
HAL Id: hal-01591755
http://hal.univ-grenoble-alpes.fr/hal-01591755

Submitted on 21 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Checkpoint of Research on Parallel I/O for High
Performance Computing

Francieli Zanon Boito, Eduardo Camilo Inacio, Jean Luca Bez, Philippe
Navaux, Mario Dantas, Yves Denneulin

To cite this version:
Francieli Zanon Boito, Eduardo Camilo Inacio, Jean Luca Bez, Philippe Navaux, Mario Dantas, et al..
A Checkpoint of Research on Parallel I/O for High Performance Computing. 2017. <hal-01591755>

http://hal.univ-grenoble-alpes.fr/hal-01591755
https://hal.archives-ouvertes.fr

A Checkpoint of Research on Parallel I/O for High Performance

Computing

Francieli Zanon Boito1, Eduardo Camilo Inacio2, Jean Luca Bez1,
Philippe O. A. Navaux1, Mario A. R. Dantas2, Yves Denneulin3

1Institute of Informatics, Federal University of Rio Grande do Sul

Porto Alegre, Brazil

{francieli.zanon, jlbez, navaux}@inf.ufrgs.br
2Department of Informatics and Statistics, Federal University of Santa Catarina

Florianópolis, Brazil

eduardo.camilo@posgrad.ufsc.br, mario.dantas@ufsc.br
3Laboratory of Informatics of Grenoble, INRIA, University of Grenoble Alpes

Grenoble, France

yves.denneulin@grenoble-inp.fr

First submitted in December 2015

Abstract

We present a comprehensive survey on parallel I/O in the high performance computing
(HPC) context. This is an important field for HPC because of the historic gap between
processing power and storage latencies, which causes applications performance to be impaired
when accessing or generating large amounts of data. As the available processing power and
amount of data increase, I/O remains a central issue for the scientific community. In this
survey, we focus on a traditional I/O stack, with a POSIX parallel file system. We present
background concepts everyone could benefit from. Moreover, through the comprehensive
study of publications from the most important conferences and journals in a five-year time
window, we discuss the state of the art of I/O optimization approaches, access pattern
extraction techniques, and performance modeling, in addition to general aspects of parallel
I/O research. Through this approach, we aim at identifying the general characteristics of
the field and the main current and future research topics.

Keywords: Parallel file systems, high performance computing, storage systems.

1 Introduction

Computing systems have a memory hierarchy where programs’ data is stored and from where
instructions are fetched for processing in the CPU. At the last level of this memory hierarchy
resides a non-volatile storage device – such as a hard disk drive (HDD) or a solid state drive
(SSD). File systems abstract the physical storage devices, allowing applications to make input
and output (I/O) requests for portions of files.

Large scientific applications such as weather forecast and seismic simulations typically exe-
cute on cluster or massively parallel processing (MPP) architectures. In these supercomputers,
the application’s workload is separated into multiple processes, executing on different comput-
ing nodes. These processes often need access to shared files. Parallel file systems (PFS) allow
applications processes to access shared files transparently – i.e., without knowledge of where
these files are actually stored. Another key characteristic of parallel file systems is the use of
multiple machines (servers) to store data. With this approach, data can be retrieved from the
servers in parallel, an important concept for performance.

1

Regarding performance, the high performance computing (HPC) field is today in its petascale
era – a processing power of one quadrillion floating point operations per second. Nonetheless,
there is a historic gap between processing and I/O, since the latter depends on slower devices
such as memory, disks, and network [82]. Because of that, applications that need to access large
amounts of data often have their performance impaired by I/O.

For instance, recording every collision at the Large Hadron Collider (LHC) would require
generating approximately one petabyte of data to the storage system per second. Even using
filters to decrease the amount of output, by the 2020s the LHC is expected to be dealing with
exabytes of data [19]. Despite decades of research effort into providing high performance parallel
I/O, as applications’ needs and data amounts grow, I/O continues to be a central issue on the
path to exascale [21].

In this article, we present a survey of the parallel I/O research field in the HPC context. Our
focus is the traditional I/O stack, which includes a POSIX parallel file system. Therefore, we
do not discuss storage tools for grid and cloud environments, or for big data processing, such as
HDFS [98]. Nonetheless, many of the presented techniques and discussions could be expanded
for other storage systems.

Our contributions are twofold: first, we provide the basic concepts so readers which are
unfamiliar with the subject can understand what is parallel I/O, the main components involved,
the common problems, and the techniques typically applied to achieve high performance. We
believe this knowledge is useful to the whole scientific community, as applications often observe
poor performance due to poor I/O design.

Second, we aim at identifying current and future research topics in parallel I/O. We have
focused on five years of publications from the field’s most important conferences and journals.
By exploring the research activity of the last five years, we aim at answering questions such as:

• Has the amount of research effort put into the field grown over the past few years?

• What are the main techniques HPC researchers resort to when working to improve I/O
performance?

• Which are the research topics this community is expected to put more effort in the next
years?

Additionally, we work to characterize the research on parallel I/O for HPC: the most used
systems and tools, what are the most active countries and institutions, general characteristics
of publications in the field, etc.

The remainder of this article is organized as follows: Section 2 explains the survey method-
ology, lists the considered conferences and journals, and presents some data on them. Section 3
provides a background for parallel I/O in the HPC context, discussing the main components
and factors involved in achieving high performance. By the end of Section 3, surveyed data is
presented identifying the most used tools for research. The state of the art on techniques to
improve performance of parallel file system access is discussed in Section 4, followed by the state
of the art in applications’ access pattern extraction and performance modeling in Section 5. Sec-
tion 6 discusses practical aspects of parallel I/O research, identifying general characteristics of
the studied publications. Finally, Section 7 concludes this article by summarizing the presented
information and listing the main topics for future research.

2 A Survey on Parallel I/O for HPC

In order to get a representative picture of the state of the art in parallel I/O for HPC, we have
made a selection of widely known, leading quality conferences and journals:

2

• ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS);

• IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid);

• IEEE International Conference on Cluster Computing (CLUSTER);

• International European Conference on Parallel and Distributed Computing (Euro-Par);

• USENIX Conference on File and Storage Technologies (FAST);

• ACM International Symposium on High Performance Parallel and Distributed Computing
(HPDC);

• ACM International Conference on Supercomputing (ICS);

• IEEE International Parallel & Distributed Processing Symposium (IPDPS);

• IEEE Symposium on Massive Storage Systems and Technology (MSST);

• The IEEE/ACM International Conference for High Performance Computing, Networking,
Storage and Analysis (SC);

• ACM Computing Surveys (CSUR);

• Elsevier Journal of Parallel and Distributed Computing (JPDC);

• Elsevier Parallel Computing (ParCo);

• IEEE Transactions on Computers (TOC);

• ACM Transactions on Computer Systems (TOCS);

• ACM Transactions on Storage (TOS);

• IEEE Transactions on Parallel and Distributed Systems (TPDC).

We have defined a five-year window for this analysis, covering publications between 2010
and 20141. We went through all proceedings and issues inside the time window – a total of 5629
publications – to identify relevant work by looking at title and abstract. This activity aimed at
avoiding “false negatives”, i.e., a paper would be selected at the slight suspicion of relevance so
no relevant work would be lost. This process resulted in 140 selected papers for further analysis
(2.5%).

The analysis consisted of reading each article and answering a set of questions. Most of
the prepared questions were answered by marking it with predefined “tags” such as “New file
system”, “I/O scheduling”, or “Simulation”. Because of the selection approach, some of the
selected papers were not in fact relevant for this survey. Therefore, they were later excluded
from the analysis. In the end, 103 articles remained (1.8%).

Papers were considered relevant when discussing traditional (POSIX) parallel I/O in an HPC
context, even if the presented experimental results do not contemplate this scenario. Moreover,
techniques to characterize parallel applications’ access patterns were also considered relevant,
since the goal is often to provide information to parallel I/O optimization techniques. Table 1
presents the number of published and selected papers by conference or journal. It is important
to notice that we have not found relevant articles in the ACM Computing Surveys journal, which
motivates the present work. In fact, in our analysis no survey was found.

12015 was not included because most of the analysis was conducted in the middle of the year, when not all
proceedings and issues were available.

3

Table 1: Number of selected publications for the survey

Conferences Journals
Publications Selected (%) Publications Selected (%)

ASPLOS 182 1 (0.5%) CSUR 198 0 (0%)
CCGrid 300 9 (3%) JPDC 630 1 (0.1%)
Cluster 179 10 (5.6%) ParCo 257 1 (0.4%)

Euro-Par 306 3 (1%) TOC 869 2 (0.2%)
FAST 115 5 (4.3%) TOCS 54 0 (0%)
HPDC 109 10 (9.2%) TOS 72 1 (1.4%)

ICS 179 6 (3.3%) TPDC 1069 7 (0.6%)
IPDPS 579 12 (2.1%)
MSST 135 10 (7.4%)

SC 396 25 (6.3%)

TOTAL 2480 91 (3.7%) TOTAL 3149 12 (0.4%)

From 103 surveyed papers, 91 (88%) are from conferences and 12 (12%) from journals. These
numbers are further explored in Figure 1, that shows the number of selected publications by
conference or journal (Figure 1(a)) and the number of publications by year (Figure 1(b)). These
numbers indicate that research on parallel I/O is more often published in conferences
than in journals. This holds true even if we exclude the generic journals on Computer Science
(CSUR, TOC, and TOCS), considering only the ones specialized in parallel and distributed
systems and storage: TOS and TPDC, for instance, publish proportionally fewer pieces on the
subject than most conferences.

Regarding field representativeness, i.e., how many of the papers published in a conference or
journal are about parallel I/O for HPC, the most relevant conferences are, in this order: HPDC,
MSST, and SC. However, considering the absolute number of relevant publications, the most
relevant conferences are SC and IPDPS.

We can also notice from Figure 1(b) that 2012 was particularly productive regarding parallel
I/O research, with approximately 60% more publications than the other studied years. In 2012,
SC had ten relevant papers (the conference’s average for the other years is approximately four).
CLUSTER and MSST also presented “parallel I/O peaks” in that year. The next sections
classify the surveyed articles according to their focus and proposed techniques.

3 The Parallel I/O Stack

Files are accessed by applications through an interface that defines I/O operations like open,
write, read, and close. These operations generate requests treated by the file system. On large-

1
910

35
10 6

12

1
10

1

25

2 1
7

SC

IP
DPS

CLU
STER

HPDC

M
SST

CCGRID

TPDC
IC

S
FA

ST

EUROPA
R

TOC

ASPLO
S
JP

DC

PA
RCO

TOS

Publications by conference and journal

(a)

19 17

29

18 20

20
10

20
11

20
12

20
13

20
14

Publications by year

(b)

Figure 1: Publications on parallel I/O separated by year and by form of publication

4

P❛r❛��✁� ❋✐�✁ ✂✄☎✆✁✝Pr✞❝✁☎☎✐✟✠ ◆✞❞✁☎ ❋✞r✡❛r❞✐✟✠ ▲❛✄✁r

▼☛☞✌ ✍✌☞✌ ❙☛✎✏☛✎✑

✍✌☞✌ ❙☛✎✏☛✎✑

❈✒✓✔✕✖

❈✒✓✔✕✖

❆✗✗✘ ✙

❈✒✓✔✕✖

❈✒✓✔✕✖

❆✗✗✘ ✚

❈✒✓✔✕✖

❈✒✓✔✕✖

❆✗✗✘ ❆

■✛✜ ✢

■✛✜ ✣

■✛✜ ✤

❆✗✗✥✦✧✌☞✦★✩✑

✪✔✖✫
✬✔✭✮✔✭ ✢

✪✔✖✫
✬✔✭✮✔✭ ✪

❉✫✖✫
✬✔✭✮✔✭ ✢

❉✫✖✫
✬✔✭✮✔✭ ✜

❈✒✓✔✕✖❈✒✓✔✕✖❈✒✓✔✕✖

■✛✜ ✯

Figure 2: Logical components involved in performing I/O to parallel file systems

scale architectures such as clusters, parallel file systems provide a shared storage infrastructure
so applications can access remote files as if they were stored in a local file system. We call
processes that access a PFS its clients.

Figure 2 shows an overview of the main components that affect I/O performance when using
parallel file systems. They are discussed in Sections 3.1 to 3.4, providing the base concepts
needed for the rest of this document. Section 3.5 presents some data gathered during our
analysis, and concludes this part of the discussion.

3.1 Storage Devices

We start our discussion by storage devices, the last level of the considered I/O stack. Actually,
storage in tapes is often the final level for data in a supercomputer. Nonetheless, archiving is
a postmortem activity, and we focus on the main levels that affect performance perceived by
applications while accessing a parallel file system.

Hard disk drives (HDDs) have been the main storage device available for many years. They
are composed of magnetic surfaced rotating platters. Accessing data requires moving the head to
the proper location, an operation known as seek. HDDs are known for having better performance
when accesses are done sequentially instead of randomly because the former minimizes seek
times. [82]

A popular solution for storage in HPC systems is the use of redundant array of independent
disks (RAID), which combine multiple hard disks into a virtual unit for performance and relia-
bility purposes. Data is distributed among the disks, in fixed size portions called “stripes”, and
can be retrieved in parallel, which improves performance. RAID performance is affected by the
combination of stripe size and access size.

Solid state drives (SSDs) are a recent flash-based alternative to hard disks. Their advantages
include higher bandwidth and less sensitivity to access sequentiality. Due to their internal
organization, which allows for some parallelism, SSDs typically present better performance for
large requests [45]. There is a growing adoption of SSDs, although their larger cost per byte
still cause many parallel file system deployments in clusters to store data in hard disks.

In addition to storage devices’ physical characteristics, performance behavior observed when
accessing them also reflects characteristics from higher levels of the server’s local I/O stack.
Most HDDs and SSDs contain a small cache in hardware. Additionally, the operating system
kernel has a cache to mask devices’ access costs. Both these caches typically perform prefetching
and read-ahead, techniques that try to predict data that will be accessed by applications in the
future and make these requests earlier. Therefore, random read accesses may perform worse
than sequential ones because they do not fully exploit these mechanisms. These approaches can
also be applied to parallel file systems clients’ caches, both for data and metadata. The next
section discusses parallel file systems.

5

3.2 Parallel File Systems

Parallel file systems are composed of two specialized servers: the data server and the metadata
server. The latter is responsible for metadata, which is information about data like size, per-
missions, and location among the data servers. To access data, clients must first obtain layout
information from metadata servers.

As all basic file system operations involve metadata operations, metadata access scalability
impacts the whole system. Some systems cache metadata on clients to accelerate this access.
However, this technique brings the complexity of maintaining cache coherence, especially when
a large number of clients is concurrently accessing the file system. Another way of improving
metadata access performance is to distribute metadata among multiple servers, in a similar way
to what is done with data itself. This is done on systems like PVFS2 [53]. Other systems, like
Lustre [10], decide not to distribute metadata in order to keep its management simple.

