
HAL Id: hal-01884542
https://hal.univ-grenoble-alpes.fr/hal-01884542

Submitted on 1 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interference-Aware Scheduling using Geometric
Constraints

Raphaël Bleuse, Konstantinos Dogeas, Giorgio Lucarelli, Grégory Mounié,
Denis Trystram

To cite this version:
Raphaël Bleuse, Konstantinos Dogeas, Giorgio Lucarelli, Grégory Mounié, Denis Trystram.
Interference-Aware Scheduling using Geometric Constraints. Euro-Par 2018 - European Conference
on Parallel Processing, Aug 2018, Torino, Italy. pp.205-217, �10.1007/978-3-319-96983-1_15�. �hal-
01884542�

https://hal.univ-grenoble-alpes.fr/hal-01884542
https://hal.archives-ouvertes.fr

Interference-Aware Scheduling using Geometric

Constraints

Raphaël Bleuse1,2[0000−0002−6728−2132], Konstantinos Dogeas1, Giorgio
Lucarelli1[0000−0001−7368−355X], Grégory Mounié1[0000−0002−6757−7432], and

Denis Trystram1[0000−0002−2623−6922]

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, Grenoble, France
firstname.lastname@imag.fr

2 FSTC/CSC, University of Luxembourg, Luxembourg
raphael.bleuse@uni.lu

Abstract. The large scale parallel and distributed platforms produce
a continuously increasing amount of data which have to be stored, ex-
changed and used by various jobs allocated on di�erent nodes of the
platform. The management of this huge communication demand is cru-
cial for the performance of the system. Meanwhile, we have to deal with
more interferences as the trend is to use a single all-purpose intercon-
nection network. In this paper, we consider two di�erent types of com-
munications: the �ows induced by data exchanges during computations
and the �ows related to Input/Output operations. We propose a general
model for interference-aware scheduling, where explicit communications
are replaced by external topological constraints. Speci�cally, we limit
the interferences of both communication types by adding geometric con-
straints on the allocation of jobs into machines. The proposed constraints
reduce implicitly the data movements by restricting the set of possible
allocations for each job. We present this methodology on the case study
of simple network topologies, namely the line and the ring. We propose
theoretical lower and upper bounds under di�erent assumptions with
respect to the platform and jobs characteristics. The obtained results
illustrate well the di�culty of the problem even on simple topologies.

1 Introduction

In High Performance Computing, the demand for computational power is steadi-
ly increasing [16]. To meet up with the challenge of greater performance the archi-
tecture of supercomputers also grows in complexity at the whole machine scale.
This complexity arises from various factors: i) the size of the machines (super-
computers now integrates millions of cores); ii) the heterogeneity of the resources
(various architectures of computing nodes, nodes dedicated to I/O); iii) the in-
terconnection topology. The evolution in the interconnection networks faces two
main challenges: �rst, the community is proposing new topologies [12]; and sec-
ond, the interconnection network is now unique within the machine (the network
is shared for various mixed data �ows). Sharing such a single multi-purpose inter-
connection network creates complex interactions (e.g., network contention) be-
tween running applications, which have a strong impact on their performance [1,

5], and limits the understanding of the system by the users [3]. As the volume
of processed data increases, so does the impact of the network.

In this work, we introduce a generic framework for interference-aware schedul-
ing. More precisely, we identify two main types of interleaved �ows: the �ows
induced by data exchanges for computations and the �ows related to I/O. Rather
than explicitly taking into account these network �ows, we address the issue of
harmful interactions by constraining the shape of the allocations. Such an ap-
proach aims at taking into account the structure of the new platforms in a
qualitative way that is more likely to scale properly. The scheduling problem is
then de�ned as an optimization problem with the platform (nodes and topology)
and the jobs' description as input. The objective is to minimize the maximum
completion time while enforcing constraints on the allocations.

2 Problem Setting

In this work, we model a platform as a set V of m nodes divided in two groups:
a set VC of mC nodes dedicated to computations, and a set VI/Oof mI/O nodes
that are entry points to a high performance �le system. As a consequence, we
have m = mC + mI/O . We assume that the I/O nodes are exclusively used for
communications with the �le system and hence, there is no overlap between
computing and I/O nodes, i.e., VI/O ∩ VC = ∅. Moreover, a computing or an
I/O node is exclusively allocated to a job for its lifespan, i.e., any node cannot
be used at the same time by more than one job.

The nodes can communicate using an interconnection network with a given
topology, while the localization of every node within the topology is known. In
this direction, we study here the instantiation of this framework with unidi-
mensional topologies, namely the line (Figure 1(a)) and the ring (Figure 1(b)).
Studying topologies of one dimension is a �rst step towards the more com-
plicated state-of-the-art platforms, while these basic topologies provide lower
bounds for the later ones. The line may indeed be seen as a degenerate tree.
Fat-tree topologies are a common interconnect, and are for example used in the
Curie and Oakforest-PACS platforms. On the other hand, the torus topologies,
such as the one of Blue Waters and Titan (3D torus) or the K computer (6D
torus), may be studied from the ring with classical embedding techniques.

Batch schedulers are a critical part of the software stack managing HPC
platforms: their goal is to e�ciently allocate resources (nodes from V in our case)
to the jobs submitted by the users of the platform. The jobs are queued in a set
J . The total number of jobs is n. Each job j requires qj computing nodes and
one I/O node. We distinguish two cases with respect to I/O requirements: in the
pinned model each job asks for a speci�c I/O node, while in the unpinned model
the jobs just need any arbitrary I/O node. The number of allocated computing
nodes is �xed, i.e., the job is rigid [6]. We denote by V(j) the set of nodes
allocated to the job j. If needed, we use VC(j) and VI/O(j) to distinguish among
the computing and the I/O nodes assigned in j, respectively. Each job j requires
a certain time pj to be processed, and it is independent of every other job. Once
a job starts being executed, it runs until completion, i.e., it is not preemptive.

As stated above, the goal of this paper is not to �nely model the full context
of execution. Instead, we propose to model the platform in such a way that

1 2 3 4 5 6 7

(a) Line topology.

1

2

3

4

5

6

7

8

(b) Ring topology.

Fig. 1. Example of platforms with unidimensional topologies. The nodes are numbered
using the natural order. White nodes represent computing nodes, and black nodes
represent I/O nodes.

the network interactions are implicitly taken into account. In this direction, we
augment the scheduling problem with geometric constraints on the allocations
of the jobs in the resources based on the platform topology and the application
requirements. Before presenting these constraints, we need to precisely de�ne
the network �ows we target. We distinguish two types of �ows, directly deriving
from the fact that we are dealing with two kinds of nodes:

computational communications which are induced by data exchanges dur-
ing computations. Such communications occur between two computing nodes
allocated to the same application.

I/O communications which are induced by data exchanges between comput-
ing and I/O nodes. Such communications occur when computing nodes read
input data, checkpoint the state of the application, or save output results.

In order to avoid computational communication interactions, we consider the
following constraint.

De�nition 1 (Contiguity [2, 14]) An allocation is said to be contiguous if
and only if the nodes of the allocation form a contiguous range with respect to
the nodes' ordering.

Note that the contiguity constraint relies on the nodes' ordering. For topologies
such as lines or rings this ordering is natural (see Fig. 1).

The contiguity constraint is well suited to take into account the computa-
tional communications, but not the I/O communications. Indeed, the former type
of communications may occur between any pair of computing nodes within an
allocation: we usually describe this pattern as all-to-all communication. On the
other hand, I/O communications generate tra�c towards few identi�ed nodes
in an all-to-one or one-to-all pattern. Hence, we propose the locality constraint,
whose goal is to limit the impact of the I/O �ows to the periphery of the job
allocations. We must emphasize that the locality constraint proposed here is not
related to the locality constraint described in [14].

De�nition 2 (Locality) A given allocation for a job j is said to be local i�
it is contiguous, and the I/O node VI/O(j) is adjacent to computing nodes from
VC(j), with respect to the underlying topology.

In this paper, we are interested in minimizing the maximum completion time
among all jobs (i.e., the makespan of the schedule) while enforcing the contiguity
and the locality constraints. Speci�cally, we aim at developing algorithms with
performance guarantees by adding geometric constraints on the allocations of
jobs into nodes.

3 Related Work

Most actual implementations of schedulers allocate resources greedily without
any topological constraint in the allocation of the computing nodes. However,
this naive solution has a bad impact on performances [5]. Constraining the al-
locations to enhance performance is however not a new idea. For example, Lu-
carelli et al. studied the impact of enforcing contiguity or locality in back�lling
scheduling [14] (for fat trees). They showed that enforcing these constraints can
be done at a small cost, and has minimum negative impact on usual metrics
such as makespan, �ow-time, or stretch.

Tackling the interactions arising from the context of execution, or, more
speci�cally, network contention, can be done either by preventing these inter-
actions from happening or by mitigating them. Still, the approaches discussed
above require some knowledge about the application communication patterns
(either compute or I/O communications). We review brie�y related work in the
prevention/mitigation of interactions before discussing monitoring techniques.

Interactions Prevention. Some steps have been taken towards integrating more
knowledge about the communication patterns of applications into batch sched-
ulers. For instance, Georgiou et al. studied the integration of TreeMatch into
SLURM [9]. Given the communication matrix of an application, the scheduler
minimizes the load of the network links by smartly mapping the application's
processes on the resources. This approach however does not consider the tem-
porality of communications. Targeting the mesh/torus topologies, the works of
Tuncer et al. [18] and Pascual et al. [15] are noteworthy. Another way to prevent
interactions is to force the scheduler to use only certain allocation shapes with
good properties: this strategy has been implemented in the Blue Waters sched-
uler [5]. The administrators of Blue Waters let the scheduler pick a shape among
460 precomputed cuboids. Yet, the works proposed above only target compute
communications. HPC applications usually rely on highly tuned libraries such
as MPI-IO, parallel netCDF or HDF5 to perform their I/O. Tessier et al. pro-
pose to integrate topology awareness into these libraries [17]. They show that
performing data aggregation while considering the topology allow to diminish
the bandwidth required to perform I/O.

Interactions Mitigation. Given a set of applications, Gainaru et al. propose to
schedule I/O �ows of concurrent applications [7]. Their work aim at mitigating
I/O congestion once applications have been allocated computation resources. To
achieve such a goal, their algorithm relies on past I/O patterns of the applications
to either maximize the global system utilization, or minimize the maximum
slowdown induced by sharing bandwidth.

Application/Platform Instrumentation. A lot of e�ort have been put into devel-
oping tools to better understand the behavior of HPC applications. Character-
izing I/O patterns is key as it allows the developers to identify performance bot-
tlenecks, and allows the system administrator to better con�gure the platforms.
A complementary path is to predict I/O performances during execution [4].
Such instrumentation e�orts allow for a better use of the scarce communication
resources. However, as they are application-centric, they fail to capture inter-
application interactions. Monitoring of the platform is a way of getting insight
on the inter-application interactions. We will not address this problem here.

4 Pinned I/O

In this section, we study the problem with respect to the pinned I/O model,
according to which each job requests a speci�c I/O node. Such a model is repre-
sentative of HPC platforms where the parallel �le system is organized in stripes.
For example, this is the case with the con�guration of the Lustre �le system in
Blue Waters, where each I/O node is responsible for an address range (i.e., a
stripe). Then, the jobs will request the I/O node corresponding to their data.

4.1 Complexity

We start by proving that the studied problem is NP-complete even in the special
case where all jobs require unit processing time to be executed, while the platform
contains only three I/O nodes.

Theorem 1. The problem of scheduling in the pinned model with respect to con-
tiguity and locality constraints is strongly NP-complete even in line topologies,
with mI/O = 3 and pj = 1 for each job j ∈ J .

