Numerical Determination of Anomalies in Multifrequency Electrical Impedance Tomography

Abstract : The multifrequency electrical impedance tomography consists in retrieving the conductivity distribution of a sample by injecting a finite number of currents with multiple frequencies. In this paper we consider the case where the conductivity distribution is piecewise constant, takes a constant value outside a single smooth anomaly, and a frequency dependent function inside the anomaly itself. Using an original spectral decomposition of the solution of the forward conductivity problem in terms of Poincaré variational eigenelements, we retrieve the Cauchy data corresponding to the extreme case of a perfect conductor, and the conductivity profile. We then reconstruct the anomaly from the Cauchy data. The numerical experiments are conducted using gradient descent optimization algorithms.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01509354
Contributeur : Faouzi Triki <>
Soumis le : lundi 17 avril 2017 - 07:19:30
Dernière modification le : mardi 25 avril 2017 - 16:32:53

Fichier

ATT_V2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01509354, version 1

Citation

Habib Ammari, Faouzi Triki, Chun-Hsiang Tsou. Numerical Determination of Anomalies in Multifrequency Electrical Impedance Tomography. 2017. <hal-01509354>

Partager

Métriques

Consultations de
la notice

245

Téléchargements du document

26