Files are distributed among data servers in an operation called data striping. Each file
is divided into portions of a fixed size, called stripes, and the stripes are given to the servers
following a round-robin approach. PFSs main characteristic is the possibility of retrieving stripes
from different servers in parallel, increasing throughput. The striping configuration depends on
the system’s target applications. The retired Google File System [31] employed a 64MB stripe
size because its target applications performed very large sequential accesses only. PVFS, Lustre,
and GPFS [89] have defaults between 64KB and 1MB.

Some systems apply locking on the servers in order to keep consistency in the presence of
concurrent accesses. This is done by Lustre using stripe granularity, i.e., multiple clients are not
allowed to access the same stripe concurrently. Other systems, like PVFS, leave the consistency
to be treated by users for simplicity and performance.

In order to include fault tolerance, some systems support replication of data and metadata.
This is usually done by keeping mirrored servers and may have a performance impact to keep
copies synchronized. On the other hand, having the same data on more than one server allows
parallel access, potentially improving performance.

The abstraction of objects is often used to store PFS servers’ portions of data, supporting
object-based storage solutions. One example of such a case is Lustre, where data servers are
called “object storage servers” (OSS). Another alternative is storing data in files through a local
file system on the servers. When object-based storage is not available, objects are usually also
stored as local files. Section 3.2.1 give an overview of some popular parallel file systems.

3.2.1 Popular parallel file systems

PVFS is an open-source PFS where servers run at the user level. PVFS provides two client
interfaces: the UNIX API as presented by the client operating system and MPI-IO by leveraging
the ROMIO implementation. The latter links directly to a low-level PVFS API for access. PVFS
also supports distributed metadata, and metadata servers may be collocated with data servers.

The Lustre file system is another open-source PFS, entirely implemented in the Linux kernel.
It has three major functional units: metadata servers (MDS), object storage servers (OSS) and
clients. MDS nodes have one or more metadata targets (MDT) devices that store metadata in a
local file system. OSS nodes store files data on one or more object storage target (OST) devices.
The capacity of the PFS is the sum of the capacity of its OSTs. Lustre presents a global POSIX
namespace to all clients.

The IBM GPFS is a commercial PFS designed for HPC and data-intensive applications.
GPFS is founded upon a shared storage model, distributing and managing files in a shared
storage system while providing a single namespace for all nodes.

The Panasas file system [71] is divided into storage nodes and manager nodes. The former
provide access to object storage devices (OSDs) and are accessed directly from clients during

2In this text, we use “PVFS” referring to both PVFS2 and OrangeFS, a recent branch of PVFS2.

6

I/O operations. The latter manage the overall storage cluster, implement the distributed file
system semantics, handle recovery of storage node failures, and provide an exported view of the
file system via Network File System (NFS) and Common Internet File System (CIFS).

3.3 The I/O Forwarding Layer

The I/O forwarding technique aims at decreasing the number of clients concurrently accessing
the file system servers by having some special nodes (often called I/O nodes) to receive the
processing nodes’ requests and forward them to the file system. The processing nodes may then
be powered with only a very simplified local I/O stack in order to avoid its interference with
performance. In this schema, the number of I/O nodes is typically larger than the number of
file system servers, and smaller than the number of processing nodes. [103]

The I/O forwarding technique is applied in several of the current Top5003 supercomputers.
For instance, it was employed in the storage infrastructure of Tianhe-2, ranked as second in the
Top500 list (November 2016). Tianhe-2’s 16000 computing nodes do not have a local I/O stack,
but instead, all I/O operations are transferred the 256 available intermediate I/O nodes. These
nodes are powered with high-speed SSDs, and configurations for each file determine when data
is transferred from the I/O nodes to the parallel file system [109].

The I/O forwarding idea has the advantage of providing a layer between application and file
system. This layer can work to keep compatibility between both sides and apply optimizations
such as requests reordering and aggregation, etc.

3.4 PFS Clients

Applications may start their execution by reading data from previous executions or previous
steps of the analysis. It is usual for simulations to have their execution organized as a series of
timesteps. Each timestep evolves the simulated space in time. The execution often finishes by
writing the obtained results, but I/O operations may also be generated at every given number of
timesteps. Another common reason for applications to generate I/O operations is checkpointing.
Some applications periodically write their state to files so their execution can be easily resumed
after interruptions.

We call the description of the I/O operations performed by an application its access pattern.
There is no globally accepted taxonomy for patterns. On the literature, papers that provide
some classification usually do it in the context of specific optimizations, considering only the
aspects that are relevant to the proposed techniques.

The most usual access pattern aspect is spatiality. It tells the location of requests into
files: contiguous, distant by a fixed value, randomly positioned, etc. Spatiality is an important
aspect because of its direct impact on performance. This happens because, as discussed in
Section 3.1, the storage infrastructure where servers store data has its performance affected
by access sequentiality. Other important aspects usually considered are request size, number
of generated/accessed files, intra-node concurrency, time between consecutive requests, arrival
rate, and operation (write or read).

3.4.1 I/O Libraries

Parallel file systems usually deploy a client module in processing nodes so they can view the
remote folders as local and access them through the POSIX API, which defines standard I/O
operations. Depending on the complex interaction between the different levels and on the
system design choices, performance will be better for some access patterns than for others.
Hence, achieving good performance depends on how well applications’ accesses suit the used
system. Nevertheless, this tuning between applications and systems is not easily achieved.

3Top500 - https://www.top500.org/lists/2016/11/.

7

https://www.top500.org/lists/2016/11/

3941

7

21
15

Lu
str

e

PVFS
GPFS

Pan
as

as

ot
he

r

File systems used
for parallel I/O research

(a)

19

6 5

Lu
str

e

PVFS
ot

he
r

access pattern
extraction

(b)

3229
33

Lu
str

e

PVFS
ot

he
r

I/O optimization
techniques

(c)

3128 29

Lu
str

e

PVFS
ot

he
r

data access
optimizations

(d)

44
12

Lu
str

e

PVFS
ot

he
r

metadata access
optimizations

(e)

Figure 3: Parallel file system usage among the surveyed publications - in general and separated
by technique

First, PFSs do not have enough information to adapt to applications, as this information is
usually lost through the I/O stack. On the other hand, tuning applications would require them
to be developed considering a specific file system, which would compromise their portability.
Moreover, developers would need to know details about the target file system performance
behavior. Given these systems’ complexity, this behavior is not easily analyzed.

One solution is the use of I/O libraries, the most popular being MPI-IO [15]. These libraries
take charge of applications’ I/O operations and have the power to perform optimizations to adapt
their access pattern. High-level I/O libraries as HDF5 [100] and netCDF4 [54] also abstract I/O
operations by allowing the definition of complex data types and file formats. These formats can
be freely mapped to real files by these libraries, providing optimization opportunities. Section 4
discusses several techniques for I/O performance improvement.

3.5 Surveyed Data

There are already a few well accepted parallel file systems, so research papers proposing
new file systems are rare. From all the papers from this analysis, only one of them does
so. Yi et al. [111] propose a block-based PFS where metadata is stored physically separated
from data – and clients are kept from accessing the storage device containing metadata – for
reliability purposes.

As expected, most of the selected articles use a parallel file system (96 out of 103). Figure 3
presents some numbers on PFS usage. Figure 3(a) presents the number of papers that use each
file system. The last bar – “other” – represents file systems that were not listed. Figure 3(b)
to 3(e) detail the usage among papers presenting techniques for access pattern extraction and
I/O optimization (for data or metadata access). In these four graphs, the “other” bars include
GPFS and Panasas, as we focus on the two most used systems. The numbers do not add up to
96 because some articles discuss more than one file system, and hence are represented multiple
times in the graphs. Similarly, data and metadata optimizations can be discussed in the same
publication.

From the ten most powerful supercomputers in the world according to the November 2016
edition of the Top500 list , five use Lustre, two use solutions based on Lustre, two use their own
custom file system, and one uses GPFS. Lustre importance in the HPC field can be confirmed
in the graphs from Figure 3. Nonetheless, we can see that PVFS is also very popular as a
research tool. PVFS is the most used PFS to prototype and evaluate access pattern
extraction techniques and data access optimizations.

4In this text, and in the presented surveyed data, we use “netCDF” to refer to both the original library and
the parallel version “PnetCDF”.

8

57

20
10

16

M
PI−

IO
HDF5

ne
tC

DF
ot

he
r

I/O libraries used for
parallel I/O research

(a)

21
8 8

M
PI−

IO
HDF5

ot
he

r

access pattern
extraction

(b)

48

13
19

M
PI−

IO
HDF5

ot
he

r

I/O optimization
techniques

(c)

47

13 18

M
PI−

IO
HDF5

ot
he

r

data access
optimizations

(d)

4 1 4

M
PI−

IO
HDF5

ot
he

r

metadata access
optimizations

(e)

Figure 4: I/O library usage among the surveyed publications - in general and separated by
technique

Among metadata access optimization efforts, diverse and less known file systems are used.
For this kind of work, researchers often choose the most convenient one in terms of ease to
modify (which may be a “research toy” or even a simulator). This happens because changing
the way a file system manages metadata access is a very critical modification which may require
adjustments in the whole system implementation. Hence, it makes sense to validate the opti-
mization techniques before putting the effort to implement them in a more complex, but more
popular, system.

From the analyzed publications, 70 (68%) use I/O libraries for their experiments. Figure 4
presents data on I/O library usage among the surveyed papers. Figure 4(a) shows the number of
publications using each library, and Figure 4(b) to 4(e) focus on the two most used libraries while
detailing usage among papers discussing access pattern extraction and optimizations. Similarly
to the previous graphs, the “other” bar includes libraries which were not listed, and publications
may count to multiple bars as they may use multiple libraries. We can see MPI-IO was used
in most of the papers (57 out of 70 that use some library - 81%). Over half of the I/O
optimization techniques (48 out of 81) implementations or evaluations have used MPI-IO.

Among articles that present techniques for access pattern extraction (30), most of them (26)
use some I/O library, 21 of them MPI-IO. I/O libraries are popular among these papers because
their high-level abstraction provides more information about applications, and this information
can be easily and transparently obtained.

Since applications present different access patterns, parallel I/O researchers often use bench-
marks to represent the many possible situations when evaluating their techniques. From the
research efforts considered in this survey, 79 (77%) use benchmarks for their experiments. Num-
bers on benchmark usage among the surveyed publications are presented in Figure 5. Figure 5(a)
shows the number of publications using each benchmark, Figure 5(b) counts publications that
discuss an access pattern extraction technique using each tool, focusing on the four most used
ones. Figure 5(c) to 5(e) present the number of publications proposing data and metadata access
optimization techniques, focusing on the two most used benchmarks. Again, the “other” bar
includes benchmarks that were not listed, and publications may be represented multiple times
in each graph as they may use multiple ones. The graphs show IOR was the most used I/O
benchmark. One of the main reasons for its popularity in the field is the possibility of easily
producing different access patterns by adjusting its parameters.

Nonetheless, “others” account for most publications (50 out of 79). During our analysis,
benchmarks were classified among “others” mainly when they were customized microbench-
marks, designed to present a specific behavior or stress some component. It is usual that parallel
I/O researchers use well-known tools in addition to customized ones, tailored to mimic target
applications characteristics. Customization is often needed because, despite the large number
of available benchmarks, most of them present a regular behavior, well-structured spatial access

9

41

14
78 44

11

50

IO
R
BTIO

M
PI T

ile
 I/

O

M
ADBen

ch

Flas
h

I/O

PIO
−B

en
ch

IO
zo

ne
ot

he
r

Benchmarks used for
parallel I/O research

(a)

17
558

17

IO
R

M
PI T

ile
 I/

O
BTIO

M
ADBen

ch
ot

he
r

access pattern
extraction

(b)

32

13

51

IO
R
BTIO

ot
he

r

optimization
techniques

(c)

32

13

48

IO
R
BTIO

ot
he

r

data access
optimizations

(d)

6 3
11

IO
R
BTIO

ot
he

r

metadata access
optimizations

(e)

Figure 5: Benchmark usage among the surveyed publications - in general and separated by
technique

pattern (mostly 1D strided), and synchronous operations. These characteristics, although usual,
are not always enough to represent target scenarios.

Moreover, one problem that arises from the large number of available tools, in addition to
customized ones, is the lack of standardization. A standard set of benchmarks and applica-
tions, as the role played by the NAS parallel benchmarks5 in other fields of high performance
computing, would facilitate the comparison between techniques and strengthen the presented
validations. Such an effort towards standardization was made by the “Parallel I/O Benchmark-
ing Consortium”6 in the early 2000s. Nevertheless, our surveyed data do not indicate progress
in this aspect.

Finally, 26 (25%) of the papers used checkpointing as a motivation for work on parallel I/O.

4 Techniques to Improve Parallel I/O Performance

Since performance depends on applications access patterns, and some patterns are known to
perform better than others in some systems, ways of improving the performance for an appli-
cation often involve changing its access pattern to make it more suitable for the used system.
This can be done at the server side, mainly by modifying the file system; or at the client side,
by changing applications, I/O libraries, APIs, etc.

From the studied publications, 81 (79%) propose optimizations for parallel I/O. Figure 6
provides some surveyed data on these techniques. Figure 6(a) presents the number of publi-
cations separated by the optimization focus (data or metadata access), Figure 6(b) presents
publications separated by optimization place (server or client side), and Figure 6(c) integrates
both aspects.

Among papers proposing optimization techniques, most focus on data access (65, 80%).
Moreover, most techniques work on the client side only (48, 59%). We can see data access
optimization happens mostly on the client side, while the most usual place for
metadata access optimizations is the server side. This happens because metadata access
is usually triggered by a simple request from the client, and the rest happens in the file system
and depends on its metadata management approach. On the other hand, data access depends
on applications access patterns, and the access pattern can be adapted still on the client side,
as previously discussed.

This section describes some typical I/O optimizations techniques. Sections 4.1 to 4.5 discuss
these optimizations, Section 4.6 presents more surveyed data on them, and Section 4.7 concludes
this part of the survey.

5http://www.nas.nasa.gov/publications/npb.html
6http://www.mcs.anl.gov/research/projects/pio-benchmark/

10

http://www.nas.nasa.gov/publications/npb.html
http://www.mcs.anl.gov/research/projects/pio-benchmark/

65

6 10

da
ta

m
et

ad
at

a
bo

th

Type of access

(a)

48

20
13

cli
en

t

se
rv

er

bo
th

Place for
optimizations

(b)

13

42

10
41 1 35 2

da
ta

m
et

ad
at

a
bo

th

client

server

both

Type of access and
place for optimizations

(c)

Figure 6: Surveyed data on optimizations - types of access and place for optimizations

4.1 Optimizations for Metadata Access and Small Files

Section 3.2 stated that distributing metadata storage among multiple servers is a strategy to
improve performance and scalability for metadata access. This design choice brings the extra
cost of managing this distribution to keep consistency.

A new hierarchical adaptive approach for metadata management is proposed by Hua, Zhu,
and Jiang [36]. Their approach applies Bloom filters to route metadata accesses among the
servers. Patil and Ganger [80] propose a file system directory service called GIGA+, consisting
of distributing directories entries among multiple servers using a decentralized hash-based in-
dexing. Consistency on directories indexes in clients’ caches is eventually maintained. Another
metadata distribution design called IndexFS was proposed by Ren et al. [87], with a table-based
architecture that incrementally partitions the namespace on a per-directory basis. Their ap-
proach includes bulk namespace insertion for creation-intensive workloads. Xiong et al. [108]
also propose a distribution policy among metadata servers, in addition to a consistency policy.
Their consistency policy focuses on allowing fast recovery in the presence of faults.

Metadata access may also become a bottleneck when the file system tree must be traversed
for transferring data to a permanent storage, visualization, post-processing, etc. In this context,
LaFon, Misra, and Bringhurst [51] propose three distributed algorithms - with no centralized
control - for traversing PFSs and performing file operations in parallel. Their algorithms are
adequate for different scenarios. They use a randomized work stealing scheduler to efficiently
balance workload between the worker processes (idle workers “steal” from other workers’ pending
queues).

One important concern for metadata management is reliability since the loss of a file meta-
data results in the file no longer being reachable. Hence, a fault in one of the metadata servers
may leave the system in a corrupted state, while a fault in a centralized metadata server may
cause the loss of the whole file system tree. For this reason, metadata replication is often applied.
Additionally, some systems keep metadata alterations in a journal, where these modifications
are only valid after committed through transactions (with guaranteed atomicity).

Chen, Xiong, and Meng [14] propose an alternative approach to both replication and jour-
naling, aiming at improving the performance of metadata access. They use the Paxos algorithm
to build a coordination mechanism with low synchronization latency, where all replica servers
simultaneously provide metadata read-access service. This mechanism decreases the impact of
server failures and avoids the interruption of service.

Oral et al. [77] improve the performance of ldiskfs, a variation of the ext3 file system used
by Lustre in both data and metadata servers. Two approaches were applied: using external
journaling devices to eliminate latency incurred by extra disk head seeks, and a software-based
optimization to aggregate commits.

In block-based symmetric architecture parallel file systems, metadata is often stored along

11

with data in underlying storage devices, which may compromise reliability. Yi et al. [111] propose
an asymmetric file system where metadata are stored in a dedicated access domain, and clients
are not allowed to directly access it. Their approach applies a centralized metadata server.
To maintain scalability, they propose some techniques which include message stuffing, block
reorganization in the disk (so metadata belonging to the same directory are close to each other),
file layout prefetching and speculative file allocation (to avoid data fragmentation). They also
propose an algorithm to improve fault detection on the metadata server.

Situations where a large number of small files are accessed may present poor performance
due to contention on the metadata servers. Moreover, when a large file is read or written, the
initial cost of accessing its metadata is diluted by the larger read or write time. This does not
happen when files are small. Hence metadata access optimizations are often motivated by this
kind of workload.

Lu et al. [66] work to improve performance in such situations. They tackle the ordered
writes mechanism, which keeps consistency under distributed writes by ordering involved sub-
operations and ensuring data is written to storage devices before issuing metadata writes. This
mechanism can degrade performance, especially for situations with a large number of small files.
To improve performance, they propose a delayed commit protocol to transfer the order keeping
to the file system so applications do not have to synchronously wait. They also employ a space
delegation technique to cluster the space allocated to each client and increase the chance of I/O
merge.

4.2 Requests Aggregation and Reordering

Access patterns with small requests, although common between scientific applications, usually
achieve poor performance from the parallel file system. Therefore, several optimization tech-
niques focus on the idea of requests aggregation, which means coalescing small accesses, uniting
them into larger ones.

Islam et al. [39] present a checkpoint-restart library that works to coalesce requests from the
multiple processes to the PFS. They use information – variables name and type – to place similar
data close together. They do so because compression schemes work better with similar data.
Vishwanath et al. [104] aggregate requests from the processing nodes to the I/O forwarding
layer, promoting better usage of the target system – an IBM Blue Gene/P – interconnection.

One popular technique is the use of collective operations, whose idea consists on transforming
multiple non-contiguous accesses from an application’s processes into a single contiguous call.
The classical collective write implementation is a two-phased strategy: first all processes send
their data to processes that were selected as “aggregators”, and then aggregators perform the
write operations. Collective read operations follow a similar approach. This is the strategy
employed by ROMIO, a popular MPI-IO implementation [99].

The typical two-phase I/O strategy works when the multiple processes access a single file.
Kumar et al. [49] implement a two-phase I/O for multiple files in the context of the PIDX
library. In a following work, Kumar et al. [48] discuss a modification in their two-phase I/O
strategy. Their new proposal is a three-phase approach with an additional phase at the beginning
to restructure simulation data into large blocks to facilitate I/O aggregation. Finally, in a
more recent work, Kumar et al. [47] apply machine learning to automatically tune the library
parameters.

Chen et al. [12] use data layout information to improve collective I/O performance. Their
proposal consists of rearranging the partition of the file domain and of requests from aggregators,
aiming at matching the physical layout on the servers. In a more recent publication by Chen
et al. [13], they use the physical data layout information in their collective I/O approach so each
aggregator will access as few servers as possible. McLay et al. [69] demonstrate choosing the
appropriate stripe size is critical to collective write performance. They propose some heuristics
to facilitate this choice. Wang et al. [105] also propose a new approach for collective I/O. They

12

break collective I/O calls into multiple iterations to fit the buffer size. These partitions are
optimized so each server is accessed by only one aggregator at each iteration.

The approach of decreasing the number of clients concurrently accessing each server, applied
by some papers, improves performance for some reasons. First, the concurrency on the servers
is decreased and network contention avoided. Additionally, in some systems there is a cost
associated with maintaining a connection between client and server, so these techniques save on
this cost. Lastly, this approach avoids contention caused by the servers’ lock mechanism.

Liao [55] proposes domain partitioning methods for collective I/O aiming at mitigating con-
flicts under stripe-based locking. The focus is to reduce lock contention on write operations in
shared file accesses, which typically causes serialization of concurrent I/O operations. Another
technique to reduce lock contention is presented by Nisar, Liao, and Choudhary [73]. Their ap-
proach consists of statically mapping file regions based on the stripe size and count to delegate
processes, reducing the concurrency on each server.

Despite being a popular technique, for a developer to know if collective I/O is advantageous is
not always trivial. Due to its added difficulty, many developers do not use this optimization in the
development of scientific applications and thus observe poor I/O performance. Natvig, Elster,
and Meyer [72] propose a mechanism to monitor communication and I/O from applications and
translate them into MPI-IO collective calls. Moreover, their approach works to aggregate writes
and reads in order to eliminate overlaps and improve performance. With a similar motivation,
Yu et al. [114] present a user level library to provide transparent collective I/O for applications
through a POSIX-like interface. Their interface aims at being easier to use than MPI-IO. Zhang
et al. [121] present a data management middleware for parallel scripting. Their approach also
works to automatically generate collective operations.

Performance improvements by collective operations come from both aggregation and reorder-
ing of small requests. If made independently by clients, these requests would hardly arrive at
the servers in offset order. Avoiding random accesses, as previously discussed, can improve
performance to access storage devices and promote better cache usage, also helping the effi-
cacy of techniques like prefetching and read-ahead. Requests reordering is the focus of some
optimization techniques.

PLFS is a library that transparently maps applications’ shared files into multiple actual files
in the file system. This approach is adequate, for instance, for applications where each process
accesses multiple sparse portions of a shared file (common for checkpointing). PLFS will then
map each process’ requests into an independent file, where they are contiguous. Manzanares et al.
[68] discuss some performance improvements to PLFS, focusing on concurrent reading (of a file
previously written with PLFS) and metadata access. File creation is optimized by distributing
the files managed by the library into multiple metadata servers. The latter optimization is
conceived for file systems that do not distribute metadata storage. When these systems are
deployed in a large-scale architecture, multiple file system trees are often kept at the same time
in order to alleviate the bottleneck of a centralized server. Each of these concurrent metadata
servers is responsible for a part of the directory tree. The optimization proposed by Manzanares
et al. [68] consists of distributing the library files in different points of this tree to avoid a
situation where only one of the servers is keeping all of them. Bent et al. [5] point PLFS as one
of the key solutions to support storage demands at the exascale era.

Figure 7(a) presents the number of publications on collective I/O by year. These publications
are more common in the beginning of the time window. A similar behavior can be observed in
the graph from Figure 7(b), which shows publications classified as any of the three techniques:
requests reordering, aggregation, or collective I/O.

4.3 Caching and Prefetching

A way of providing performance-transparent remote storage is the use of caches, in the different
levels of the I/O stack, to hide the latency of the remote access. The success of caching can be

13

3
4

2 2 2

20
10

20
11

20
12

20
13

20
14

Collective I/O

(a)

5 5

8

3
2

20
10

20
11

20
12

20
13

20
14

Requests aggregation,
reordering and collective I/O

(b)

2
3

1
0 0

20
10

20
11

20
12

20
13

20
14

SSD+HDD storage

(c)

Figure 7: Number of publications that present discussed optimization techniques, separated by
year

improved by the prefetching technique, which, as previously stated, tries to fetch data from the
next levels before it is actually requested by applications, so it is already present in the cache
when needed.

Eshel et al. [26] present a cache file system called “Panache”, which uses pNFS to maintain
a distributed cache for data stored in GPFS. The technique proposed by Frings et al. [28] uses
prefetching to increase the performance of loading parallel applications with dynamically linked
libraries. Rajachandrasekar et al. [86] propose a user-level file system to keep checkpointing
requests in the main memory and transparently flush then to persistent storage. Their approach
includes support to remote direct memory access (RDMA).

Another caching middleware is proposed by Zhao, Qiao, and Raicu [123]. They introduce
a two-stage mechanism to decrease the amount of data to be transferred between processing
and intermediate I/O nodes. Isaila et al. [38] improve the IBM Blue Gene’s I/O forwarding
layer by proposing a two-level prefetching scheme (between clients and I/O nodes, and between
I/O nodes and file system servers). Prabhakar et al. [84] model the optimal cache allocation on
two-level cache systems through linear programming.

Kandemir et al. [43] define the concept of requests urgency, given by how long a request can
be delayed without affecting the application performance. They improve a caching mechanism
by prioritizing urgent requests. The approach by Seelam et al. [90] applies a library that traces
and detects the application access pattern. This information is used to guide prefetching to a
local buffer. Similar approaches - access pattern detection to guide prefetching - are proposed
by Patrick et al. [81], He, Sun, and Thakur [32], Lu et al. [65], and Tang et al. [97].

Suei, Yeh, and Kuo [96] propose a cache design for storage clusters using an SSD as cache
for an HDD. Their design focuses on wear-awareness, response time and hit ratio. This idea –
a fast SSD as a cache for an HDD – is also explored by Zhang, Davis, and Jiang [117].

The hybrid SSD+HDD approach is also used by Zhang et al. [120]. They apply SSDs to
store “fragments”, which are the initial and final portions of files that are not stripe size aligned.
Since the performance to obtain small portions is lower, the authors argue that the performance
of accessing the whole file is limited by these fragments, so accelerating the access to them
improves overall performance. Welch and Noer [106] store small files in the SSD in order to
optimize access to them, as they have observed that small files are the majority in parallel file
systems. The approach presented by He et al. [34] applies a cost model to make data placement
decisions. They evaluate the access costs of different regions of a file and place high cost regions
in SSDs.

As discussed in Section 3, these hybrid storage solutions have been gaining popularity because
simply replacing all hard disks by solid state drives would have a high cost. Therefore, HDDs are
kept for storage capacity and SSDs for performance. Other NVRAM technologies are also being
studied. New supercomputers are expected to include NVRAM devices in computing nodes.

14

These devices are often called “burst buffers”, and would work to hide the remote file system
latency. A current research topic which has been receiving some attention seeks to determine
how to use these burst buffers, where to place them, how to make them transparent, etc. [20]

Bent et al. [4] argue that the intermediate I/O nodes are the best place for burst buffers, since
this choice allows to pipeline computation with data movement to servers. The same approach
is evaluated by Liu et al. [58] through simulation.

The graph from Figure 7(c) presents the number of publications studying hybrid storage
solutions per year. We can see this is a recent trend, as we have not found surveyed papers on
this subject before 2012.

4.4 I/O Scheduling

It is usual for large HPC architectures to dedicate a set of nodes for storage, with a PFS deploy-
ment. This file system will be concurrently accessed by all applications running in the machine.
In this situation, applications performance may be impaired, in a phenomenon called “interfer-
ence”. I/O scheduling techniques are applied to alleviate interference effects by coordinating
request processing. This coordination can work at different levels of the I/O stack.

Dai et al. [17] propose a client-side I/O scheduling approach. They focus on avoiding strag-
glers – data servers which are slower than the others due to software bugs or interference effects.
Write requests are redirected to other data servers to improve performance, and data can be
later moved to the right server according to the data striping schema in place. Zhang and Jiang
[119] identify portions of data which are causing interference during concurrent accesses. These
portions are then replicated to other servers to decrease the concurrency.

Dorier, Antoniu, and Ross [23] propose a client-side cross-application coordination strat-
egy. They use information about applications access patterns to dynamically decide between
three scheduling strategies, seeking to optimize a given metric. Lofstead et al. [62] propose an
adaptive I/O method, implemented in their ADIOS middleware, which monitors the file system
performance and balances the workload accordingly.

Liu, Chen, and Zhuang [57] propose a server-side hierarchical scheduling algorithm for two-
phase collective I/O. They focus on the “shuffle” phase, when data is moved between processing
nodes. This phase is not synchronous, i.e., each aggregator passes data to other nodes as soon
as it is available. They propose that the servers prioritize aggregators with higher shuffle cost
in order to provide better overall performance.

Zhang, Davis, and Jiang [116] propose an approach named IOrchestrator to the PVFS parallel
file system. Their idea is to synchronize all data servers to serve only one application during a
given period. This decision is made through a model considering the cost of this synchronization
and the benefits of this dedicated service. The same authors adapt their approach to provide
QoS support for end users [118]. Through a QoS performance interface, requirements can be
defined in terms of execution time (deadline). Applications need a profiling execution, where
the proposed mechanism obtains the application access pattern. A machine learning technique
is used to translate the provided deadline to requirements in bandwidth from the file system.