Proof. The problem clearly belongs to NP. We give a reduction from a special
case of the Numerical 3-Dimensional Matching (N3DM) problem [8]. An
instance of the classical N3DM problem consists of three disjoint setsW , X and
Y , each containingM positive integers, and a bound B ∈ Z+. The objective is to
decide whetherW∪X∪Y can be partitioned intoM disjoint sets A1, A2, . . . , AM
such that each Ai contains exactly one element from each of W , X, and Y and∑
a∈Ai

a = B, for 1 ≤ i ≤M .
Consider now SN3DM be the special case of N3DM in which all integers

that belong to the set X are at least B2 . It is not hard to see that SN3DM is also
strongly NP-complete. Indeed, it su�ces to transform an instance of N3DM to
an instance of SN3DM by setting W ′ = W , Y ′ = Y , X ′ = {x+B : ∀x ∈ X}
and B′ = 2B. Then, any solution for N3DM corresponds to a solution for
SN3DM, and vice versa.

We propose now a transformation from SN3DM to our problem as follows:

� mC = B, mI/O = 3;
� the topology is a line starting with an I/O node, followed by B

2 comput-

ing nodes, an I/O node, B
2 computing nodes, and �nishing with a third

I/O node;

� for each a ∈W ∪X ∪ Y , we create a job j with qj = a, and pj = 1. All jobs
derived from sets W , X, and Y target the �rst, second, and third I/O node,
respectively.

With respect to the ordering of the line topology, we refer to the computing
nodes as 1, 2, . . . ,mC and to the I/O nodes as 1, 2, . . . ,mI/O .

We will prove that a solution to SN3DM exists if and only if there is a
schedule that satis�es all constraints and has a makespan at most M .

Assume that there is a solution for SN3DM. Then for each set Ai, 1 ≤ i ≤M ,
we schedule the three jobs j1 ∈ W , j2 ∈ X and j3 ∈ Y corresponding to
this set at time interval (i − 1, i]. Speci�cally, j1 will use the computing nodes
1, . . . , qj1 , j2 the computing nodes qj1 + 1, . . . , qj1 + qj2 and j3 the computing
nodes qj1 + qj2 + 1, . . . ,mC. Note that each of these three jobs is adjacent to
the targeted I/O node. Indeed, the j1 and j3 are adjacent to the leftmost and
the rightmost I/O node, respectively, while j2 is always adjacent to the middle
I/O node, since qj2 ≥ B

2 . The makespan of the created schedule is equal to M .
Assume now that there exists a schedule of makespan at most M . As the

total work is M · B, no computing node is idle during the time interval (0,M].
Hence, the partition is directly derived by assigning jobs that start at time i− 1
to Ai, 1 ≤ i ≤M . ut

4.2 Approximation Algorithm

In this section, we �rst propose a constant-factor approximation algorithm for
line topologies and then we argue that it can be used even for ring topologies.
The main idea of our algorithm is to �rst determine an allocation of each job to
a speci�c set of computing nodes. We are interested in allocations that are si-
multaneously contiguous and local, while each job j requires a speci�c I/O node.
As a consequence, there exist at most qj + 1 = O(mC) valid allocations for each
job j (see Fig. 2). Given an allocation of all jobs to computing nodes, our prob-
lem coincides with the well-studied Dynamic Storage Allocation (DSA)
problem [10]. Then, we use a known approximation algorithm for the latter
problem.

Fig. 2. Potential allocations for a job j requesting the middle I/O node with qj = 3.

In order to decide the allocation of computing nodes we use an integer linear
program. Let Aj be the set of all potential allocations for each job j, where
|Aj | ≤ qj + 1. Each allocation a ∈ Aj contains exactly qj computing nodes as
well as the required I/O node. Note that, an allocation may include more I/O
nodes that will not be used during the execution of j neither by j nor by the
other jobs due to the locality constraint. For example, in Fig. 2 the two rightmost

allocations also cover the third I/O node in order to be able to include qj = 3
computing nodes. For each job j ∈ J and allocation a ∈ Aj , we introduce a
binary indicator variable xj,a which is equal to one if j is executed according to
the allocation a, and zero otherwise. Moreover, for each node i ∈ V we introduce
a non-negative variable Li which corresponds to the total load of jobs whose
assigned allocation includes i. Finally, let Λ be the maximum load among all
nodes. Then, we propose the following integer linear program which searches for
the allocations that minimize the total load.

minimize Λ (ILP)

Λ ≥ Li ∀i ∈ V (1)

Li ≥
∑
j∈J

∑
a∈Aj

∑
i∈a

xj,apj ∀i ∈ V (2)

∑
a∈Aj

xj,a = 1 ∀j ∈ J (3)

xj,a ∈ {0, 1} ∀j ∈ J , a ∈ Aj (4)

Constraints (2) compute the total load for each node, while Constraints (3)
ensure that each job is assigned an allocation. By relaxing the integrity Con-
straints (4), we can solve the corresponding linear program in polynomial time.
Note that there are O(mn) variables and O(m + n) constraints. Moreover, an
optimal solution to the above integer linear program is a lower bound to the
makespan of an optimal solution for our problem, since it optimizes the maxi-
mum load without handling intersections of jobs in time, that is the scheduling
phase.

Let Λ̃, L̃i and x̃j,a denote the values of the variables in an optimal solution of
the relaxed linear program. Then, the solution of this linear program is rounded
to an integral feasible solution whose variables are denoted by Λ̄, L̄i and x̄j,a.
Speci�cally, we round the indicator variables independently for each job j ∈ J
as follows: consider all possible allocations for the job j ordered with respect to
the processors' ordering. The allocation chosen for j is the one with the smallest

index k such that
∑k
a=1 x̃j,a ≥

1
2 . Then, we set x̄j,k = 1 and x̄j,a = 0 for all

a 6= k. Figure 3 gives an example of this rounding procedure.
The following lemma provides an upper bound to the integral solution Λ̄

obtained after the rounding procedure.

Lemma 1. Λ̄ ≤ 2Λ̃.

Proof. Consider a job j and let kj be the index of the allocation of j in the
rounded solution, i.e., x̄j,kj = 1. Moreover, let V(j) be the set of nodes (both
computing and I/O) that are included in this allocation. We will �rst prove the
following statement: ∑

a∈Aj : i∈a
x̃j,a ≥

1

2
for every i ∈ kj

For example, in Fig. 3 we have that kj = 3 and for each i ∈ {3, . . . , 7} the sum
of the fractional variables that correspond to j and include i is at least 0.5. In
order to prove the statement, let kj = {i`, . . . , ir} be the set of nodes of the

i` i∗ ir

x̃j,1 = 0.1

x̃j,2 = 0.2

x̃j,3 = 0.2

x̃j,4 = 0.3

x̃j,5 = 0.2

0.1

0.3

0.5

0.8

1
0.9

0.7

0.5

0.2

Fig. 3. Rounding procedure for the variables that correspond to job j: x̄j,3 = 1 and
x̄j,1 = x̄j,2 = x̄j,4 = x̄j,5 = 0.

allocation kj as these are ordered in the natural way. Recall that VI/O(j) ∈ kj
is the I/O node required by j and assume that VI/O(j) coincides with i∗, where
i` ≤ i∗ ≤ ir. By the de�nition of kj , the statement is true for i = i`. Moreover,
the statement holds for each node i ∈ {i`, . . . , i∗} since∑

a∈Aj : i∈a
x̃j,a ≥

∑
a∈Aj : i`∈a

x̃j,a ≥
1

2

It remains to prove it for i ∈ {i∗ + 1, . . . , ir}. We focus �rst on ir. Observe that

by the de�nition of kj it holds that
∑kj−1
a=1 x̃j,a <

1
2 . Then, we have that∑

a∈Aj : ir∈a
x̃j,a =

∑
a∈Aj

x̃j,a −
kj−1∑
a=1

x̃j,a > 1− 1

2
=

1

2

Finally, the statement holds for each node i ∈ {i∗ + 1, . . . , ir} since∑
a∈Aj : i∈a

x̃j,a ≥
∑

a∈Aj : ir∈a
x̃j,a ≥

1

2

In order to �nalize the proof of the lemma, consider the load L̄i of a node i
in the rounded solution. We have that

L̄i =
∑
j∈J

pj · 1{if i∈kj} =
∑
j∈J

pj
∑

a∈Aj : i∈a
x̄j,a ≤

∑
j∈J

pj2
∑

a∈Aj : i∈a
x̃j,a

where the last inequality holds by the proven statement and since by Con-
straint (3) we have that

∑
a∈Aj : i∈a x̄j,a ≤ 1. Hence,

L̄i ≤ 2
∑
j∈J

pj
∑

a∈Aj : i∈a
x̃j,a = 2

∑
j∈J

pj
∑
a∈Aj

∑
i∈a

x̃j,a = 2
∑
j∈J

∑
a∈Aj

∑
i∈a

x̃j,apj = 2L̃i

The lemma follows by considering the node of maximum load in the rounded
solution, i.e., Λ̄ = maxi{L̄i} ≤ 2 maxi{L̃i} = 2Λ̃. ut

As mentioned before, given the allocations of all jobs, our problem coincides
with the DSA problem [10]. An instance of the DSA problem consists of a set
of n triples. Each triple (`j , rj , sj) corresponds to a rectangle parallel to x-axis

of size (rj − `j) × sj . Speci�cally, `j and rj are the projections of its leftmost
and rightmost points, respectively, in the x-axis while sj is its size projected in
the y-axis. In other words, the position of the rectangle is �xed with respect to
x-axis, but it can be shifted in any position in y-axis. The objective is to pack
all rectangles without intersections in a strip of minimum height.

In our scheduling context, each job corresponds to a rectangle whose `j and
rj values are de�ned by a given allocation as the leftmost and the rightmost
computing nodes respectively, while pj = sj . Moreover, the makespan coincides
with the height of the strip.

Gergov [10] presented a greedy 3-approximation algorithm for theDSA prob-
lem. The important property of this algorithm is that it uses as lower bound the
maximum load over all x-coordinates, which allows as to use it in our analysis.
The following theorem describes this property in scheduling terms.

Theorem 2. [10] There is an algorithm which computes a feasible schedule
whose makespan is at most three times the maximum load of every node.

Due to the equivalence of our problem with DSA, we can apply the algorithm
mentioned in Theorem 2 and get a �nal solution to our problem. A high-level
description of the above described procedure is given in Algorithm 1.

Algorithm 1:

1 Solve the relaxed version of (ILP)
2 for each job j ∈ J do

3 Find the smallest index k such that
∑k
a=1 x̃j,a ≥

1
2

4 Set x̄j,k = 1 and x̄j,a = 0 for all a 6= k

5 Create a feasible schedule by applying the algorithm proposed in
Theorem 2 using the allocations determined by the x̄j,a variables

Theorem 3. Algorithm 1 achieves an approximation ratio of 6 for the line
topology in the pinned I/O model.

Proof. Consider a schedule created by Algorithm 1 and let Cmax be the makespan
of this schedule. Due to the allocation phase, we know that the maximum load
over all nodes is equal to Λ̄. Then, by Theorem 2 and Lemma 1, we have that
Cmax ≤ 3Λ̄ ≤ 6Λ̃. Hence, the theorem follows by the fact that the optimal
solution to (ILP) is a lower bound to the optimal solution for our problem. ut

We observe that Gergov's algorithm remains a 3-approximation even in the
case of rings. Moreover, the allocation procedure based on the rounding of (ILP)
can be also applied for rings; we just need to de�ne an ordering of the possible
allocations of each job. Thus, by considering an clockwise ordering, we can apply
Algorithm 1 and get the following theorem.

Theorem 4. Algorithm 1 achieves an approximation ratio of 6 for the ring
topology in the pinned I/O model.

5 Unpinned I/O

In this section, we study the unpinned I/O model according to which each job
requires any arbitrary I/O node.

5.1 Complexity

We start by proving that the studied problem is NP-complete even in the special
case where all jobs require unit processing time to be executed, while the platform
contains only three I/O nodes. The proof is similar with the proof of Theorem 1
with the di�erence that the reduction is done by the classical 3-Partition
problem [8]. For this reason, it is omitted.

Theorem 5. The problem of scheduling in the unpinned model with respect to
contiguity and locality constraints is strongly NP-complete even in line topolo-
gies, with mI/O = 3 and pj = 1 for each job j ∈ J .

