A. Baddeley, J. Coeurjolly, E. Rubak, and R. Waagepetersen, Logistic regression for spatial Gibbs point processes, Biometrika, vol.101, issue.2, pp.377-392, 2014.
DOI : 10.1093/biomet/ast060

A. Baddeley, E. Rubak, and R. Turner, Spatial Point Patterns: Methodology and Applications with R, 2015.

M. Berman and R. Turner, Approximating Point Process Likelihoods with GLIM, Applied Statistics, vol.41, issue.1, pp.31-38, 1992.
DOI : 10.2307/2347614

P. Breheny and J. Huang, Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection, The Annals of Applied Statistics, vol.5, issue.1, pp.232-253, 2011.
DOI : 10.1214/10-AOAS388

URL : http://doi.org/10.1214/10-aoas388

L. Breiman, Heuristics of instability and stabilization in model selection. The Annals of Statistics, pp.2350-2383, 1996.

E. Candes and T. Tao, The Dantzig selector: statistical estimation when p is much larger than n. The Annals of Statistics, pp.2313-2351, 2007.
DOI : 10.1214/009053606000001523

URL : http://doi.org/10.1214/009053606000001523

H. Cho and A. Qu, Model selection for correlated data with diverging number of parameters, Statistica Sinica, vol.23, issue.2, pp.901-927, 2013.
DOI : 10.5705/ss.2011.058

A. Choiruddin, J. Coeurjolly, and F. Letué, Convex and non-convex regularization methods for spatial point processes intensity estimation, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01484779

J. Coeurjolly and Y. Guan, Covariance of empirical functionals for inhomogeneous spatial point processes when the intensity has a parametric form, Journal of Statistical Planning and Inference, vol.155, pp.79-92, 2014.
DOI : 10.1016/j.jspi.2014.07.003

URL : https://hal.archives-ouvertes.fr/hal-00990697

J. Coeurjolly and J. Møller, Variational approach for spatial point process intensity estimation, Bernoulli, vol.20, issue.3, pp.1097-1125, 2014.
DOI : 10.3150/13-BEJ516

URL : http://doi.org/10.3150/13-bej516

R. Condit and R. G. , Tropical forest census plots, Landes Company, 1998.
DOI : 10.1007/978-3-662-03664-8

J. Peter and . Diggle, A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point, Journal of the Royal Statistical Society. Series A (Statistics in Society), vol.153, issue.3, pp.349-362, 1990.

J. Peter and . Diggle, Statistical analysis of spatial and spatio-temporal point patterns, 2013.

J. Fan and R. Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, Journal of the American Statistical Association, vol.96, issue.456, pp.1348-1360, 2001.
DOI : 10.1198/016214501753382273

J. Fan and H. Peng, Nonconcave penalized likelihood with a diverging number of parameters. The Annals of Statistics, pp.928-961, 2004.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimization, The Annals of Applied Statistics, vol.1, issue.2, pp.302-332, 2007.
DOI : 10.1214/07-AOAS131

URL : http://doi.org/10.1214/07-aoas131

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, 2008.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization Paths for Generalized Linear Models via Coordinate Descent, Journal of Statistical Software, vol.33, issue.1, pp.1-22, 2010.
DOI : 10.18637/jss.v033.i01

URL : https://doi.org/10.18637/jss.v033.i01

Y. Guan and Y. Shen, A weighted estimating equation approach for inhomogeneous spatial point processes, Biometrika, vol.97, issue.4, pp.867-880, 2010.
DOI : 10.1093/biomet/asq043

E. Arthur, . Hoerl, W. Robert, and . Kennard, Ridge regression. Encyclopedia of statistical sciences, 1988.

P. Stephen, . Hubbell, B. Robin, . Foster, T. Sean et al., Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest, Science, issue.5401, pp.283-554, 1999.

P. Stephen, R. Hubbell, R. B. Condit, and . Foster, Barro Colorado forest census plot data, 2005.

J. Peter and . Huber, Robust regression: asymptotics, conjectures and monte carlo, The Annals of Statistics, vol.1, issue.5, pp.799-821, 1973.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical analysis and modelling of spatial point patterns, 2008.
DOI : 10.1002/9780470725160

Z. Karácsony, A central limit theorem for mixing random fields, Miskolc Mathematical Notes, vol.7, pp.147-160, 2006.

C. Lam and J. Fan, Profile-kernel likelihood inference with diverging number of parameters. The Annals of statistics, p.2232, 2008.