Song et al. [95] propose a server coordination scheme that also aims at serving one application
at a time. They implemented a window-wide coordination strategy where requests are separated
in time windows ordered by application ID, and the different windows must be processed in order
to avoid starvation.

Vishwanath et al. [103] evaluate performance of the I/O forwarding layer of an IBM Blue
Gene/P, and apply a simple First Come First Served (FCFS) scheduling algorithm. Ohta et
al. [74] take it further by including a handle-based round-robin scheduling algorithm. A data
layout aware scheduler for the I/O forwarding layer is proposed by Xu et al. [110] to provide
proportional sharing between applications.

15

4.5 Other Techniques

When multiple processes generate requests to the remote file system from the same node, there
may be contention in the access to memory and network resources. Dorier et al. [24] propose
an approach named Damaris that dedicates cores from SMP nodes for I/O. Processes assign
their I/O operations to Damaris through a simple API, and data is kept in main memory until
the I/O thread uses routines provided by the application itself to actually perform I/O to the
parallel file system.

Dong et al. [22] propose a load balancing scheme for PFS data servers. Inadequate striping
size (that does not reflect the applications characteristics), small files, and heterogeneous servers
are the main causes for load imbalance at the servers, which may result in poor performance.
They employ an agent on each server to monitor load and make decisions about data migrations.
Another load balancing approach is proposed by Ou et al. [79]. Their approach focuses on
SSDs, taking their characteristics into consideration to perform wear leveling while avoiding
write amplification.

Qian et al. [85] present a performance model to estimate Lustre I/O latency and a distributed
dynamic congestion I/O mechanism. The mechanism defines the number of I/O requests in
flight for each client, based on the servers load. Through this approach, clients performance is
improved during light load periods, while the number of re-transmits is decreased during heavy
load periods.

Some applications and libraries perform data compression to decrease the amount of data to
be accessed in the remote PFS. Jenkins et al. [40] propose an approach that adapts to different
precision needs. A parallel data compression approach for I/O libraries is presented by Bicer,
Yin, and Agrawal [6]. The approach presented by Filgueira et al. [27] determines, through
heuristics, when it is advantageous to use compression. It also allows for only parts of the file to
be decompressed when necessary. Schendel et al. [88] present a framework for overlapping I/O
operations and data compression.

Active storage is a technique where servers are equipped to perform some simple operations
over data they store. For instance, if clients are interested in reading an array from the file
system to calculate the average of its values, through active storage they could obtain the
average directly from the system, decreasing the amount of transferred data and leveraging the
servers processing power. This concept is related to the near-data processing (NDP) trend,
which tries to avoid data movement impacts on performance, power efficiency, and reliability
[2]. The active storage approach is discussed by Piernas-Canovas and Nieplocha [83]. Son et al.
[92] discuss how active storage can be implemented in parallel file systems without information
about data layout and striping.

An approach to leverage GPU processing power for the PFS client functions is presented by
Al-Kiswany, Gharaibeh, and Ripeanu [1]. They use the GPU to compute hash functions, detect
block boundaries and calculate blocks hash.

To guarantee consistency under concurrent access, MPI-IO implementations usually employ
locking. This approach may present poor performance under a high level of concurrency. Tran
et al. [101] propose a versioning approach to provide atomicity with better performance.

I/O performance depends on the different I/O stack levels and their complicated interaction.
For this reason, it is often difficult for applications developers and users to configure systems
for better performance. Behzad et al. [3] present an auto-tuning system for HDF5 applications,
which selects parameters and hints at runtime.

Jung et al. [41] propose a flash array that is not based on SSDs. Their proposal achieves
performance while not suffering from contention problems typical of SSD arrays. This is done
through autonomic link and storage contention management, which includes changing the data
layout to avoid contention on flash modules.

An approach for automatic layout configuration is proposed by Song et al. [94]. The approach
consists of dividing a large file into multiple segments and adopting different layout configurations

16

27
19

33

Gen
er

ic

Lib
 sp

ec
ific

FS sp
ec

ific

Data access
optimizations

(a)

15

37

24
18

I/O
 lib

ra
ry

File
 sy

ste
m

App
lic

at
ion

Oth
er

required modifications

(b)

2
78

Gen
er

ic

Lib
 sp

ec
ific

FS sp
ec

ific

Metadata access
optimizations

(c)

22
9

3

I/O
 lib

ra
ry

File
 sy

ste
m

App
lic

at
ion

Oth
er

required modifications

(d)

Figure 8: Surveyed data on optimizations - required modifications and how generic proposed
techniques are

for each segment according to the observed access pattern. The same authors present a model
to estimate data access cost of different data layout policies [93]. Another automatic data
placement approach is proposed by Yin et al. [113], through a data replication scheme that
reorganizes data according to access patterns.

4.6 Surveyed Data

We have presented techniques used to improve parallel I/O performance in the HPC context.
As previously discussed, data access optimizations are typically done on the client side, while
metadata access optimizations happen mostly on the server side. The graphs from Figure 8
further characterize these optimizations. Figure 8(b) and 8(d) show the levels where proposed
techniques (for data and metadata access optimization, respectively) require modifications. Sim-
ilarly to other presented graphs, they are not mutually exclusive, in the sense the same technique
could require modifications to the I/O library and to the file system, for example. We can see
metadata access optimizations are mostly done by modifying the file system. From
the 75 publications on data access optimization, 37 require modifications to the I/O library, 24 to
the file system, and 9 to both. The I/O library is the most popular place to implement
data access optimizations. One reason for this is accessibility to researchers, as it is often
easier to modify a user-space library than the deployed file system or I/O forwarder. Users of a
supercomputer are not usually allowed to make such changes in the system for experimentation.
Additionally, techniques including modifications to compilers are not common – only
three were found, all for caching/prefetching data access optimizations [18, 42, 81].

The graphs from Figure 8(a) and 8(c) show how generic the proposed optimization techniques
are. In the context of this survey, saying a solution is library or file system specific means it
only makes sense in the context of the library or file system where it was implemented. For
instance, an improvement to how Lustre handles metadata operations is file system specific,
an improvement to ROMIO collective operations is library specific. It is important to notice a
technique can be both library specific and file system specific, but it can only be generic if not
specific to any level of the I/O stack. We can see most proposed techniques are generic.
For specific solutions, data access optimizations are mostly specific to the I/O library, while
metadata optimizations are more often specific to the file system. These facts make sense if
we remember where these optimizations usually take place. Moreover, one could argue being
specific to a popular I/O library such as ROMIO is close to being generic.

Figure 9 classifies the articles on data access optimizations according to the used technique.
Some publications were classified as more than one technique. For instance, a paper could
propose a data placement technique considering hybrid storage solutions, and thus it would
count to both. Nonetheless, the last bar – “None of the listed” – gives only the number of

17

17
14 13 12

8
6 6 6 6

4
2

9

Cac
hin

g/

Pre
fe

tch
ing

Req
ue

sts
 a

gg
re

ga
tio

n

Coll
ec

tiv
e

I/O

I/O
 sc

he
du

lin
g

Req
ue

sts
 re

or
de

rin
g

Foc
us

 o
n

sm
all

 fil
es

Hyb
rid

 st
or

ag
e

Dat
a

co
m

pr
es

sio
n

Dat
a

pla
ce

m
en

t

Lo
ad

 b
ala

nc
ing

Acti
ve

 st
or

ag
e

Non
e

of
 th

e
lis

te
d

Figure 9: Surveyed publications on data access optimization techniques

publications where none of the listed techniques were used.
The most common technique among the surveyed papers is caching/prefetching. Figure 10(a),

10(b), and 10(c) present information on publications that discuss this technique. The first graph
says if these techniques are generic or specific to a file system or I/O library, the second shows
where they take place, and the last shows where these techniques require modifications. The
“Other” column in Figure 10(c) includes the three surveyed papers for caching/prefetching with
modifications in the compiler. We can see caching/prefetching happens usually on the
client side and most of these techniques are generic. The I/O library is the most usual
place for this optimization, but many other implementations are possible.

Similarly, Figure 10(d), 10(e), and 10(f) present surveyed information on publications using
the requests aggregation, reordering, and collective I/O techniques (23 papers fall in at least
one of the three categories). These numbers demonstrate requests aggregation, reordering,
and collective I/O are client-side techniques typically implemented in the I/O li-
brary. The fact that most of these research efforts are library specific is due to the technique
implementation depending on data representation and on the way processes generate requests.

A different situation can be observed in the graphs from Figure 10(g), 10(h), and 10(i),
which present information on I/O scheduling publications. I/O scheduling can take place on
the client or server side, being implemented in the I/O library, in the file system, or even in the
application.

4.7 Discussion

This section has discussed techniques to improve parallel I/O performance. Most of the surveyed
publications focus on data access rather than metadata, and thus these data access optimization
publications were classified according to the applied techniques.

Papers on metadata access optimization usually propose new distribution or consistency
strategies. Reliability is also a concern, since losing metadata may incur in losing the associated
data. Another motivation comes from situations where applications handle a large number of
small files since the concurrency on metadata servers increases and metadata operations cost
becomes more important.

Many techniques work to aggregate and reorder requests, since access sequentiality can be
important for performance. Moreover, reordering may be performed to avoid having a large
number of clients accessing the same data servers concurrently or competing by the same stripes.
The most usual optimization technique that performs aggregation and reordering is the use
of collective operations. Despite being used for many years (two-phase I/O was introduced
to ROMIO in the 90s), several papers propose new collective approaches or improvements to
existing ones. Nonetheless, these publications are mostly from the beginning of our time window,
suggesting this research topic is not as popular now as it used to be.

18

3 2

12

Gen
er

ic

Lib
 sp

ec
ific

FS sp
ec

ific

Caching/
prefetching

(a)

11

2 4

Clie
nt

Ser
ve

r
Bot

h

Place

(b)

2
7

3

9

I/O
 lib

ra
ry

File
 sy

ste
m

App
lic

at
ion

Oth
er

Required
modifications

(c)

14

65

Gen
er

ic

Lib
 sp

ec
ific

FS sp
ec

ific

Aggregation,
reordering,

collective I/O

(d)

19

1 3

Clie
nt

Ser
ve

r
Bot

h

Place

(e)

6

14

3 3

I/O
 lib

ra
ry

File
 sy

ste
m

App
lic

at
ion

Oth
er

Required
modifications

(f)

2
57

Gen
er

ic

Lib
 sp

ec
ific

FS sp
ec

ific

I/O
Scheduling

(g)

6 5
1

Clie
nt

Ser
ve

r
Bot

h

Place

(h)

2
6 6

3

I/O
 lib

ra
ry

File
 sy

ste
m

App
lic

at
ion

Oth
er

Required
modifications

(i)

Figure 10: Surveyed data on caching/prefetching, requests aggregation, reordering, collective
I/O, and I/O scheduling - place, required modifications and how generic proposed techniques
are

Caching is a typical solution to hide latency in all levels of the I/O stack. The prefetch-
ing technique usually requires an access pattern extraction strategy to get information from
applications.

A recent trend is the use of non-volatile technologies together with hard disks, forming hybrid
storage solutions. Researchers are working to integrate these new devices into the I/O stack,
as they decrease the conceptual distance between memory and storage. SSDs may be used on
the file system servers as a cache for the HDDs, or to store data that is most frequently used
or most expensive to access. Moreover, burst buffers can be used on processing nodes or on
intermediate I/O nodes to allow data movement pipelining. All surveyed publications on this
subject are from 2012 or newer.

Other techniques to improve data access performance include I/O scheduling, dedicating
cores from an SMP node to perform I/O on behalf of the others, load balancing and data
placement guided by access patterns, data compression to decrease the amount of data being
accessed, and leveraging processing power at the data servers to perform operations on data they
store (active storage). Both surveyed publications on active storage are from 2010, suggesting
this research subject is no longer as active as before. On the other hand, publications on data
compression are mostly recent.

5 Applications Characterization and Performance Modeling

Several techniques to improve parallel I/O performance need information about the applications
access patterns. Prefetching techniques and cache substitution policies are common examples.
Other source of information to optimization techniques is the use of models to represent and pre-
dict performance behavior. Models abstract systems, and techniques can explore their parameter

19

12 12

6

Run
tim

e

Pos
tm

or
te

m
Bot

h

Time

(a)

22

5 3

Clie
nt

Ser
ve

r
Bot

h

Place

(b)

Figure 11: Surveyed data on access pattern extraction - where and when these techniques take
place

space to optimize given objectives – e.g., performance, resource utilization, load balancing, etc.
Section 5.1 discusses techniques to obtain information about parallel applications accesses.

Section 5.2 presents publications on performance modeling. Both sections illustrate their discus-
sions by presenting surveyed data. In Section 5.3, we summarize the discussion of this subject.

5.1 Access Pattern Extraction

From the surveyed articles, 30 (29%) discuss techniques to obtain information about the appli-
cations access patterns. The graph from Figure 11(a) shows when these techniques take place.
The three bars are mutually exclusive, and the “both” option represents hybrid approaches
where some information is gathered after the application execution (postmortem), but a part
of the detection is still done at runtime. Both postmortem and runtime approaches are
popular. Nonetheless, hybrid approaches publications are less common.

At runtime, techniques can typically only use information from past accesses. A complete
analysis could be conducted after the application execution. Moreover, postmortem techniques
do not have time constraints as tight as runtime techniques, since the latter are usually required
to provide decisions to optimization techniques as fast as possible. Runtime techniques efficiency
is important in order to avoid imposing overhead on the system. On the other hand, postmortem
techniques are only adequate for workloads that will be observed multiple times, otherwise, the
obtained information will not be useful. If this information is used for a data access opti-
mization technique, performance improvements will only be possible in future executions of the
applications, as “profiling” executions will be required.

The graph from Figure 11(b) shows where the proposed techniques are applied – client side,
server side, or with parts on both sides (these options are also mutually exclusive). Most of
the access pattern extraction approaches work on the client side. The client side is
where most information is available, since parallel file system servers are typically stateless and
most high-level information is lost through the I/O stack. Server-side techniques are typically
proposed to feed server-side optimizations.

Access pattern extraction techniques which work at runtime are discussed in Section 5.1.1,
hybrid solutions in Section 5.1.2, and postmortem in Section 5.1.3.

5.1.1 Runtime detection

Dorier et al. [25] propose a grammar-based approach called Omnisc’IO. Their mechanism, in-
tegrated into POSIX and ROMIO to observe I/O calls, is adequate for applications that work
on timesteps or perform regular checkpoints. In a few I/O phases, Omnisc’IO is able to build a
grammar that predicts future accesses with good accuracy. It does so by tracking request size,

20

9

3
0

Clie
nt

Ser
ve

r
Bot

h

Runtime
techniques

(a)

1

9

4

0

I/O
 lib

ra
ry

File
 sy

ste
m

App
lic

at
ion

Oth
er

required
modifications

(b)

8

1
3

Clie
nt

Ser
ve

r
Bot

h

Postmortem
techniques

(c)

1

10

1
3

I/O
 lib

ra
ry

File
 sy

ste
m

App
lic

at
ion

Oth
er

required
modifications

(d)

Figure 12: Surveyed data on access pattern extraction techniques that work at runtime or
postmortem - where they take place and to which levels they require modifications

offsets and inter-arrival times.
The approach proposed by Tang et al. [97] periodically analyzes past accesses and applies

a rules library to predict future accesses (for prefetching). They collect spatiality information
about read requests from the MPI-IO library.

