A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM Computing Surveys, vol.31, issue.3, 1999.
DOI : 10.1145/331499.331504

G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and Applications, -SIAM Series on Statistics and Applied Probability. SIAM
DOI : 10.1137/1.9780898718348

D. Cremers, M. Rousson, and R. Deriche, A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape, International Journal of Computer Vision, vol.18, issue.9, pp.195-215, 2007.
DOI : 10.1090/conm/313/05378

L. Bar, T. F. Chan, G. Chung, M. Jung, N. Kiryati et al., Mumford and Shah model and its applications to image segmentation and image restoration, Handbook of Mathematical Methods in Imaging, O. Scherzer, 2015.

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.577-685, 1989.
DOI : 10.1109/TPAMI.1984.4767596

L. Condat, Discrete Total Variation: New Definition and Minimization, SIAM Journal on Imaging Sciences, vol.10, issue.3, pp.1258-1290, 2017.
DOI : 10.1137/16M1075247

URL : https://hal.archives-ouvertes.fr/hal-01309685

A. Chambolle, D. Cremers, and T. Pock, A Convex Approach to Minimal Partitions, SIAM Journal on Imaging Sciences, vol.5, issue.4, pp.1113-1158, 2012.
DOI : 10.1137/110856733

URL : https://hal.archives-ouvertes.fr/hal-00630947

N. Pustelnik and L. Condat, Proximity Operator of a Sum of Functions; Application to Depth Map Estimation, IEEE Signal Processing Letters, vol.24, issue.12, pp.1827-1831, 2017.
DOI : 10.1109/LSP.2017.2752261

URL : https://hal.archives-ouvertes.fr/hal-01570182

J. Yuan, E. Bae, X. Tai, and Y. Boykov, A Continuous Max-Flow Approach to Potts Model, Proc. of ECCV, pp.379-392, 2010.
DOI : 10.1007/978-3-642-15567-3_28

C. Zach, C. Häne, and M. Pollefeys, What Is Optimized in Convex Relaxations for Multilabel Problems: Connecting Discrete and Continuously Inspired MAP Inference, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.1, pp.157-170, 2014.
DOI : 10.1109/TPAMI.2013.105

S. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory, vol.28, issue.2, pp.129-136, 1982.
DOI : 10.1109/TIT.1982.1056489

E. S. Brown, T. F. Chan, and X. Bresson, Completely Convex Formulation of the Chan-Vese Image Segmentation Model, International Journal of Computer Vision, vol.26, issue.2, pp.103-121, 2012.
DOI : 10.1007/BF02592050

E. Bae, J. Yuan, and X. Tai, Simultaneous convex optimization of regions and region parameters in image segmentation models, " in Innovations for Shape Analysis: Models and Algorithms, pp.421-438, 2013.

E. Bae and X. Tai, Efficient Global Minimization Methods for Image Segmentation Models with Four Regions, Journal of Mathematical Imaging and Vision, vol.4, issue.1, pp.71-97, 2015.
DOI : 10.1007/BF00927673

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, Global Solutions of Variational Models with Convex Regularization, SIAM Journal on Imaging Sciences, vol.3, issue.4, pp.1122-1145, 2010.
DOI : 10.1137/090757617

L. Condat, Fast projection onto the simplex and the $$\pmb {l}_\mathbf {1}$$ l 1 ball, Mathematical Programming, vol.31, issue.3, pp.575-585, 2016.
DOI : 10.1137/080714488

A. Quattoni, X. Carreras, M. Collins, and T. Darrell, An efficient projection for l1,? regularization, Proc. of ICML, pp.857-864, 2009.

H. H. Bauschke and P. L. , Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011.

J. Yuan, E. Bae, Y. Boykov, and X. Tai, A Continuous Max-Flow Approach to Minimal Partitions with Label Cost Prior, Proc. of Scale Space and Variational Methods in Computer Vision (SSVM), pp.279-290, 2011.
DOI : 10.1109/34.537343

A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.120-145, 2011.
DOI : 10.1007/978-3-540-74936-3_22

URL : https://hal.archives-ouvertes.fr/hal-00490826

L. Condat, A Primal???Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms, Journal of Optimization Theory and Applications, vol.23, issue.1???2, pp.460-479, 2013.
DOI : 10.1081/NFA-120003674

URL : https://hal.archives-ouvertes.fr/hal-00609728

J. Reese, Solution methods for thep-median problem: An annotated bibliography, