k ≤ 20 in three dimensions. In two
dimensions we obtained the same results (we also performed the computations up to k =
501). In the three dimensional case, for k ≤ 6 our results coincide with theirs, but for
k ≥ 7 their optimal shapes have better cost values than ours. We believe this is due to the
limitation on the discretization parameter for our method in three dimensions.

We observe that in the three dimensional case, the optimal shapes we obtained numeri-
cally do not have holes. We may ask ourselves if this behaviour can be justified. In order
to do this, we can analyse the, so called, topological derivative, which for a point x ∈ Ω
and a general functional F is defined as

T (x) = lim
r→0

F (Ω \B(x, r))− F (Ω)
ε(r)

,

where ε(r) is positive and ε(r) → 0 as r → 0. For more details see [22]. A negative
topological derivative would mean that making a small hole decreases the value of F . In
our particular case F (Ω) = λk(Ω) + Per(Ω), and for x ∈ Ω and r small enough, we have
F (Ω \ B(x, r)) > F (Ω), since the eigenvalue is decreasing with respect to set inclusion,
and for small r, we have Per(Ω \ B(x, r)) = Per(Ω) + Per(B(x, r)). Thus, in our case, the
topological derivative is always positive, and there is no interest in creating holes in order
to decrease the value of the functional.

5. Optimality conditions and qualitative results

Once we know that a shape optimization problem has a solution, we would like to write
some optimality conditions which could allow us to find further qualitative properties. An
eigenvalue of the Dirichlet Laplacian associated to a shape Ω is differentiable with respect to
perturbations only if it is simple. Unfortunately, solutions of (1.1) and (1.2) are conjectured

1The complete set of results can be seen on the author’s webpage
http://www.lama.univ-savoie.fr/~bogosel/spectral_perim.html

http://www.lama.univ-savoie.fr/~bogosel/spectral_perim.html
http://www.lama.univ-savoie.fr/~bogosel/spectral_perim.html
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λ1 = 11.5505 λ2 = 15.2806 λ3 = 15.7573
(double)

λ4 = 18.3496
(double)

λ5 = 19.1091
(double)

λ6 = 20.0909 λ7 = 21.5020
(double)

λ8 = 22.0265
(double)

λ9 = 23.2073 λ10 = 23.5501
(double)

λ11 = 24.5970
(double)

λ12 = 24.7440
(triple)

λ13 = 25.9823 λ14 = 26.4325
(double)

λ15 = 26.9123

Figure 1. Numerical optimizers for problem (1.3) in 2D

λ2(Ω)Per(Ω) = 223.63 λ3(Ω)Per(Ω) = 251.91 λ4(Ω)Per(Ω) = 255.56

λ5(Ω)Per(Ω) = 343.75 λ6(Ω)Per(Ω) = 394.77 λ7(Ω)Per(Ω) = 421.20

λ8(Ω)Per(Ω) = 439.80 λ9(Ω)Per(Ω) = 446.58 λ10(Ω)Per(Ω) = 510.00

Figure 2. Numerical optimizers for problem (1.3) in 3D
Convex shapes with cyan (light); non-convex shapes with red (dark)
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k mult. Γ-conv Fourier
1 1 11.55 11.55
2 1 15.28 15.28
3 2 15.75 15.75
4 2 18.35 18.35
5 2 19.11 19.11
6 1 20.09 20.09
7 2 21.50 21.50
8 2 22.07 22.02
9 1 23.21 23.21
10 2 23.58 23.55

k mult. Γ-conv Fourier
11 2 24.62 24.60
12 3 24.76 24.74
13 1 25.98 25.98
14 2 26.46 26.43
15 1 26.91 26.91
16 3 27.27 27.25
17 3 27.37 27.36
18 2 28.66 28.63
19 2 29.09 29.08
20 3 29.54 29.51

Table 1. Comparative results

to have multiple kth eigenvalue at the optimum (with a few exceptions in the case of the
perimeter constraint). Thus, classical optimality conditions, like the one exploited in [12],
cannot be written for every k. In our case, we observed that for d = 2, k = 2, 6, 9, 13, 15
optimal shapes probably have simple eigenvalues. Thus we can apply the method described
in [12] to deduce the fact that the boundary of these shapes does not contain any flat parts
or any arcs of circles. We are led to believe that this fact should be true in the general
case. To study this question in the case of multiple eigenvalues it is possible to use methods
inspired by [17], [16] and [21]. In the previously cited article [17], the authors provided an
optimality condition for problem (1.1), which treats the case when the eigenvalue is multiple
at the optimum. The results of this section are dedicated to finding a similar optimality
condition for problem (1.2).

The following theorem is a result similar to Theorem 2.5.10 in [18] where it is said that
if an optimizer Ω∗ for problem (1.1) is such that the kth eigenvalue is multiple, then the
multiplicity cluster ends at λk, i.e. λk(Ω

∗) < λk+1(Ω
∗). Throughout this section we assume

that Ω has boundary of class C3. In particular, this implies that its curvature, H is of class
C1. This assumption is stronger than the results obtained in [15], where it is proved that
the optimizer has regularity C1,α. To our knowledge, this regularity assumption cannot be
easily deduced from [15], and it is an open question, though it is natural to expect it.

Theorem 5.1. Let k ≥ 2 such that λk > λk−1 and assume that Ω is a minimizer for the
kth eigenvalue of the Dirichlet Laplacian with a perimeter constraint (i.e. a solution of the
problem (1.2)). Then λk is simple and there exists a unique (up to sign) eigenfunction u
satisfying 




−∆u = λk(Ω)u in Ω

u = 0 on ∂Ω(
∂u
∂n

)2
= H on ∂Ω

Proof: Let Ωε = fε(Ω) be a perimeter preserving analytic deformation of Ω and denote
(Λi,ε)i≤p and (ui,ε)i≤p the families of eigenfunctions and eigenvectors associated to λk ac-
cording to Lemma 2.7. We use the notation λk,ε(Ω) = λk(Ωε). Since λk = Λi,0 > λk−1, by
continuity, for sufficiently small ε we have

Λi,ε > λk−1,ε.

We know that Ω is a local minimizer for the Dirichlet Laplacian under the considered
perturbation, which means that

Λi,ε ≥ λk,ε.
The differentiable function ε 7→ Λi,ε achieves a local minimum at ε = 0 and this implies
d
dε
Λi,ε = 0.
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As a consequence, the quadratic form qv defined in Lemma 2.8 is identically zero on Ek,
where v = 〈 d

dε
fε, n〉. The perimeter preserving deformation is arbitrary, so by Lemma 2.6

we have that qv vanishes on Ek for every v ∈ P0(∂Ω). This means that
∫

∂Ω

(
∂u

∂n

)2

vdσ = 0

for every v ∈ P0(∂Ω) and for every u ∈ Ek.

Hence, for every function u ∈ Ek there exists a constant c > 0 such that
(
∂u
∂n

)2
= cH

on ∂Ω. Since Ω is bounded, it is a classical result that the curvature of Ω is non-negative
at at least one point. Thus, since cH is non-negative, it follows that c ≥ 0. We cannot
have c = 0, because otherwise ∂u

∂n
= 0 on ∂Ω, and we could extend u with u = 0 outside Ω.

Thus this extension would be an eigenfunction on any set Ω′ containing Ω, contradicting
the uniqueness of the analytic extension.

Thus, we have
∣∣ ∂u
∂n

∣∣ =
√
cH on ∂Ω. Since H is continuous, there exists an open set U

such that H > 0 on U ∩ ∂Ω. Thus, on ∂Ω∩U , ∂u
∂n

keeps constant sign, so in this set we can

only have ∂u
∂n

=
√
cH or ∂u

∂n
= −
√
cH. If we have two eigenfunctions u1, u2 then there exists

a linear combination u = αu1 + βu2 such that ∂u
∂n

vanishes on ∂Ω∩U . We apply Holmgren
uniqueness theorem to conclude that u = 0 and λk is simple. �

The following result connects the criticality of a domain Ω with the definiteness of the
quadratic form qv. This will allow us later to state our optimality result.

Theorem 5.2. Let k ≥ 1 be a positive integer.

(1) If Ω is a critical domain for the kth eigenvalue of the Dirichlet Laplacian, then, for

all v ∈ P0(∂Ω), the quadratic form qv(u) = −
∫

∂Ω

(
∂u

∂n

)2

v dσ is not definite on

Ek.
(2) Assume that λk > λk−1 or λk < λk+1, and that for all v ∈ P0(∂Ω), the quadratic

form qv(u) = −
∫
∂Ω

(
∂u
∂n

)2
v dσ is not definite on Ek. Then Ω is a critical domain

for the kth eigenvalue of the Dirichlet Laplacian.

Proof: (1) Consider a function v ∈ P0(∂Ω) and let Ωε = fε(Ω) be an analytic perime-
ter preserving deformation of Ω such that v = 〈 d

dε
fε|ε=0, n〉 (such a deformation exists

by Lemma 2.6). Let (Λi,ε)i≤p and (ui,ε)i≤p be families of eigenvalues and eigenfunc-
tions associated to λk like in Lemma 2.7. There exist two integers i, j ≤ p such that
d
dε
λk,ε|ε=0− = d

dε
Λi,ε|ε=0 and d

dε
λk,ε|ε=0+ = d

dε
Λj,ε|ε=0. The criticality of Ω implies that

d
dε
Λi,ε|ε=0 × d

dε
Λj,ε|ε=0 ≤ 0 and from Lemma 2.8, it follows that qv has both positive and

negative eigenvalues, which means that qv is not definite on Ek.
(2) Assume λk > λk−1 and let Ωε = fε(Ω) be a perimeter-preserving deformation of Ω.

Let (Λi,ε)i≤p and (ui,ε)i≤p be families of eigenvalues and eigenfunctions associated to λk
according to Lemma 2.7. For ε sufficiently small we have λk,ε = mini≤p Λi,ε. Hence

d

dε
λk,ε

∣∣
ε=0+

= min
i≤p

d

dε
Λi,ε

∣∣
ε=0

and
d

dε
λk,ε

∣∣
ε=0−

= max
i≤p

d

dε
Λi,ε

∣∣
ε=0

.

The non definiteness of qv on Ek means that its smallest eigenvallue is non positive and
its largest one is non negative. This implies that

d

dε
λk,ε

∣∣
ε=0+

= min
i≤p

d

dε
Λi,ε

∣∣
ε=0
≤ 0

and
d

dε
λk,ε

∣∣
ε=0−

= max
i≤p

d

dε
Λi,ε

∣∣
ε=0
≥ 0
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which in turn implies the criticality of the domain Ω.
The case λk < λk+1 can be treated in a similar manner. �

The next result provides a nice characterisation of the non-definitness of qv. Note that
unlike in [17], we have to add a hypothesis on H. This hypothesis is natural when dealing
with solutions of problem (1.2).(see [15], Section 4.)

Theorem 5.3. Let k be a natural integer. If Ω is bounded and its curvature satisfies H ≥ 0
then the following two conditions are equivalent:

(i) For all v ∈ P0(∂Ω), the quadratic form qv is not definite on Ek.
(ii) There exists a finite family of eigenfunctions (ui)i≤m ⊂ Ek satisfying

m∑

i=1

(
∂ui
∂n

)2

= H on ∂Ω.

Proof: To see that (ii) implies (i) it suffices to notice that, for any v ∈ P0(∂Ω)
∑

i≤m

qv(ui) = −
∑

i≤m

∫

∂Ω

(
∂ui
∂n

)2

vdσ = −
∫

∂Ω
H v dσ = 0,

which means that qv is not definite on Ek.

To prove the other implication we look at K = conv{
(
∂u
∂n

)2
, u ∈ Ek}, and we want to

prove that the functionH belongs toK. Suppose thatH /∈ K. Then, from the Hahn-Banach
theorem (applied to the finite dimensional normed vector subspace of C1(∂Ω) spanned by
K and H), there exists a function v ∈ C1(∂Ω) such that

∫
∂ΩH v dσ > 0 and for all u ∈ Ek,

∫

∂Ω

(
∂u

∂n

)2

v dσ ≤ 0.

Since v is not necessarily in P0(∂Ω), we modify it by a constant term and define v0 = v−c
where c is chosen such that v0 ∈ P0(∂Ω). The condition that c must satisfy is

0 =

∫

∂Ω
H v0 dσ =

∫

∂Ω
H v dσ − c

∫

∂Ω
H dσ.

This last relation defines c =

∫
∂ΩH v dσ∫
∂ΩH dσ

, since
∫
∂ΩH dσ > 0. The fact that

∫
∂ΩHdσ > 0

is a consequence of the fact that H ≥ 0 and Ω is bounded. With the above considerations,
we see that c > 0.

For u ∈ Ek we have

qv0(u) = −
∫

∂Ω

(
∂u

∂n

)2

v0 dσ

= −
∫

∂Ω

(
∂u

∂n

)2

v dσ + c

∫

∂Ω

(
∂u

∂n

)2

dσ

≥ c
∫

∂Ω

(
∂u

∂n

)2

dσ

and
∫
∂Ω

(
∂u
∂n

)2
dσ > 0 for any non trivial Dirichlet eigenfunction u (due to Holmgren unique-

ness theorem). In conclusion, we have found a function v0 ∈ P0(∂Ω) such that the quadratic
form qv0 is positive definite on Ek, which contradicts condition (i). �

Corollary 5.4. If Ω is a local minimizer for the problem (1.2)

min
Per(Ω)=1

λk(Ω)
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with boundary of class C3, then there exists a finite family of eigenfunctions (ui)i≤m ⊂ Ek,
such that

m∑

i=1

(
∂ui
∂n

)2

= H.

