L. L. Silver, Viable screening targets related to the bacterial cell wall, Annals of the New York Academy of Sciences, vol.20, issue.1, pp.29-53, 2013.
DOI : 10.1016/j.sbi.2010.09.014

T. Den-blaauwen, M. A. De-pedro, M. Nguyen-distèche, and J. A. Ayala, Morphogenesis of rod-shaped sacculi, FEMS Microbiology Reviews, vol.32, issue.2, pp.321-344, 2008.
DOI : 10.1111/j.1574-6976.2007.00090.x

J. Höltje, Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli, Microbiol. Mol. Biol. Rev, vol.62, pp.181-203, 1998.

P. Matteï, D. Neves, and A. Dessen, Bridging cell wall biosynthesis and bacterial morphogenesis, Current Opinion in Structural Biology, vol.20, issue.6, pp.749-766, 2010.
DOI : 10.1016/j.sbi.2010.09.014

T. Kruse, J. Bork-jensen, and K. Gerdes, The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex, Molecular Microbiology, vol.49, issue.1, pp.78-89, 2005.
DOI : 10.1128/jb.171.12.6511-6516.1989

R. M. Figge, A. V. Divakaruni, and J. W. Gober, MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus, Molecular Microbiology, vol.171, issue.5, pp.1321-1332, 2004.
DOI : 10.1128/jb.171.6.3412-3419.1989

N. A. Dye, Z. Pincus, J. A. Theriot, L. Shapiro, and Z. Gitai, Two independent spiral structures control cell shape in Caulobacter, Proc. Natl. Acad. Sci. USA, pp.18608-18613, 2005.
DOI : 10.1111/j.1365-2958.2004.04420.x

URL : http://www.pnas.org/content/102/51/18608.full.pdf

E. Ghachi and M. , Characterization of the elongasome core PBP2???:???MreC complex of Helicobacter pylori, Molecular Microbiology, vol.65, issue.1, pp.68-86, 2011.
DOI : 10.1111/j.1365-2958.2007.05853.x

T. K. Lee, A dynamically assembled cell wall synthesis machinery buffers cell growth, Proc. Natl. Acad. Sci. USA 111, pp.4554-4559, 2014.
DOI : 10.1073/pnas.1117132109

URL : http://www.pnas.org/content/111/12/4554.full.pdf

A. V. Divakaruni, C. Baida, C. L. White, and J. W. Gober, The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes, Molecular Microbiology, vol.169, issue.1, pp.174-188, 2007.
DOI : 10.1046/j.1365-2958.2001.02395.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2007.05910.x/pdf

A. V. Divakaruni, O. Loo, R. R. Xie, Y. Loo, J. A. Gober et al., The cell-shape protein MreC interacts with extracytoplasmic proteins including cell wall assembly complexes in Caulobacter crescentus, Proc. Natl. Acad. Sci. USA 51, pp.18602-18607, 2005.
DOI : 10.1271/bbb.68.2265

P. Vats, Y. Shigh, and L. Rothfield, Assembly of the MreB-associated cytoskeletal ring of Escherichia coli, Molecular Microbiology, vol.29, issue.1, pp.170-182, 2009.
DOI : 10.1128/jb.179.9.2823-2834.1997

E. Trip and D. Scheffers, A 1???MDa protein complex containing critical components of the Escherichia coli divisome, Scientific Reports, vol.189, issue.1, p.18190, 2015.
DOI : 10.1128/JB.00723-07

S. Han, Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA, pp.22002-22007, 2010.
DOI : 10.1006/jmbi.1993.1351

Y. Liu, M. C. Möller, L. Petersen, C. A. Söderberg, and L. Hederstedt, forespores, Molecular Microbiology, vol.179, issue.1, pp.46-60, 2010.
DOI : 10.1128/jb.179.3.972-975.1997

F. Van-den-ent, Dimeric structure of the cell shape protein MreC and its functional implications, Molecular Microbiology, vol.171, issue.6, pp.1631-1642, 2006.
DOI : 10.1128/JB.185.16.4717-4726.2003

A. L. Lovering and N. Strynadka, High-resolution Structure of the Major Periplasmic Domain from the Cell Shape-determining Filament MreC, Journal of Molecular Biology, vol.372, issue.4, pp.1034-1044, 2007.
DOI : 10.1016/j.jmb.2007.07.022

D. B. Craig and A. A. Dombkowski, Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins, BMC Bioinformatics, vol.14, issue.1, p.346, 2013.
DOI : 10.1371/journal.pone.0070013

P. Macheboeuf, C. Contreras-martel, V. Job, O. Dideberg, and A. Dessen, Penicillin Binding Proteins: key players in bacterial cell cycle and drug resistance processes, FEMS Microbiology Reviews, vol.30, issue.5, pp.673-691, 2006.
DOI : 10.1111/j.1574-6976.2006.00024.x

URL : https://academic.oup.com/femsre/article-pdf/30/5/673/18128073/30-5-673.pdf

A. J. Powell, J. Tomberg, A. M. Deacon, R. A. Nicholas, and C. Davies, Reveal an Unexpectedly Subtle Mechanism for Antibiotic Resistance, Journal of Biological Chemistry, vol.10, issue.2, pp.1202-1212, 2009.
DOI : 10.1093/clinids/10.4.699

C. L. White, A. Kitich, and J. W. Gober, Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD, Molecular Microbiology, vol.105, issue.3, pp.616-633, 2010.
DOI : 10.1128/jb.169.11.4935-4940.1987