It is usual for these techniques to benefit from the information available in I/O libraries. Ge,
Feng, and Sun [29] collect information from the MPI-IO library: operation (write, read, seek,
open, or close), data size, spatiality (contiguous or strided), if operations are collective, and if
operations are synchronous. Liu, Chen, and Zhuang [57] also collect from MPI-IO the number of
processes, the number of aggregators (of collective operations), and binding between nodes and
processes. Lu et al. [65] use the offsets accessed by each process during collective operations.
The processes’ access spatiality is also obtained from MPI-IO in the approach proposed by Song
et al. [93]. Similarly, He, Sun, and Thakur [32] present an approach to collect I/O information
from the PnetCDF library. Semantic data access information is obtained by collecting high-level
variables.

All the discussed techniques so far work on the client side. As previously discussed, that is
where information is more easily obtained from I/O libraries, applications, etc.

Zou, Zhu, and Feng [125] have analyzed traces from a large Lustre deployment and propose
a new stochastic model to adequately predict I/O arrival rate. Dong et al. [22] use a time series
model to estimate file system servers’ load. The approach by Zhang, Davis, and Jiang [116]
applies a “reuse distance”, defined as the time difference between consecutive requests from the
same application at the servers.

The graphs from Figure 12(a) and 12(b) present information on access pattern extraction
at runtime. The first graph shows where these techniques take place and the second shows to
what levels modifications are required. In the latter, options are not mutually exclusive, as a
technique may require modifications at multiple levels. Most runtime techniques work on
the client side and require modifications in the I/O library.

5.1.2 Hybrid runtime + postmortem approaches

Yin et al. [112] propose IOSIG, a tool that generates applications traces and performs post-
mortem analysis to describe their access patterns according to spatiality, request size, time
between requests, and operation (read or write). An application is described by a sequence of
different access patterns, as its behavior may change throughout its execution. They propose
prefetching and data layout optimizations guided by access patterns, which are identified at
runtime with previously obtained information. A similar technique is used by Zhang, Davis,
and Jiang [118], where a profiling execution is required to detect applications access patterns
regarding the portion of time used for I/O, average request size and average offset difference

21

between requests. At runtime, a machine learning technique is used to translate a given deadline
requirement in bandwidth, according to the profiled access pattern and information from the
file system.

The approach proposed by Patrick et al. [81] relies on hints placed in the source code by
the application developer and captured by the compiler. He et al. [33] propose an approach
to improve read operations with the PLFS library. Information from trace files – generated
while writing data – is used to reconstruct the high-level data structures used by the application
(through MPI-IO or HDF5). The knowledge of the data structures allows for better metadata
representation and data prefetching.

5.1.3 Postmortem analysis

Liu et al. [59] gather information from server-side traces generated by their target architecture.
The traces, which contain the system throughput measured every two seconds, are noisy from
interference caused by concurrent applications. By gathering multiple traces from different
executions of the same application, they are able to filter the interference and determine its I/O
requirements throughout its execution.

In the approach proposed by Yin et al. [113], the MPI-IO library was modified to generate
traces detailing, to each file operation, MPI rank and process identifier, file identifier, offset inside
the file, request size, operation (read or write), starting time, and end time. This information is
later used to guide data replication. He et al. [34] use the IOSIG tool to capture trace information
from an application. Data access costs are then calculated for each file region and results are
stored in a region table, which is used to optimize future executions of the application. Similarly,
Song et al. [94] collect traces to identify the number of requests and their size to each file region.
This information is later used to compute an optimal stripe size for each part of the file. Zhang
and Jiang [119] use client-side traces and a simulator to detect file portions which are related to
interference, and then replicate these portions to avoid it.

Kandemir et al. [43] automatically instrument applications to delay I/O operations in order
to measure the effect of this delay in final performance. Obtained information is then used to
prioritize more “urgent” operations.

The technique presented by Logan et al. [64] differs from the previously discussed publica-
tions because they do not aim at providing information to guide optimizations. They obtain
information from the XML file provided by applications to the ADIOS library and use it to
build “I/O skeletal applications”, which mimic the original application’s I/O behavior. There-
fore their tool automatically creates I/O kernels from applications. Moreover, they also provide
tools for I/O performance evaluation.

Similarly, Sigovan et al. [91] present a general method for extracting and visualizing network
performance metrics from I/O trace data collected on HPC platforms. Their visualization
approach consists of representing each layer as a concentric ring, and communications between
layers as connections between the rings. In the work by Uselton et al. [102], statistical analysis
of requests time duration, obtained from traces, allows to identify modes and moments of the
distribution of I/O times, revealing I/O behavior of applications and potential bottlenecks.

Carns et al. [9] showcase the Darshan profiling tool. They evaluate the I/O performance of
a large architecture through two months. Darshan instruments POSIX, MPI-IO, HDF5, and
PnetCDF libraries, providing data for a wide range of applications. Liu et al. [58] use Darshan
to characterize target applications I/O behaviors.

The graphs from Figure 12(c) and 12(d) show information on postmortem access pattern
characterization. Among them, six works aim at providing information to optimization tech-
niques, while the others provide methods for applications evaluation. The first graph shows
where these techniques take place and the second graph shows what modifications they require.
Most techniques work on the client side. Almost all of them require modifications
to the I/O library (ten out of twelve).

22

5.2 Performance Modeling

Among the surveyed papers, 16 (15%) use performance models. Most of them (14) use
a model of the system to drive optimization decisions. The only exceptions are the
papers by Xie et al. [107] and Zhang et al. [122]. Xie et al. [107] focus on characterizing the
storage performance on a large-scale machine. A model is used in their work to estimate the
capability of a storage system to absorb the output of multiple parallel processes. The work
by Zhang et al. [122] evaluates the capability of large-scale computers in the context of parallel
scripting applications. They present a model to estimate read and write times for data and
metadata-bound workloads.

Natvig, Elster, and Meyer [72] use analytical models to estimate the performance of opera-
tions and evaluate the benefits of collective I/O. Their models account for both network and file
system costs, considering also the problem size and the number of nodes in the system. A similar
approach is adopted by Piernas-Canovas and Nieplocha [83]. They use an analytical model to
identify when applications can take advantage of active storage. Parameters considered in their
model include processing speed on compute and storage nodes, maximum network and single-
link bandwidth, and disk read/write rate. Schendel et al. [88] propose a theoretical performance
model to be used by the ISOBAR framework to make decisions about data compression.

A model-driven data layout scheme is proposed by Song et al. [94]. The proposed analytical
model is used to estimate data access costs to each segment of the file and tune striping. I/O
time is computed considering servers startup time (i.e., disk seek and software overhead), stripe
size, request size, the number of storage nodes, and storage device transfer time. This model is
extended by He et al. [34] to evaluate I/O performance improvements in hybrid environments
through the placement of specific file segments on faster servers.

Data placement decisions are also guided by analytical models in the work by Yin et al. [113].
Cost models for three data layout policies are proposed, considering the number of processing
and storage nodes, request size, network connection time, network bandwidth, the startup time
of one disk I/O operation, time to read/write one unit of data, and the number of storage groups
in a 2-D layout.

In the work by Dong et al. [22], an autoregressive (AR) time series model is used to predict
the load of storage nodes. The prediction model is built online in each storage node with load
information from local and remote nodes. Model estimates are used to guide the data migration
process. Prabhakar et al. [84] use a regression model to estimate per application I/O latency.

Liu et al. [58] integrate an analytical model of burst buffers in the CODES storage system
simulator in order to investigate the performance impact of adopting them in the storage in-
frastructure. Burst buffers data access costs are modeled with device throughput and latency.
Rajachandrasekar et al. [86] use a model to estimate throughput of their user-space file system
CRUISE, which stores data in main memory and transparently flushes to other persistent stor-
age. Their model considers spill-out to SSDs and considers parameters such as the amount of
data and throughput of main memory and SSD.

Machine learning techniques are used by Kumar et al. [47] to tune parameters of the PIDX
I/O library. A tree-based modeling approach was chosen because it presented better accuracy
results, and also because such models provide understandable information about the prediction
process. Among the evaluated tunable parameters are the number of aggregators, the aggrega-
tion factor, the number of files, and whether or not restructuring is used. Lakshminarasimhan
et al. [52] apply a network-based performance model to estimate indexing, aggregation and I/O
times for DIRAQ, a parallel in situ output data indexing and compression technique.

Qian et al. [85] present a performance model to the Lustre file system. The model considers
the depth of the server I/O queue, the number of I/O requests in flight, the number of I/O
active clients, and operations rate at the server. The proposed model is used to guide a dynamic
I/O congestion control mechanism.

23

5.3 Discussion

This section has discussed two aspects of parallel I/O publications: access pattern extraction
and performance modeling, both typically used to guide techniques to improve parallel I/O
performance. Additionally, six (out of 30) surveyed publications on access pattern extraction
did not use information to guide optimizations but focused on methodologies to evaluate and
profile applications I/O performance.

Access pattern extraction techniques can work at runtime, after the applications execution
(postmortem), or through a hybrid solution with a combination of the two. Surveyed publica-
tions are divided evenly among runtime and postmortem, and hybrid solutions are less common.
Moreover, most proposed techniques work at client side by modifying the I/O library. Client-
side runtime techniques typically obtain information from the I/O library, where it is possible
to gather requests details such as operation type, size, and spatiality; and sometimes processes
information such as the number of processes, the number of aggregators, and binding between
processes and machines. Server-side runtime techniques, on the other hand, have little informa-
tion and are able to gather, for instance, operations arrival rate and current file system load.
Postmortem techniques work mostly with traces: 14 surveyed publications use them, 9 for post-
mortem analysis and 5 for hybrid solutions. In addition to other information available at I/O
libraries, traces provide file system access times, which allow for deriving elaborate information
like file regions access cost.

14 of the surveyed papers (14%) of the surveyed papers propose optimizations based on
prediction models. It is worth noticing the trade-off between models accuracy and usefulness,
as although many relevant factors could be considered, a wide range of factors may turn models
unfeasible for online techniques. The next section is the last part of this survey and presents prac-
tical aspects of parallel I/O research for HPC, identifying general characteristics of researchers
and publications.

6 Practical Aspects of Parallel I/O Research

Most published contributions to the parallel I/O field come from universities or
research institutions, as from the surveyed publications only 14 (13%) of them had authors
from a company. Among these, nine were collaborations among a company and a university or
laboratory. The companies with more publications are EMC Corporation and IBM, with three
papers each, followed by Intel, with two.

Table 2: Number of surveyed publications per country

U
S

A

C
h

in
a

F
ra

n
ce

G
er

m
an

y

J
ap

an

S
p

ai
n

C
an

ad
a

T
a
iw

an

U
K

N
o
rw

ay

Q
at

a
r

S
in

ga
p

o
re

S
o
u

th
K

or
ea

Publications 90 10 4 5 3 3 2 2 2 1 1 1 1

Table 2 shows the number of publications per country. The numbers do not add up to 103
because a paper can be authored by institutions from multiple countries. This is the case of 22
(21%) of them. From these, most of them (18) are co-authored by an institution from the United
States of America. Additionally, no surveyed publication was the subject of a collaboration
between more than two countries.

It is clear the USA are involved in most of the surveyed publications (90, 87%). The
most active USA state on parallel I/O research during the considered time window
was Illinois, with 46 papers, followed by California and New Mexico, with 19 publications each.

24

41

19
23

9
5

10 10
0

1K 10
K
10

0K

Scale of
experiments

(a)

36

13
20

6 3

10 10
0

1K 10
K
10

0K

Optimization
techniques

(b)

15
7

3 3 2

10 10
0

1K 10
K
10

0K

Access pattern
extration

(c)

Figure 13: Scale of the surveyed experiments - in general and among publications from the USA

One of the main reasons for Illinois’ prominent position is the Argonne National Laboratory7,
which was involved in 35 publications, being the institution with the most productions.

In addition to the USA leadership position in the field, another thing to be noticed from
the presented numbers is the fact that most surveyed research come from developed countries
which make large investments on research. One reason for this is that parallel I/O in the high
performance computing context makes more sense for countries with large scientific research
centers. Moreover, as researchers argue about techniques at exascale, it is important they have
access to large-scale architectures to perform experiments and collect data.

The graphs from Figure 13 present information on the scale of surveyed experiments. Their
x axes represent the number of machines involved in the experiments8: tens, hundreds, thou-
sands, tens of thousands, or hundreds of thousands of nodes. The y axes give the number of
articles considered in this study. Since only the size of the largest presented experiment of each
publication is taken, there is no overlap between the different bars from each graph.

The first graph (Figure 13(a)) presents the general distribution of experiments scale. We can
see most publications included experiments conducted on hundreds of nodes or more.
A similar behavior is observed in the second graph (Figure 13(b)), that shows scale of experi-
ments among papers proposing data or metadata access optimization techniques. Nonetheless,
most experiments for access pattern extraction techniques - presented in Figure 13(c) - were
conducted on small scale (tens of nodes).

In parallel I/O publications, large-scale machines are not only useful to conduct experiments
to validate new ideas, but evaluations of them are also sometimes contributions to the field.
This happens because there is interest and curiosity on how things work on extreme scale, and
not every researcher has access to supercomputers. Among the surveyed publications, over a
third mentioned the use of famous Top500 machines. Four of them focused on the machine’s
evaluation and lessons learned with it. These works provide insights on how “real life” parallel
I/O looks like.

Simulation is an alternative for when researchers do not have access to a large-scale machine.
Even when access is possible, researchers are often not allowed to make deep modifications to
the system, or the modifications would be too time consuming and thus it is important to be
sure they are advantageous before proceeding with them. Despite being widely used in fields
such as microprocessors design and memory hierarchy, simulators are not usual among
parallel I/O publications. From the surveyed papers, only seven of them use simulation:
three for validating data access optimization techniques, two for validating metadata access
optimizations, and two propose new simulators. Liu et al. [60] present PFSSim, a parallel file
system simulator inspired on PVFS. They provide an interface for implementing I/O scheduling

7http://www.anl.gov/
8We have taken the number of machines used for the experiment, not the total size of the used cluster.