Proof: It is a direct result of the above theorems, noting that any solution Ω of the
problem must verify H ≥ 0 [15]. �

Remark 5.5. We note that Corollary 5.4 the number m of eigenfunctions that satisfy the
optimality condition is not known. Numerical computations done in Section 6 suggest that
m is equal to the multiplicity of λk.

Once this regularity result is established, we can apply the bootstrap procedure presented
in [12], and conclude that Ω is smooth.

Corollary 5.6. If Ω is a minimizer for the problem (1.2), with boundary of class C3, then
Ω has boundary of class C∞.

Proof: If Ω is of class C3, then Corollary 5.4 holds and we have the optimality relation
m∑

i=1

(
∂ui
∂n

)2

= H.

Since Ω is of class C2,α, it follows, using standard Shauder regularity estimates, that ∂nu
2
i

is C1,α. The optimality relation, then implies that H is C1,α, and thus Ω is of class C3,α.
Iterating this procedure we find that Ω is of class C∞. �

In the article [12] the authors prove that the solution of (1.2) in the case k = 2, d = 2
has no segments and no arcs of circles in its boundary. The method used in the mentioned
article works only in the case we know the corresponding eigenvalue is simple. Using the
above corollary, we can partially extend this result to the general case. In the following, we
call a flat part of Rd, the nonempty intersection of a d − 1 dimensional hyperplane with a
d-dimensional open ball.

Theorem 5.7. If Ω is a local minimizer for the problem 1.2

min
Per(Ω)=1

λk(Ω)

then ∂Ω does not contain a flat parts.

Proof: Suppose that Ω contains a flat part S in its boundary. Using the previous conven-
tion, S = H ∩B where H is a d− 1 dimensional hyperplane and B is a d-dimensional ball.
Then H = 0 on that region S, and by Corollary 5.4, at least one eigenfunction u satisfies
∂u

∂n
= 0 on that S.

We then choose an extension Ω′ = Ω∪B′ of the domain Ω such that B′ is a ball, B′ ⊂ B,
B′ 6⊂ Ω and B′ is small enough such that B′ ∩ ∂Ω ⊂ S. Define u′ = u on Ω and 0 on
Ω′ \Ω. In this way, we create an eigenfunction u′ on Ω′ which is zero on an open set. This
together with the analiticity of u′ and the fact that u′ is not identically zero brings us to a
contradiction.

In conclusion, Ω cannot contain a flat part in its boundary. �

6. Numerical observation of the optimality conditions

By the above results, we know that if Ω is a minimizer for (1.2) then it exists a family
of eigenfunctions (ui)

m
i=1 ⊂ Ek such that

m∑

i=1

(
∂ui
∂n

)2

= H. (6.1)
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In order to evaluate the numerical quality of our solutions we would like to investigate how
far our solutions satisfy this optimality condition. The question is whether we are able to
find a combination of eigenfunctions which realize this equality. Suppose that dimEk = p
and the p orthonormal eigenfunctions which span Ek are denoted u1, ..., up. It is easy to see
that (6.1) implies that

H ∈ span

({(
∂ui
∂n

)2

, i = 1..p

}
⋃{

∂ui
∂n

∂uj
∂n

, 1 ≤ i < j ≤ p
})

.

This observation is a direct consequence of the fact that each ui can be written as

ui =

p∑

j=1

αi
juj .

Thus, in a first step, we can find the coefficients of H in the decomposition

H =

p∑

i=1

αi

(
∂ui
∂n

)2

+
∑

1≤i<j≤p

βi,j
∂ui
∂n

∂uj
∂n

by solving an optimization problem. The normal derivatives ∂ui
∂n

and the curvature are
known on a discretization {x1, ..., xl} of the boundary ∂Ω. To find the coefficients, we solve
the quadratic, convex minimization problem

min
(αi)

p
i=1

,

(βi,j)1≤i<j≤n

l∑

h=1




p∑

i=1

αi

(
∂ui
∂n

(xh)

)2

+
∑

1≤i<j≤p

βi,j
∂ui
∂n

(xh)
∂uj
∂n

(xh)−H(xh)




2

Then, we transform this quadratic representation into a canonical representation by using
the classical Gauss-Jacobi method. Of course, this representation is not unique. The claim
of Corollary 5.4 is that this canonical representation consists of a sum of squares. In order
to test this we check if the matrix (ai,j) defined by ai,i = αi, ai,j = aj,i = βi,j/2 is positive
definite. The answer is affirmative and a representation of the type (6.1) can be found
for each of the numerical optimal shapes. For k ≤ 15 the numerical optimality relation is
satisfied with a pointwise error smaller than 10−4.