G. Li, H. Peng, and L. Zhu, Nonconcave penalized M-estimation with a diverging number of parameters, Statistica Sinica, vol.21, issue.1, pp.391-419, 2011.

J. Møller and R. Waagepetersen, Statistical inference and simulation for spatial point processes, 2004.
DOI : 10.1201/9780203496930

N. Dimitris, E. Politis, . Paparoditis, P. Joseph, and . Romano, Large sample inference for irregularly spaced dependent observations based on subsampling. Sankhy¯ a: The Indian Journal of Statistics, Series A, pp.274-292, 1998.

S. Portnoy, Asymptotic behavior of M-estimators of p regression parameters when p 2 /n is large. I. consistency. The Annals of Statistics, pp.1298-1309, 1984.

L. Stephen, N. Rathbun, and . Cressie, Asymptotic properties of estimators for the parameters of spatial inhomogeneous Poisson point processes, Advances in Applied Probability, vol.26, issue.1, pp.122-154, 1994.

W. Ian, . Renner, I. David, and . Warton, Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology, Biometrics, vol.69, issue.1, pp.274-281, 2013.

W. Ian, J. Renner, A. Elith, W. Baddeley, T. Fithian et al., Point process models for presence-only analysis, Methods in Ecology and Evolution, vol.6, issue.4, pp.366-379, 2015.

S. Shirota, J. Mateu, and A. E. Gelfand, Statistical analysis of origindestination point patterns: Modeling car thefts and recoveries, 2017.

L. Andrew, J. Thurman, and . Zhu, Variable selection for spatial Poisson point processes via a regularization method, Statistical Methodology, vol.17, pp.113-125, 2014.

L. Andrew, R. Thurman, Y. Fu, J. Guan, and . Zhu, Regularized estimating equations for model selection of clustered spatial point processes, Statistica Sinica, vol.25, issue.1, pp.173-188, 2015.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.267-288, 1996.
DOI : 10.1111/j.1467-9868.2011.00771.x

. Rasmus-plenge-waagepetersen, An Estimating Function Approach to Inference for Inhomogeneous Neyman-Scott Processes, Biometrics, vol.11, issue.1, pp.252-258, 2007.
DOI : 10.1198/108571106X130557

. Rasmus-plenge-waagepetersen, Estimating functions for inhomogeneous spatial point processes with incomplete covariate data, Biometrika, vol.95, issue.2, pp.351-363, 2008.
DOI : 10.1093/biomet/asn020

H. Wang, R. Li, and C. Tsai, Tuning parameter selectors for the smoothly clipped absolute deviation method, Biometrika, vol.94, issue.3, pp.553-568, 2007.
DOI : 10.1093/biomet/asm053

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663963/pdf

H. Wang, B. Li, and C. Leng, Shrinkage tuning parameter selection with a diverging number of parameters, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.36, issue.3, pp.671-683, 2009.
DOI : 10.1111/j.1467-9868.2008.00693.x

Y. Wang and L. Zhu, Variable selection and parameter estimation via WLAD???SCAD with a diverging number of parameters, Journal of the Korean Statistical Society, vol.46, issue.3, pp.390-403, 2017.
DOI : 10.1016/j.jkss.2016.12.003

C. Zhang, Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, pp.894-942, 2010.
DOI : 10.1214/09-aos729

URL : http://doi.org/10.1214/09-aos729

H. Zou, The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, vol.101, issue.476, pp.1418-1429, 2006.
DOI : 10.1198/016214506000000735

URL : http://cbio.ensmp.fr/~jvert/svn/bibli/local/Zou2006adaptive.pdf

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998

H. Zou and H. Zhang, On the adaptive elastic-net with a diverging number of parameters. The Annals of Statistics, pp.1733-1751, 2009.

H. Zou, T. Hastie, and R. Tibshirani, On the degrees of freedom of the lasso. The Annals of Statistics, pp.2173-2192, 2007.