MUSA2: First ACM Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes

Abstract : Multimedia scientists have largely focused their research on the recognition of tangible properties of data, such as objects and scenes. Recently, the field has started evolving towards the modeling of more complex properties. For example, the understanding of social, affective and subjective attributes of data has attracted the attention of many research teams at the crossroads of computer vision, multimedia, and social sciences. These intangible attributes include, for example, visual beauty, video popularity, or user behavior. Multiple, diverse challenges arise when modeling such properties from multimedia data. Issues concern technical aspects such as reliable groundtruth collection, the effective learning of subjective properties, or the impact of context in subjective perception. The first edition of the ACM MM'17 MUSA2 workshop has gathered together high-quality research works focusing on the computational understanding of intangible properties from multimodal data, including visual emotions, user intent, human relationships, and personality.
Type de document :
Communication dans un congrès
MM 2017 - ACM on Multimedia Conference, Oct 2017, Mountain View CA, United States. ACM Press, 2, pp.1974-1975, 2017, MM '17 Proceedings of the 2017 ACM on Multimedia Conference. 〈10.1145/3123266.3132057〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01858382
Contributeur : Team Perception <>
Soumis le : vendredi 14 septembre 2018 - 11:10:16
Dernière modification le : vendredi 14 septembre 2018 - 11:52:52

Fichier

Alameda-MUSA2-2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Xavier Alameda-Pineda, Miriam Redi, Mohammad Soleymani, Nicu Sebe, Shih-Fu Chang, et al.. MUSA2: First ACM Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes. MM 2017 - ACM on Multimedia Conference, Oct 2017, Mountain View CA, United States. ACM Press, 2, pp.1974-1975, 2017, MM '17 Proceedings of the 2017 ACM on Multimedia Conference. 〈10.1145/3123266.3132057〉. 〈hal-01858382〉

Partager

Métriques

Consultations de la notice

139

Téléchargements de fichiers

8