We present below a few other numerical observations in connection with the optimality
conditions.

• If x ∈ ∂Ω and H(x) = 0, then all nodal lines corresponding to the eigenfunctions
present in the optimality relation touch ∂Ω at x. This is observed numerically in
Figure 3 for k = 18.
• Numerical observations suggest that the number of eigenfunctions m present in the
optimality condition is equal to the multiplicity of the eigenvalue at the optimum.
Furthermore, the relation seems to be a convex combination of the type

ak(∂nuk)
2 + ak−1(∂nuk−1)

2 + ...+ ak−m+1(∂nuk−m+1)
2 = H,

where ak + ak−1 + ...+ ak−m+1 = 1.
• Motivated by [24], we studied numerically some convex combinations of eigenvalues
under perimeter constraint. Suppose that Ω∗ is solution of problem (1.2) and λk(Ω

∗)
is double, with observed numerical optimality relation

a(∂nuk)
2 + (1− a)(∂nuk−1)

2 = H.
Then, we observed numerically that Ω∗ is also a solution of the problem

min
Per(Ω)=1

(αλk(Ω) + (1− α)λk−1(Ω)) ,

for every α ∈ [a, 1]. This can be generalized to the cases where the eigenvalue has
higher multiplicity.
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Figure 3. Optimal set Ω18 obtained for k = 18, together with the nodal
lines of the eigenfunctions u17, u18 corresponding to λ17(Ω18) = λ18(Ω18).
(left) Plot of the curvature of Ω18; note that the nodal lines touch the

boundary at the two points having zero curvature. (right)

k mult. Numerical optimality relation L2 error L∞ error

1 1 (∂u1

∂n
)2 = H 0 0

2 1 (∂u2

∂n
)2 = H 3 · 10−8 4 · 10−8

3 2 ( 1√
2
∂u2

∂n
)2 + ( 1√

2
∂u3

∂n
)2 = H 5 · 10−4 7 · 10−4

4 2 (0.16∂u3

∂n
)2 + (0.98∂u4

∂n
)2 = H 3 · 10−4 6 · 10−4

5 2 (0.54∂u4

∂n
)2 + (0.84∂u5

∂n
)2 = H 2 · 10−4 3 · 10−4

6 1 (∂u6

∂n
)2 = H 3 · 10−4 5 · 10−4

7 2 (0.87∂u6

∂n
)2 + (0.48∂u7

∂n
)2 = H 4 · 10−4 5 · 10−4

8 2 (0.39∂u7

∂n
)2 + (0.92∂u8

∂n
)2 = H 3 · 10−4 3 · 10−4

9 1 (∂u9

∂n
)2 = H 7 · 10−5 10−4

10 2 ( 1√
2
∂u9

∂n
)2 + ( 1√

2
∂u10

∂n
)2 = H 2 · 10−4 2 · 10−4

11 2 (0.51∂u10

∂n
)2 + (0.86∂u11

∂n
)2 = H 6 · 10−4 7 · 10−4

12 3
(0.31∂u10

∂n
)2 + (0.51∂u11

∂n
)2+

(0.80∂u12

∂n
)2 = H 3 · 10−5 2 · 10−5

13 1 (∂u13

∂n
)2 = H 4 · 10−4 5 · 10−4

14 2 (0.82∂u13

∂n
)2 + (0.57∂u14

∂n
)2 = H 2 · 10−5 2 · 10−5

15 1 (∂u15

∂n
)2 = H 10−5 10−5

Table 2. Numerical optimality conditions in dimension two
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geometric analysis].

[20] L. Modica and S. Mortola. Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B (5), 14(1):285–299,
1977.

[21] N. Nadirashvili. Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct.
Anal., 6(5):877–897, 1996.

[22] A. A. Novotny and J. Soko lowski. Topological derivatives in shape optimization. Interaction of Mechanics
and Mathematics. Springer, Heidelberg, 2013.

[23] B. Osting. Optimization of spectral functions of Dirichlet-Laplacian eigenvalues. J. Comput. Phys.,
229(22):8578–8590, 2010.

[24] B. Osting and C.-Y. Kao. Minimal convex combinations of three sequential Laplace-Dirichlet eigenval-
ues. Appl. Math. Optim., 69(1):123–139, 2014.
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