25

http://www.anl.gov/

algorithms, and “proxy” nodes which can be modeled to reflect an I/O forwarding scheme. Costa
et al. [16] propose a queue-based simulation model composed of three elements: a centralized
metadata server, multiple data servers and clients. Their simulator parameters are collected
through tracing and monitoring of actual workloads and environments.

In addition to the machine’s size, another important concern when designing experiments
is making sure results are statistically sound. Noise can happen at the many different levels
of the I/O stack, and cause parallel I/O experiments to present a high variability. Therefore,
experiments are usually repeated multiple times in order to account for this noise. Among the 97
articles presenting experimental results, only 29 (30%) of them9 presented some statistics-related
methodology information such as the number of repetitions, standard deviation, confidence
interval, or variability. Most of them do not report a formal experimental design. These research
efforts do not appear to handle experiments variability, and this is an issue because it could
compromise how valid these publications’ results are and their reproducibility.

One main reason for this somewhat common practice may be related to the cost of the exper-
iments. More replications for each evaluated scenario means more time consumed, making this
approach prohibitive sometimes. The problem is in fact inherent to the I/O field, as data access
experiments tend to be time-consuming. We believe adequate experimental designs, considering
constraints inherent to experiments in computing environments, should be researched.

7 Conclusion

Parallel I/O has been an important topic in the high performance computing community for
decades, motivated by the everlasting gap between processing and data access speeds and by
increases in HPC architectures’ scale and thus in applications’ I/O requirements. As the HPC
community works towards the exascale era, I/O remains a central issue. This article has pre-
sented a comprehensive survey on parallel I/O in the HPC context, aiming at both providing
basic concepts and identifying the field’s main current and future research topics. To do that, we
have discussed five years of papers from some of the most important conferences and journals.

One of the first questions that arise is “has the amount of research effort put in the field
grown in the past few years?”. We have not observed a consistent increase in the volume of
publications over the considered five years. This is the case because parallel I/O has been an
issue for many years, as HPC advanced towards petascale.

As a mature research field, the parallel I/O community has well known and established tools
regarding experimental and production environments. We have shown Lustre and PVFS are
the most used parallel file systems (PVFS for research mostly), and MPI-IO is the most used
I/O library. Nonetheless, the field still lacks standardization when it comes to benchmarking.
A standard set of benchmarks and applications – as the role played by the NAS parallel bench-
marks in other fields of high performance computing – would facilitate the comparison between
techniques and strengthen the presented validations. Although an effort towards standardiza-
tion was done approximately ten years ago, our surveyed data makes it clear that this effort is
still necessary, as customized benchmarks are the rule instead of the exception.

Another research aspect which requires work is parallel I/O simulation. From 97 papers
presenting experiments, only seven of them use some kind of simulation, two of those propose
new simulators. Although we can find a few simulators in the literature, it is unusual to find
papers which use them. One possible reason for this is these simulators are too specific to a given
system architecture or software, limiting its usage by other researchers. In our opinion, one of
the central issues to achieve accurate I/O simulation is accurate storage devices simulation. As
our results on practical aspects of parallel I/O research have pointed the importance of large-
scale experiments, we believe some research effort should be employed to reach high quality
parallel I/O simulation in order to facilitate new techniques’ development and validation.

9For another five papers this information was not necessary due to their experiments’ nature.

26

An advantage of good and widely available simulators would be to allow I/O experiments
which are less subject to variability. Although these experiments suffer from noise in the multiple
levels of the I/O stack and hence tend to present high variability, most of the surveyed articles
did not seem to account for this variability. A statistically sound methodology is important so
findings can be reproducible and trusted.

Most of the surveyed publications proposed techniques to improve data access performance.
We have classified these techniques according to the main strategy applied by them, and shown
their representation among the whole set of publications, as well as trends during the years.
Among the most usual strategies for optimization are: collective I/O, requests aggregation and
reordering, I/O scheduling, caching and prefetching, I/O forwarding, data compression, load
balancing, active storage, and data placement.

Some of these techniques were mostly discussed in publications from the first half of the
considered time window, what suggests there is now less research activity on these topics as
before. That is the case of requests aggregation, reordering, collective I/O, and active storage.
It is possible most opportunities with these techniques for the current technologies and systems
were already explored.

We have discussed publications on hybrid storage solutions, where hard disks are still used
for permanent storage, but faster devices with lower capacity (such as SSDs) work as caches or
are used to store performance critical data. When placed at processing nodes or intermediate
I/O nodes, these faster storage devices are often called burst buffers. All publications on this
subject are from the second half of the considered time window. As new non-volatile storage
technologies become more popular, future large-scale architectures are believed to include them.
In the near future, intense research activity is expected to focus on the integration of these
devices in the I/O stack.

The HPC community has been putting some effort into decreasing systems’ energy consump-
tion. This is a central issue because, through current technologies, an exascale machine would
consume more power than what is reasonable [46, 67]. It should also be a concern for parallel
I/O researchers as, although the processing units are responsible for most of the power demand
in typical computational systems, many applications spend most of their time performing I/O
operations [11, 78]. For this reason, increasing the energy efficiency of the I/O subsystem is
also an important step to tackle the energy and power challenge. In the next few years, some
research activity is expected to focus on this issue.

New interconnection technologies for HPC allow for remove direct memory access (RDMA).
RDMA is a technique where one process can directly access other processes’ memory without
involvement of their operating systems [30]. The use of RDMA has the potential to decrease
the negative impact of communication on storage performance and is a possible topic for future
research.

We have also discussed access pattern extraction techniques, most of them focused on provid-
ing information to guide data access optimization techniques. It is clear integrating information
on access patterns into optimization techniques allows for more intelligent customized solutions
which achieve better performance. We have shown most of the proposed techniques work at
client side by interacting with the I/O library. This is a popular approach for optimizations
because at client side it is possible to obtain more information from applications, as this infor-
mation is typically lost through the I/O stack. The studied server side techniques are able to
gather only very simple information, such as I/O arrival rate. Better server-side optimizations
could be achieved by having access to more information on what happens on the application
side. We believe future parallel I/O research should focus on a better integration in the I/O
stack, so all levels have access to information which can be used to customize optimizations and
achieve the best performance.

Reformulations of the I/O stack must also keep the applications developers in mind. Working
with as little input from the user as possible and making I/O libraries easier to use is an important

27

goal so parallel I/O researchers’ findings can improve the quality perceived by all HPC users.
We have discussed some techniques that work to automatically tune and adjust parameters and
calls to improve performance, and this topic is expected to continue to be of great importance
for the field.

Acknowledgments

This research has been partially supported by CAPES-BRAZIL through the project PVEA117-
2013.

References

[1] Samer Al-Kiswany, Abdullah Gharaibeh, and Matei Ripeanu. “GPUs as storage system
accelerators”. In: IEEE Transactions on Parallel and Distributed Systems 24.8 (2013),
pp. 1556–1566. issn: 10459219. eprint: 1202.3669.

[2] Rajeev Balasubramonian et al. “Near-data processing: Insights from a MICRO-46 work-
shop”. In: IEEE Micro 34.4 (2014), pp. 36–42.

[3] Babak Behzad et al. “Taming parallel I/O complexity with auto-tuning”. In: SC ’13 Pro-
ceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis. ACM Press, 2013, pp. 1–12. isbn: 9781450323789. doi: 10.1145/
2503210.2503278.

[4] John Bent et al. “Jitter-free co-processing on a prototype exascale storage stack”. In:
MSST ’12 Proceedings of the IEEE 28th Symposium on Mass Storage Systems and Tech-
nologies. IEEE, 2012, pp. 1–5. isbn: 978-1-4673-1747-4. doi: 10 . 1109 / MSST . 2012 .

6232382.

[5] John Bent et al. “Storage challenges at Los Alamos National Lab”. In: MSST ’12 Pro-
ceedings of the IEEE 28th Symposium on Mass Storage Systems and Technologies. IEEE,
2012, pp. 1–5. isbn: 978-1-4673-1747-4. doi: 10.1109/MSST.2012.6232376.

[6] Tekin Bicer, Jian Yin, and Gagan Agrawal. “Improving I/O Throughput of Scientific
Applications Using Transparent Parallel Compression”. In: CCGRID ’14 Proceedings of
the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
IEEE, 2014, pp. 1–10. isbn: 978-1-4799-2784-5.

[7] Surendra Byna et al. “Parallel I/O, analysis, and visualization of a trillion particle simula-
tion”. In: SC ’12 Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2012, pp. 1–12. isbn: 9781467308069.
doi: 10.1109/SC.2012.92.

[8] Philip Carns et al. “Understanding and improving computational science storage access
through continuous characterization”. In: MSST ’11 Proceedings of the 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies. IEEE, 2011, pp. 1–14. isbn: 978-
1-4577-0427-7.

[9] Philip Carns et al. “Understanding and Improving Computational Science Storage Access
through Continuous Characterization”. In: ACM Transactions on Storage 7.3 (2011),
pp. 1–26. issn: 15533077.

[10] CFS. Lustre: A Scalable, High-Performance File System. Whitepaper. Cluster File Sys-
tems, Inc., 2002. url: http://www.lustre.org/docs/whitepaper.pdf.

28

1202.3669
http://dx.doi.org/10.1145/2503210.2503278
http://dx.doi.org/10.1145/2503210.2503278
http://dx.doi.org/10.1109/MSST.2012.6232382
http://dx.doi.org/10.1109/MSST.2012.6232382
http://dx.doi.org/10.1109/MSST.2012.6232376
http://dx.doi.org/10.1109/SC.2012.92
http://www.lustre.org/docs/whitepaper.pdf

[11] Raghunath Raja Chandrasekar et al. “Power-check: An energy-efficient checkpointing
framework for HPC clusters”. In: Proceedings - IEEE/ACM 15th International Sympo-
sium on Cluster, Cloud, and Grid Computing, CCGrid 2015. IEEE, 2015, pp. 261–270.
isbn: 9781479980062. doi: 10.1109/CCGrid.2015.169.

[12] Yong Chen et al. “Improving Parallel I/O Performance with Data Layout Awareness”.
In: CLUSTER ’10 Proceedings of the 2010 IEEE International Conference on Cluster
Computing. IEEE, 2010, pp. 302–311. isbn: 978-1-4244-8373-0.

[13] Yong Chen et al. “LACIO: A new collective I/O strategy for parallel I/O systems”. In:
IPDPS ’11 Proceedings of the 2011 IEEE International Parallel & Distributed Processing
Symposium. IEEE, 2011, pp. 794–804. isbn: 9780769543857. doi: 10.1109/IPDPS.2011.
79.

[14] Zhuan Chen, Jin Xiong, and Dan Meng. “Replication-based highly available metadata
management for cluster file systems”. In: CLUSTER ’10 Proceedings of the 2010 IEEE In-
ternational Conference on Cluster Computing. IEEE, 2010, pp. 292–301. isbn: 9780769542201.
doi: 10.1109/CLUSTER.2010.34.

[15] P. Corbett et al. “Overview of the MPI-IO parallel I/O interface”. In: Input/Output in
Parallel and Distributed Computer Systems. Ed. by Ravi Jain, John Werth, and James C.
Browne. Vol. 362. The Kluwer International Series in Engineering and Computer Science.
Springer US, 1996, pp. 127–146.

[16] Lauro Beltrão Costa et al. “Supporting storage configuration for I/O intensive workflows”.
In: ICS ’14 Proceedings of the 28th ACM international conference on Supercomputing.
ACM Press, 2014, pp. 191–200. isbn: 9781450326421.

[17] Dong Dai et al. “Two-Choice Randomized Dynamic I/O Scheduler for Object Storage
Systems”. In: SC ’14 Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2014, pp. 635–646. isbn: 978-1-
4799-5500-8. doi: 10.1109/SC.2014.57.

[18] Wei Ding et al. “Compiler-directed file layout optimization for hierarchical storage sys-
tems”. In: SC ’12 Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2012, 41:1–41:11. isbn: 978-1-4673-
0806-9.

[19] DOE. Data Crosscutting Requirements Review. Tech. rep. U.S. Department of Energy,
2013.

[20] DOE. Storage Systems and Input/Output to Support Extreme Scale Science: Report of
the DOE Workshops on Storage Systems and Input/Output. Tech. rep. U.S. Department
of Energy and National Nuclear Security Administration, 2014.

[21] DOE/NNSA. Preliminary Conceptual Design for an Exascale Computing Initiative. Tech.
rep. U.S. Department of Energy and National Nuclear Security Administration, 2014.

[22] Bin Dong et al. “A dynamic and adaptive load balancing strategy for parallel file system
with large-scale I/O servers”. In: Journal of Parallel and Distributed Computing 72.10
(2012), pp. 1254–1268. doi: 10.1016/j.jpdc.2012.05.006.

[23] Matthieu Dorier, Gabriel Antoniu, and Robert Ross. “CALCioM: Mitigating I/O inter-
ference in HPC systems through cross-application coordination”. In: IPDPS ’14 Proceed-
ings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium.
IEEE, 2014, pp. 155–164. isbn: 9780769552071. doi: 10.1109/IPDPS.2014.27.

[24] Matthieu Dorier et al. “Damaris: How to efficiently leverage multicore parallelism to
achieve scalable, jitter-free I/O”. In: CLUSTER ’12 Proceedings of the 2012 IEEE Inter-
national Conference on Cluster Computing. IEEE, 2012, pp. 155–163. isbn: 978-0-7695-
4807-4. doi: 10.1109/CLUSTER.2012.26.

29

http://dx.doi.org/10.1109/CCGrid.2015.169
http://dx.doi.org/10.1109/IPDPS.2011.79
http://dx.doi.org/10.1109/IPDPS.2011.79
http://dx.doi.org/10.1109/CLUSTER.2010.34
http://dx.doi.org/10.1109/SC.2014.57
http://dx.doi.org/10.1016/j.jpdc.2012.05.006
http://dx.doi.org/10.1109/IPDPS.2014.27
http://dx.doi.org/10.1109/CLUSTER.2012.26

[25] Matthieu Dorier et al. “Omnisc’IO: A Grammar-Based Approach to Spatial and Temporal
I/O Patterns Prediction”. In: SC ’14 Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 2014. doi: 10.1109/
SC.2014.56.

[26] Marc Eshel et al. “Panache: A Parallel File System Cache for Global File Access”. In:
FAST ’10 Proceedings of the 8th USENIX conference on File and storage technologies.
USENIX Association, 2010, pp. 1–14.

[27] Rosa Filgueira et al. “Applying Selectively Parallel I/O Compression to Parallel Storage
Systems”. In: Euro-Par 2014 – Parallel Processing. Ed. by Fernando Silva, Inês Dutra,
and Vitor Santos Costa. Vol. 8632. Lecture Notes in Computer Science. Springer Inter-
national Publishing, 2014, pp. 282–293.

[28] W. Frings et al. “Massively parallel loading”. In: Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing. ICS ’13. ACM Press,
2013, pp. 389–398. isbn: 9781450321303.