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07108.x/pdf

P. M. Slovak, S. L. Porter, and J. Armitage, Differential Localization of Mre Proteins with PBP2 in Rhodobacter sphaeroides, Journal of Bacteriology, vol.188, issue.5, pp.1691-1700, 2006.
DOI : 10.1128/JB.188.5.1691-1700.2006

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, Journal of Molecular Biology, vol.372, issue.3, pp.774-797, 2007.
DOI : 10.1016/j.jmb.2007.05.022

M. Banzhaf, Cooperativity of peptidoglycan synthases active in bacterial cell elongation, Molecular Microbiology, vol.131, issue.1, pp.179-194, 2012.
DOI : 10.1021/ja2028712

R. M. Leal, Experimental procedure for the characterization of??radiation damage in macromolecular crystals, Journal of Synchrotron Radiation, vol.454, issue.3, pp.381-386, 2011.
DOI : 10.1038/nature07101

J. Gabadinho, : a synchrotron beamline control environment customized for macromolecular crystallography experiments, Journal of Synchrotron Radiation, vol.5, issue.5, pp.700-707, 2010.
DOI : 10.1107/S0909049510020005

URL : http://journals.iucr.org/s/issues/2010/05/00/bf5031/bf5031.pdf

P. R. Evans and G. N. Murshudov, How good are my data and what is the resolution? Acta Cryst, pp.1204-1214, 2013.
DOI : 10.1107/s0907444913000061

URL : http://journals.iucr.org/d/issues/2013/07/00/ba5190/ba5190.pdf

P. A. Karplus and K. Diederichs, Linking Crystallographic Model and Data Quality, Science, vol.65, issue.Pt 2, pp.1030-1033, 2012.
DOI : 10.1107/S0907444908037591

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457925/pdf

K. Diederichs and P. A. Karplus, Improved R-factors for diffraction data analysis in macromolecular crystallography, Nature Structural Biology, vol.3, issue.4, pp.269-275, 1997.
DOI : 10.1107/S0021889888007903

K. Diederichs and P. A. Karplus, Better models by discarding data? Acta Cryst, pp.1215-1222, 2013.
DOI : 10.1107/s0907444913001121

URL : http://journals.iucr.org/d/issues/2013/07/00/ba5192/ba5192.pdf

P. A. Karplus and K. Diederichs, Assessing and maximizing data quality in macromolecular crystallography, Current Opinion in Structural Biology, vol.34, pp.60-68, 2015.
DOI : 10.1016/j.sbi.2015.07.003

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684713/pdf

M. D. Winn, 4 suite and current developments, Acta Crystallographica Section D Biological Crystallography, vol.65, issue.4, pp.235-242, 2011.
DOI : 10.1107/S0907444909037044

F. Long, A. A. Vagin, P. Young, and G. N. Murshudov, : a molecular-replacement pipeline, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.1, pp.125-132, 2008.
DOI : 10.1107/S0907444907050172

URL : https://doi.org/10.1107/s0907444907050172

P. D. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-221, 2010.
DOI : 10.1107/S0907444909052925

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815670/pdf

F. Dimaio, Improved low-resolution crystallographic refinement with Phenix and Rosetta, Nature Methods, vol.523, issue.11, pp.1102-1104, 2013.
DOI : 10.1016/B978-0-12-394292-0.00006-0

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

URL : http://journals.iucr.org/d/issues/2004/12/01/ba5070/ba5070.pdf

K. Cowtan, Recent developments in classical density modification, Acta Crystallographica Section D Biological Crystallography, vol.277, issue.4, pp.470-478, 2010.
DOI : 10.1107/S090744490903947X/ba5136sup1.txt

URL : https://doi.org/10.1107/s090744490903947x

K. Cowtan, software for automated model building. 1. Tracing protein chains, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.9, pp.1002-1111, 2006.
DOI : 10.1107/S0907444906022116

G. N. Murshudov, 5 for the refinement of macromolecular crystal structures, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.4, pp.355-367, 2011.
DOI : 10.1107/S0907444900014736

A. J. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

A. Brünger, [19] Free R value: Cross-validation in crystallography, Methods Enzymol, vol.277, pp.366-396, 1997.
DOI : 10.1016/S0076-6879(97)77021-6

J. Painter and E. A. Merritt, Optimal description of a protein structure in terms of multiple groups undergoing TLS motion, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.4, pp.439-450, 2006.
DOI : 10.1107/S0907444906005270/sx5049sup1.pdf

J. Painter and E. A. Merrit, web server for the generation of multi-group TLS models, Journal of Applied Crystallography, vol.39, issue.1, pp.109-111, 2006.
DOI : 10.1107/S0021889805038987

V. B. Chen, MolProbity: all-atom structure validation for macromolecular crystallography. Acta Cryst, pp.12-21, 2010.
DOI : 10.1107/97809553602060000884

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803126/pdf

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1016/0005-2795(73)90350-4

M. Heinig and D. Frishman, STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins, Nucleic Acids Research, vol.32, issue.Web Server, pp.500-502, 2004.
DOI : 10.1093/nar/gkh429

S. Bury-moné, Presence of Active Aliphatic Amidases in Helicobacter Species Able To Colonize the Stomach, Infection and Immunity, vol.71, issue.10, pp.5613-5622, 2003.
DOI : 10.1128/IAI.71.10.5613-5622.2003

S. Skouloubris, J. M. Thiberge, A. Labigne, and H. De-reuse, The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo, Infect. Immun, vol.66, pp.4517-4521, 1998.

S. Bury-moné, Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori, Molecular Microbiology, vol.11, issue.2, pp.623-638, 2004.
DOI : 10.1198/106186002317375640

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Research, vol.42, issue.W1, pp.320-324, 2014.
DOI : 10.1093/nar/gku316