5.2 An Approximation Algorithm for Equidistant I/O Nodes

In this section, we consider both line and ring topologies and we propose an
approximation algorithm in the case where the I/O nodes are uniformly dis-
tributed. In other words, the I/O nodes are equidistant from each other. We
denote by δ the distance separating two consecutive I/O nodes. Note that, given

any instance, in line topologies δ can be either b mC

mI/O c or d mC

mI/O e while the �rst
value is always the case in ring topologies.

We need some additional notation. We call a job small if it requires fewer
computing nodes than the distance between two consecutive I/O nodes, i.e.,
qCj < δ. In a similar way, we call a job big if qCj ≥ δ. Let J≤δ and J≥δ be the sets
of small and big jobs, respectively. Our algorithm handles these sets separately.

A small job cannot be adjacent to more than one I/O nodes in any feasi-
ble schedule. Moreover, an I/O node along with δ consecutive computing nodes
adjacent to it can be considered as a processing unit that can execute a small

job. Based on this, we partition the set VC into bm
C

δ c groups of consecutive
computing units, each one of size at least δ. Assume that these groups as well
as the I/O nodes are numbered from left to right and we consider the i-th such
group and the i-th I/O node to compose a processing unit. Note that, by the

de�nition of δ, mI/O can be either bm
C

δ c or b
mC

δ c+ 1. In the second case, which
can happen only in line topologies, the last I/O node is not used. Then, we can
transform our problem for small jobs to an instance of the classical P || Cmax

problem with bm
C

δ c machines [11]. Speci�cally, each machine corresponds to one
processing unit, while each small job has a processing time as in the initial in-
stance and requires only one processing unit. Then, we solve the created instance
of P || Cmax by using any known approximation algorithm for it. The following
lemma, whose proof is omitted, summarizes the above procedure. The additional
2-factor in the line case is due to parity issues.

Lemma 2. Any ρ1-approximation algorithm for the P || Cmax scheduling prob-
lem, can be used to obtain a 2ρ1-approximation algorithm to schedule small jobs
in a line and a ρ1-approximation algorithm to schedule small jobs in a ring.

Due to the contiguity constraint, the big jobs are structurally guaranteed
to be adjacent to at least one I/O node, i.e., we can then ignore the existence
of I/O nodes when scheduling big jobs. Hence, the objective is to pack the big
jobs and our problem reduces to the strip-packing problem [13]. The following
lemma, whose proof is omitted, summarizes the above reduction. The additional
2-factor in the ring case is due to the degeneration of the ring to a line.

Lemma 3. Any ρ2-approximation algorithm for the strip-packing problem, can
be used to obtain a ρ2-approximation algorithm to schedule big jobs in a line and
a 2ρ2-approximation algorithm to schedule big jobs in a ring.

By combining Lemmas 2 and 3 the following theorem follows.

Theorem 6. For the unpinned model, there is a (2ρ1 + ρ2)-approximation al-
gorithm for line topologies and a (ρ1 + 2ρ2)-approximation algorithm for ring
topologies, where ρ1 and ρ2 are the approximation ratios for the P || Cmax and
the strip-packing problems, respectively.

Note that a PTAS exists for both P || Cmax and strip-packing problems [11,
13], leading for (3 + ε)-approximation algorithms for line and ring topologies.

6 Conclusions

We studied the makespan minimization problem on line and ring topologies,
when the allocations are constrained to be both contiguous and local. We proved
that both the pinned and unpinned models are NP-complete and we presented
constant-factor approximation algorithms for them. The proposed algorithms
can be also applied in di�erent settings (the proofs will be developed in an
extended version of this work). For example, in the case where the I/O nodes
can be shared by more than one jobs, then the 6-approximation algorithm of
Section 4.2 can be simply adapted by excluding the requested I/O node from
the allocation of the job in the de�nition of the indicator variables of (ILP). Note
that due to the locality constraint an I/O node cannot be shared by more than
two jobs. Another example is the case where each job requires more than one
I/O nodes. However, this assumption in conjunction with the locality constraint
could lead to several unused nodes, limiting its interest.