[29] Rong Ge, Xizhou Feng, and Xian He Sun. “SERA-IO: Integrating energy consciousness
into parallel I/O middleware”. In: CCGRID ’12 Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE, 2012, pp. 204–
211. isbn: 9780769546919. doi: 10.1109/CCGrid.2012.39.

[30] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. “Enabling highly-scalable re-
mote memory access programming with MPI-3 one sided”. In: Proceedings of the 22nd In-
ternational Symposium on High-performance Parallel and Distributed Computing. ACM
Press, 2013, pp. 1–12. doi: 10.3233/SPR-140383.

[31] S. Ghemawat, H. Gobioff, and S. T. Leung. “The Google file system”. In: ACM SIGOPS
Operating Systems Review 37.5 (2003), p. 43.

[32] Jun He, Xian-He Sun, and Rajeev Thakur. “KNOWAC: I/O Prefetch via Accumulated
Knowledge”. In: 2012 IEEE International Conference on Cluster Computing. IEEE, 2012,
pp. 429–437. isbn: 978-0-7695-4807-4.

[33] Jun He et al. “I/O Acceleration with Pattern Detection”. In: Proceedings of the 22nd In-
ternational Symposium on High-performance Parallel and Distributed Computing. HPDC
’13. ACM Press, 2013, pp. 25–36. isbn: 978-1-4503-1910-2.

[34] Shuibing He et al. “A cost-aware region-level data placement scheme for hybrid parallel
I/O systems”. In: CLUSTER ’13 Proceedings of the 2013 IEEE International Conference
on Cluster Computing. IEEE, 2013, pp. 1–8. isbn: 978-1-4799-0898-1.

[35] Robert Henschel et al. “Demonstrating Lustre over a 100Gbps wide area network of
3,500km”. In: SC ’12 Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2012, 6:1–6:8. isbn: 978-1-4673-
0806-9.

[36] Yu Hua, Yifeng Zhu, and Hong Jiang. “Supporting scalable and adaptive metadata man-
agement in ultralarge-scale file systems”. In: IEEE Trans. on Parallel and Distributed
Systems 22.4 (2011), pp. 580–593. doi: 10.1109/TPDS.2010.116.

[37] Thomas Ilsche et al. “Enabling event tracing at leadership-class scale through I/O for-
warding middleware”. In: Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing. HPDC ’12. ACM, 2012, pp. 49–60.
isbn: 9781450308052.

[38] Florin Isaila et al. “Design and evaluation of multiple-level data staging for blue gene sys-
tems”. In: IEEE Transactions on Parallel and Distributed Systems 22.6 (2011), pp. 946–
959. doi: 10.1109/TPDS.2010.127.

30

http://dx.doi.org/10.1109/SC.2014.56
http://dx.doi.org/10.1109/SC.2014.56
http://dx.doi.org/10.1109/CCGrid.2012.39
http://dx.doi.org/10.3233/SPR-140383
http://dx.doi.org/10.1109/TPDS.2010.116
http://dx.doi.org/10.1109/TPDS.2010.127

[39] Tanzima Islam et al. “McrEngine: A scalable checkpointing system using data-aware
aggregation and compression”. In: SC ’12 Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–11.
isbn: 9781467308069. doi: 10.3233/SPR-130371.

[40] John Jenkins et al. “Byte-precision level of detail processing for variable precision analyt-
ics”. In: SC ’12 Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2012, pp. 1–11. isbn: 9781467308069.
doi: 10.1109/SC.2012.26.

[41] Myoungsoo Jung et al. “Triple-A: A Non-SSD Based Autonomic All-Flash Array for High
Performance Storage Systems”. In: Proceedings of the 19th international conference on
Architectural support for programming languages and operating systems - ASPLOS ’14.
ACM Press, 2014, pp. 441–454. isbn: 9781450323055.

[42] Mahmut Kandemir et al. “Computation mapping for multi-level storage cache hierar-
chies”. In: Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing. HPDC ’10. ACM Press, 2010, pp. 179–190. isbn: 9781605589428.

[43] Mahmut Kandemir et al. “On urgency of I/O operations”. In: CCGRID ’12 Proceedings
of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting. IEEE, 2012, pp. 188–195. isbn: 9780769546919. doi: 10.1109/CCGrid.2012.40.

[44] Michael P. Kasick et al. “Black-box problem diagnosis in parallel file systems”. In: FAST
’10 Proceedings of the 8th USENIX conference on File and storage technologies. USENIX
Association, 2010, pp. 1–14.

[45] Jaehong Kim et al. “Parameter-aware I/O management for solid state disks (SSDs)”. In:
IEEE Transactions on Computers 61.5 (2012), pp. 636–649.

[46] P. Kogge et al. Exascale Computing Study: Technology Challenges in achieving Exascale
Systems. Tech. rep. Defense Advanced Research Projects Agency (DARPA IPTO), 2008.

[47] Sidharth Kumar et al. “Characterization and modeling of PIDX parallel I/O for perfor-
mance optimization”. In: SC ’13 Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. ACM Press, 2013, pp. 1–12.
isbn: 9781450323789. doi: 10.1145/2503210.2503252.

[48] Sidharth Kumar et al. “Efficient data restructuring and aggregation for I/O acceleration
in PIDX”. In: SC ’12 Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–11. isbn: 978-1-4673-
0806-9.

[49] Sidharth Kumar et al. “PIDX: Efficient parallel I/O for multi-resolution multi-dimensional
scientific datasets”. In: CLUSTER ’11 Proceedings of the 2011 IEEE International Con-
ference on Cluster Computing. IEEE, 2011, pp. 103–111. isbn: 9780769545165. doi: 10.
1109/CLUSTER.2011.19.

[50] Chih-Song Kuo et al. “How file access patterns influence interference among cluster ap-
plications”. In: CLUSTER ’14 Proceedings of the 2014 IEEE International Conference
on Cluster Computing. IEEE, 2014, pp. 185–193. isbn: 978-1-4799-5548-0.

[51] Jharrod LaFon, Satyajayant Misra, and Jon Bringhurst. “On distributed file tree walk of
parallel file systems”. In: SC ’12 Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis. IEEE, 2012, 87:1–87:11. isbn:
9781467308069. doi: 10.1109/SC.2012.82.

[52] Sriram Lakshminarasimhan et al. “Scalable in situ scientific data encoding for analytical
query processing”. In: HPDC ’13 Proceedings of the 22nd international symposium on
High-performance parallel and distributed computing. ACM, 2013, pp. 1–12. isbn: 978-1-
4503-1910-2.

31

http://dx.doi.org/10.3233/SPR-130371
http://dx.doi.org/10.1109/SC.2012.26
http://dx.doi.org/10.1109/CCGrid.2012.40
http://dx.doi.org/10.1145/2503210.2503252
http://dx.doi.org/10.1109/CLUSTER.2011.19
http://dx.doi.org/10.1109/CLUSTER.2011.19
http://dx.doi.org/10.1109/SC.2012.82

[53] Rob Latham et al. “A Next-Generation Parallel File System for Linux Clusters”. In:
LinuxWorld Magazine 2.1 (2004), pp. 1–11.

[54] Jianwei Li et al. “Parallel netCDF: A High-Performance Scientific I/O Interface”. In:
Supercomputing, 2003 ACM/IEEE Conference. SC ’03. 2003, pp. 39–50. isbn: 1-58113-
695-1.

[55] Wei-keng Liao. “Design and Evaluation of MPI File Domain Partitioning Methods under
Extent-Based File Locking Protocol”. In: IEEE Transactions on Parallel and Distributed
Systems 22.2 (2011), pp. 260–272. issn: 1045-9219.

[56] Heshan Lin et al. “Coordinating Computation and I/O in Massively Parallel Sequence
Search”. In: IEEE Transactions on Parallel and Distributed Systems 22.4 (2011), pp. 529–
543. issn: 1045-9219.

[57] Jialin Liu, Yong Chen, and Yu Zhuang. “Hierarchical I/O scheduling for collective I/O”.
In: Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE, 2013, pp. 211–218. isbn: 978-0-7695-4996-5. doi: 10 . 1109 /

CCGrid.2013.30.

[58] Ning Liu et al. “On the role of burst buffers in leadership-class storage systems”. In: MSST
’12 Proceedings of the IEEE 28th Symposium on Mass Storage Systems and Technologies.
IEEE, 2012, pp. 1–11. isbn: 978-1-4673-1747-4.

[59] Yang Liu et al. “Automatic Identification of Application I/O Signatures from Noisy
Server-Side Traces”. In: FAST ’14 Proceedings of the 12th USENIX conference on File
and Storage Technologies. USENIX Association, 2014, pp. 213–228. isbn: ISBN 978-1-
931971-08-9.

[60] Yonggang Liu et al. “On the design and implementation of a simulator for parallel
file system research”. In: MSST ’13 Proceedings of the IEEE 29th Symposium on Mass
Storage Systems and Technologies. IEEE, 2013, pp. 1–5. isbn: 978-1-4799-0218-7. doi:
10.1109/MSST.2013.6558438.

[61] Jay Lofstead and Robert Ross. “Insights for exascale IO APIs from building a petas-
cale IO API”. In: SC ’13 Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. ACM Press, 2013, pp. 1–12. isbn:
9781450323789. doi: 10.1145/2503210.2503238.

[62] Jay Lofstead et al. “Managing Variability in the IO Performance of Petascale Storage
Systems”. In: SC ’10 Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 2010, pp. 1–12.
isbn: 978-1-4244-7557-5.

[63] Jay Lofstead et al. “Six Degrees of Scientific Data: Reading Patterns for Extreme Scale
Science IO”. In: Proceedings of the 20th international symposium on High performance
distributed computing. HPDC ’11. ACM, 2011, pp. 49–60.

[64] Jeremy Logan et al. “Understanding I/O Performance Using I/O Skeletal Applications”.
In: Euro-Par 2012 – Parallel Processing. Ed. by Christos Kaklamanis, Theodore Pa-
patheodorou, and Paul G. Spirakis. Vol. 7484. Lecture Notes in Computer Science.
Springer, 2012, pp. 77–88. doi: 10.1007/978-3-642-32820-6_10.

[65] Yin Lu et al. “Revealing applications’ access pattern in collective I/O for cache manage-
ment”. In: Proceedings of the 28th ACM International Conference on Supercomputing.
ICS ’14. ACM Press, 2014, pp. 181–190. isbn: 9781450326421.

[66] Youyou Lu et al. “Accelerating Distributed Updates with Asynchronous Ordered Writes
in a Parallel File System”. In: CLUSTER ’12 Proceedings of the 2012 IEEE International
Conference on Cluster Computing. IEEE, 2012, pp. 302–310. isbn: 978-0-7695-4807-4.

32

http://dx.doi.org/10.1109/CCGrid.2013.30
http://dx.doi.org/10.1109/CCGrid.2013.30
http://dx.doi.org/10.1109/MSST.2013.6558438
http://dx.doi.org/10.1145/2503210.2503238
http://dx.doi.org/10.1007/978-3-642-32820-6_10

[67] Jason Mair et al. “Quantifying the energy efficiency challenges of achieving exascale
computing”. In: Proceedings - IEEE/ACM 15th Int. Symp. on Cluster, Cloud, and Grid
Computing, CCGrid 2015. IEEE, 2015, pp. 943–950. isbn: 9781479980062. doi: 10.1109/
CCGrid.2015.130.

[68] Adam Manzanares et al. “The power and challenges of transformative I/O”. In: CLUS-
TER ’12 Proceedings of the 2012 IEEE International Conference on Cluster Computing.
IEEE, 2012, pp. 144–154. isbn: 978-0-7695-4807-4. doi: 10.1109/CLUSTER.2012.86.

[69] Robert McLay et al. “A User-Friendly Approach for Tuning Parallel File Operations”.
In: SC ’14 Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2014, pp. 229–236. isbn: 978-1-4799-5500-8.

[70] Dirk Meister et al. “A study on data deduplication in HPC storage systems”. In: SC ’12
Proceedings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis. IEEE, 2012, 7:1–7:11. isbn: 9781467308069. doi: 10.1109/
SC.2012.14.

[71] David Nagle, Denis Serenyi, and Abbie Matthews. “The Panasas ActiveScale Storage
Cluster: Delivering Scalable High Bandwidth Storage”. In: Proceedings of the ACM/IEEE
Conference on Supercomputing. SC ’04. IEEE, 2004, pp. 53–62. isbn: 0-7695-2153-3.

[72] Thorvald Natvig, Anne C. Elster, and Jan Christian Meyer. “Automatic run-time par-
allelization and transformation of I/O”. In: SC ’10 Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2010, pp. 1–10. isbn: 9781424475575. doi: 10.1109/SC.2010.11.

[73] Arifa Nisar, Wei-keng Liao, and Alok Choudhary. “Delegation-Based I/O Mechanism for
High Performance Computing Systems”. In: IEEE Trans. on Parallel and Distributed
Systems 23.2 (2012), pp. 271–279. issn: 1045-9219.

[74] Kazuki Ohta et al. “Optimization techniques at the I/O forwarding layer”. In: CLUSTER
’10 Proceedings of the 2010 IEEE International Conference on Cluster Computing. IEEE,
2010, pp. 312–321. isbn: 9780769542201. doi: 10.1109/CLUSTER.2010.36.

[75] Ron Oldfield et al. “Evaluation of methods to integrate analysis into a large-scale shock
shock physics code”. In: Proceedings of the 28th ACM International Conference on Su-
percomputing. ICS ’14. ACM, 2014, pp. 83–92. isbn: 9781450326421.

[76] Sarp Oral et al. “Best Practices and Lessons Learned from Deploying and Operating
Large-Scale Data-Centric Parallel File Systems”. In: SC ’14 Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2014, pp. 217–228. isbn: 9781479955008. doi: 10.1109/SC.2014.23.

[77] Sarp Oral et al. “Efficient object storage journaling in a distributed parallel file system”.
In: FAST ’10 Proceedings of the 8th USENIX conference on File and storage technologies.
USENIX Association, 2010, pp. 1–12.

[78] Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. “A Survey on Tech-
niques for Improving the Energy Efficiency of Large Scale Distributed Systems”. In: ACM
Computing Surveys (2013), pp. 1–35. doi: 10.1145/2532637.

[79] Jiaxin Ou et al. “EDM: An Endurance-Aware Data Migration Scheme for Load Balancing
in SSD Storage Clusters”. In: IPDPS ’14 Proceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium. IEEE, 2014, pp. 787–796. isbn: 978-1-
4799-3800-1. doi: 10.1109/IPDPS.2014.86.

[80] Swapnil Patil and Gregory R. Ganger. “Scale and Concurrency of GIGA+: File system
directories with Millions of files”. In: FAST ’11 Proceedings of the 9th USENIX conference
on File and Storage Technologies. USENIX Association, 2011, pp. 1–14.

33

http://dx.doi.org/10.1109/CCGrid.2015.130
http://dx.doi.org/10.1109/CCGrid.2015.130
http://dx.doi.org/10.1109/CLUSTER.2012.86
http://dx.doi.org/10.1109/SC.2012.14
http://dx.doi.org/10.1109/SC.2012.14
http://dx.doi.org/10.1109/SC.2010.11
http://dx.doi.org/10.1109/CLUSTER.2010.36
http://dx.doi.org/10.1109/SC.2014.23
http://dx.doi.org/10.1145/2532637
http://dx.doi.org/10.1109/IPDPS.2014.86

[81] Christina M. Patrick et al. “Cashing in on hints for better prefetching and caching
in PVFS and MPI-IO”. In: Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing - HPDC ’10. ACM, 2010, pp. 191–202. isbn:
9781605589428.

[82] David A. Patterson and John L. Hennessy. Computer organization and design: the hard-
ware/software interface. Newnes, 2013.

[83] Juan Piernas-Canovas and Jarek Nieplocha. “Implementation and evaluation of active
storage in modern parallel file systems”. In: Parallel Computing 36.1 (2010), pp. 26–47.
doi: 10.1016/j.parco.2009.11.002.

[84] Ramya Prabhakar et al. “Adaptive Multi-level Cache Allocation in Distributed Storage
Architectures”. In: ICS ’10 Proceedings of the 24th ACM International Conference on
Supercomputing. ACM Press, 2010, pp. 211–221. isbn: 9781450300186.

[85] Yingjin Qian et al. “Dynamic I/O congestion control in scalable lustre file system”.
In: MSST ’13 Proceedings of the IEEE 29th Symposium on Mass Storage Systems and
Technologies. IEEE, 2013, pp. 1–5. isbn: 978-1-4799-0218-7.

[86] Raghunath Rajachandrasekar et al. “A 1 PB/s file system to checkpoint three million
MPI tasks”. In: HPDC ’13 Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing. ACM, 2013, pp. 143–154. isbn: 978-1-
4503-1910-2.

[87] Kai Ren et al. “IndexFS: Scaling File System Metadata Performance with Stateless
Caching and Bulk Insertion”. In: SC ’14 Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 2014, pp. 237–
248. isbn: 978-1-4799-5500-8.

[88] Eric Schendel et al. “ISOBAR hybrid compression-I/O interleaving for large-scale par-
allel I/O optimization”. In: Proceedings of the 21st International Symposium on High-
Performance Parallel and Distributed Computing. HPDC ’12. ACM Press, 2012, pp. 61–
72. isbn: 9781450308052.

[89] Frank Schmuck and Roger Haskin. “GPFS: A Shared-Disk File System for Large Com-
puting Clusters”. In: FAST ’02 Proceedings of the First USENIX Conference on File and
Storage Technologies. USENIX Association, 2002, pp. 231–244. isbn: 1-880446-03-0.

[90] Seetharami Seelam et al. “Masking I/O Latency using Application Level I/O Caching
and Prefetching on Blue Gene Systems”. In: IPDPS ’10 Proceedings of the IEEE Inter-
national Symposium on Parallel & Distributed Processing. IEEE, 2010, pp. 1–12. isbn:
9781424464432. doi: 10.1109/IPDPS.2010.5470438.

[91] Carmen Sigovan et al. “A Visual Network Analysis Method for Large-Scale Parallel I/O
Systems”. In: IPDPS ’13 Proceedings of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing. IEEE, 2013, pp. 308–319. isbn: 978-1-4673-6066-1.

[92] Seung Woo Son et al. “Enabling Active Storage on Parallel I/O Software Stacks”. In:
Proceedings of the 26th Symposium on Mass Storage Systems and Technologies. MSST
’10. IEEE, 2010, pp. 1–12. isbn: 978-1-4244-7152-2. doi: 10.1109/MSST.2010.5496981.

[93] Huaiming Song et al. “A cost-intelligent application-specific data layout scheme for par-
allel file systems”. In: Proceedings of the 20th International Symposium on High Perfor-
mance Distributed Computing. HPDC ’11. ACM, 2011, pp. 37–48.

[94] Huaiming Song et al. “A Segment-Level Adaptive Data Layout Scheme for Improved Load
Balance in Parallel File Systems”. In: Proceedings of the 11th International Symposium on
Cluster, Cloud and Grid Computing. IEEE, 2011, pp. 414–423. isbn: 978-1-4577-0129-0.

34

http://dx.doi.org/10.1016/j.parco.2009.11.002
http://dx.doi.org/10.1109/IPDPS.2010.5470438
http://dx.doi.org/10.1109/MSST.2010.5496981

[95] Huaiming Song et al. “Server-side I/O coordination for parallel file systems”. In: SC ’11
Proceedings of 2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis. ACM Press, 2011. isbn: 9781450307710. doi: 10.1145/
2063384.2063407.

[96] Pei-lun Suei, Mi-yen Yeh, and Tei-wei Kuo. “Endurance-Aware Flash-Cache Management
for Storage Servers”. In: IEEE Transactions on Computers 63.10 (2014), pp. 2416–2430.
doi: 10.1109/TC.2013.119.

[97] Houjun Tang et al. “Improving Read Performance with Online Access Pattern Analysis
and Prefetching”. In: Euro-Par 2014 – Parallel Processing. Ed. by F. Silva, I. Dutra,
and V. S. Costa. Vol. 8632. Lecture Notes in Computer Science. Springer International
Publishing, 2014, pp. 246–257. doi: 10.1007/978-3-319-09873-9_21.

[98] Wittawat Tantisiriroj et al. “On the duality of data-intensive file system design: recon-
ciling HDFS and PVFS”. In: SC ’11 Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM Press, 2011.

[99] Rajeev Thakur, William Gropp, and Ewing Lusk. “Data sieving and collective I/O in
ROMIO”. In: FRONTIERS ’99 Proceedings of the 7th Symposium on the Frontiers of
Massively Parallel Computation. IEEE, 1999, pp. 182–189. isbn: 0-7695-0087-0.

[100] The HDF Group. HDF5 - Hierarchical Data Format, version 5. 1997-2016.

[101] Viet Trung Tran et al. “Efficient support for MPI-I/O atomicity based on versioning”.
In: CCGRID ’11 Proceedings of the 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. IEEE, 2011, pp. 514–523. isbn: 9780769543956. doi:
10.1109/CCGrid.2011.60.

[102] Andrew Uselton et al. “Parallel I/O performance: From events to ensembles”. In: IPDPS
’10 Proceedings of the IEEE International Symposium on Parallel & Distributed Process-
ing. IEEE, 2010, pp. 1–11. isbn: 978-1-4244-6442-5.

[103] Venkatram Vishwanath et al. “Accelerating I/O Forwarding in IBM Blue Gene/P Sys-
tems”. In: SC ’10 Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 2010. doi: 10.1109/
SC.2010.8.

[104] Venkatram Vishwanath et al. “Topology-aware data movement and staging for I/O accel-
eration on Blue Gene/P supercomputing systems”. In: SC ’11 Proceedings of 2011 Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis.
ACM Press, 2011, pp. 1–11. isbn: 978-1-4503-0771-0. doi: 10.1145/2063384.2063409.

[105] Zhixiang Wang et al. “Iteration based collective I/O strategy for Parallel I/O systems”.
In: CCGRID ’14 Proceedings of the 14th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing. IEEE, 2014, pp. 287–294. isbn: 9781479927838. doi:
10.1109/CCGrid.2014.61.

[106] Brent Welch and Geoffrey Noer. “Optimizing a hybrid SSD/HDD HPC storage system
based on file size distributions”. In: Proceedings of the 29th Symp. on Mass Storage
Systems and Technologies. MSST ’10. IEEE, 2013, pp. 1–12. isbn: 978-1-4799-0218-7.
doi: 10.1109/MSST.2013.6558449.

[107] Bing Xie et al. “Characterizing output bottlenecks in a supercomputer”. In: SC ’12 Pro-
ceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE, 2012, 8:1–8:11. isbn: 978-1-4673-0806-9.

[108] Jin Xiong et al. “Metadata distribution and consistency techniques for large-scale cluster
file systems”. In: IEEE Transactions on Parallel and Distributed Systems 22.5 (2011),
pp. 803–816. doi: 10.1109/TPDS.2010.154.

35

http://dx.doi.org/10.1145/2063384.2063407
http://dx.doi.org/10.1145/2063384.2063407
http://dx.doi.org/10.1109/TC.2013.119
http://dx.doi.org/10.1007/978-3-319-09873-9_21
http://dx.doi.org/10.1109/CCGrid.2011.60
http://dx.doi.org/10.1109/SC.2010.8
http://dx.doi.org/10.1109/SC.2010.8
http://dx.doi.org/10.1145/2063384.2063409
http://dx.doi.org/10.1109/CCGrid.2014.61
http://dx.doi.org/10.1109/MSST.2013.6558449
http://dx.doi.org/10.1109/TPDS.2010.154

[109] Weixia Xu et al. “Hybrid hierarchy storage system in MilkyWay-2 supercomputer”. In:
Frontiers of Computer Science 8.3 (2014), pp. 367–377.

[110] Yiqi Xu et al. “vPFS: Bandwidth virtualization of parallel storage systems”. In: MSST
’12 Proceedings of the IEEE 28th Symposium on Mass Storage Systems and Technologies.
IEEE, 2012, pp. 1–12. isbn: 978-1-4673-1747-4.

[111] Letian Yi et al. “Design and Implementation of an Asymmetric Block-Based Parallel
File System”. In: IEEE Transactions on Computers 63.7 (2014), pp. 1723–1735. issn:
0018-9340. doi: 10.1109/TC.2013.6.

[112] Yanlong Yin et al. “Boosting application-specific parallel I/O optimization using IOSIG”.
In: CCGRID ’12 Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. IEEE, 2012, pp. 196–203. isbn: 9780769546919. doi:
10.1109/CCGrid.2012.136.

[113] Yanlong Yin et al. “Pattern-Direct and Layout-Aware Replication Scheme for Parallel I/O
Systems”. In: IPDPS ’13 Proceedings of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing. IEEE, 2013, pp. 345–356. isbn: 978-1-4673-6066-1.

[114] Yongen Yu et al. “A Transparent Collective I/O Implementation”. In: IPDPS ’13 Pro-
ceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, 2013, pp. 297–307. isbn: 978-1-4673-6066-1.

[115] Yongen Yu et al. “Improving parallel IO performance of cell-based AMR cosmology ap-
plications”. In: IPDPS ’12 Proceedings of the 2012 IEEE International Symposium on
Parallel and Distributed Processing. IEEE, 2012, pp. 933–944. isbn: 9780769546759.

[116] Xuechen Zhang, Kei Davis, and Song Jiang. “IOrchestrator: Improving the performance
of multi-node I/O systems via inter-server coordination”. In: SC ’10 Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis. IEEE, 2010. isbn: 9781424475575. doi: 10.1109/SC.2010.30.

[117] Xuechen Zhang, Kei Davis, and Song Jiang. “ITransformer: Using SSD to improve disk
scheduling for high-performance I/O”. In: IPDPS ’12 Proceedings of the 2012 IEEE In-
ternational Symposium on Parallel and Distributed Processing. IEEE, 2012, pp. 715–726.
isbn: 9780769546759.

[118] Xuechen Zhang, Kei Davis, and Song Jiang. “QoS Support for End Users of I / O-intensive
Applications using Shared Storage Systems”. In: SC ’11 Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis. ACM
Press, 2011. isbn: 9781450307710. doi: 10.1145/2063384.2063408.

[119] Xuechen Zhang and Song Jiang. “InterferenceRemoval: Removing interference of disk
access for MPI programs through data replication”. In: Proceedings of the 24th ACM
International Conference on Supercomputing. ICS ’10. ACM Press, 2010, pp. 223–232.
isbn: 9781450300186.

[120] Xuechen Zhang et al. “iBridge: Improving Unaligned Parallel File Access with Solid-State
Drives”. In: IPDPS ’13 Proceedings of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing. IEEE, 2013, pp. 381–392. isbn: 978-1-4673-6066-1.
doi: 10.1109/IPDPS.2013.21.

[121] Zhao Zhang et al. “Design and analysis of data management in scalable parallel scripting”.
In: SC ’12 Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 2012, 85:1–85:11. isbn: 978-1-4673-0804-5.

[122] Zhao Zhang et al. “MTC envelope: defining the capability of large scale computers in
the context of parallel scripting applications”. In: HPDC ’13 Proceedings of the 22nd
international symposium on High-performance parallel and distributed computing. ACM
Press, 2013, pp. 37–48. isbn: 978-1-4503-1910-2.

36

http://dx.doi.org/10.1109/TC.2013.6
http://dx.doi.org/10.1109/CCGrid.2012.136
http://dx.doi.org/10.1109/SC.2010.30
http://dx.doi.org/10.1145/2063384.2063408
http://dx.doi.org/10.1109/IPDPS.2013.21

[123] Dongfang Zhao, Kan Qiao, and Ioan Raicu. “HyCache+: Towards scalable high-performance
caching middleware for Parallel file systems”. In: CCGRID ’14 Proceedings of the 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE,
2014, pp. 267–276. isbn: 9781479927838.

[124] Hongbo Zou et al. “A source-aware interrupt scheduling for modern parallel I/O systems”.
In: IPDPS ’12 Proceedings of the 2012 IEEE International Symposium on Parallel and
Distributed Processing. IEEE, 2012, pp. 156–166. isbn: 9780769546759.

[125] Qiang Zou, Yifeng Zhu, and Dan Feng. “A Study of Self-similarity in Parallel I/O Work-
loads”. In: MSST ’10 Proceedings of the IEEE 26th Symposium on Mass Storage Systems
and Technologies. IEEE, 2010, pp. 1–6. isbn: 978-1-4244-7152-2. doi: 10.1109/MSST.
2010.5496978.

37

http://dx.doi.org/10.1109/MSST.2010.5496978
http://dx.doi.org/10.1109/MSST.2010.5496978

	Introduction
	A Survey on Parallel I/O for HPC
	The Parallel I/O Stack
	Storage Devices
	Parallel File Systems
	Popular parallel file systems

	The I/O Forwarding Layer
	PFS Clients
	I/O Libraries

	Surveyed Data

	Techniques to Improve Parallel I/O Performance
	Optimizations for Metadata Access and Small Files
	Requests Aggregation and Reordering
	Caching and Prefetching
	I/O Scheduling
	Other Techniques
	Surveyed Data
	Discussion

	Applications Characterization and Performance Modeling
	Access Pattern Extraction
	Runtime detection
	Hybrid runtime + postmortem approaches
	Postmortem analysis

	Performance Modeling
	Discussion

	Practical Aspects of Parallel I/O Research
	Conclusion