As future steps, one could implement the proposed algorithms, and study
their performances through simulation. From a theoretical point of view, the
tightness results show the limits of the two-phase approach in Section 4.2. The
approximation ratios might be improved by scheduling the problem in a single
phase. Finally, the study of more enhanced topologies, like two-dimensional ones,
is a very interesting direction. In this case, contiguity could be replaced by more
general constraints implying the convexity of the shape of the allocations.

References

1. Abhinav Bhatele, Kathryn Mohror, Steve H. Langer, and Katherine E. Isaacs.
There Goes the Neighborhood: Performance Degradation due to Nearby Jobs. In
SC, pages 41:1�41:12. ACM, November 2013.

2. Iwo Bª¡dek, Maciej Drozdowski, Frédéric Guinand, and Xavier Schepler. On
contiguous and non-contiguous parallel task scheduling. Journal of Scheduling,
18(5):487�495, October 2015.

3. Nan-Chen Chen, Sarah S. Poon, Lavanya Ramakrishnan, and Cecilia R. Aragon.
Considering Time in Designing Large-Scale Systems for Scienti�c Computing. In
CSCW, pages 1533�1545. ACM, February 2016.

4. Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and Robert B. Ross. Using
Formal Grammars to Predict I/O Behaviors in HPC: The Omnisc'IO Approach.
IEEE Trans. on Parallel and Distributed Systems, 27(8):2435�2449, August 2016.

5. Jeremy Enos, Gregory H. Bauer, Robert Brunner, Islam Sharif, Robert A. Fiedler,
Michael Steed, and David Jackson. Topology-Aware Job Scheduling Strategies for
Torus Networks. In Cray User Group, May 2014.

6. Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik, and
Parkson Wong. Theory and Practice in Parallel Job Scheduling. In JSSPP, volume
1291 of Lecture Notes in Computer Science, pages 1�34. Springer, 1997.

7. Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck Cappello, Yves Robert, and
Marc Snir. Scheduling the I/O of HPC Applications Under Congestion. In IPDPS,
pages 1013�1022. IEEE, May 2015.

8. Michael Randolph Garey and David Sti�er Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

9. Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adèle Villiermet.
Topology-aware Resource Management for HPC Applications. In ICDCN, pages
17:1�17:10. ACM, 2017.

10. Jordan Gergov. Algorithms for Compile-Time Memory Optimization. In SODA,
pages 907�908. ACM/SIAM, January 1999.

11. Dorit S. Hochbaum and David B. Shmoys. Using Dual Approximation Algorithms
for Scheduling Problems: Theoretical and Practical Results. Journal of the ACM,
34(1):144�162, January 1987.

12. Georgios Kathareios, Cyriel Minkenberg, Bogdan Prisacari, Germán Rodríguez,
and Torsten Hoe�er. Cost-E�ective Diameter-Two Topologies: Analysis and Eval-
uation. In SC, pages 36:1�36:11. ACM, November 2015.

13. Claire Kenyon and Eric Rémila. Approximate strip packing. In FOCS, pages
31�36, 1996.

14. Giorgio Lucarelli, Fernando Machado Mendonça, Denis Trystram, and Frédéric
Wagner. Contiguity and Locality in Back�lling Scheduling. In CCGRID, pages
586�595. IEEE Computer Society, May 2015.

15. Jose Antonio Pascual, José Miguel-Alonso, and Lozano José Antonio. Application-
aware metrics for partition selection in cube-shaped topologies. Parallel Comput-
ing, 40(5):129�139, May 2014.

16. Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. TOP500 list.
17. François Tessier, Preeti Malakar, Venkatram Vishwanath, Emmanuel Jeannot, and

Florin Isaila. Topology-Aware Data Aggregation for Intensive I/O on Large-Scale
Supercomputers. In COMHPC@SC, pages 73�81. IEEE, November 2016.

18. Ozan Tuncer, Vitus J. Leung, and Ayse Kivilcim Coskun. PaCMap: Topology Map-
ping of Unstructured Communication Patterns onto Non-contiguous Allocations.
In ICS, pages 37�46. ACM, June 2015.

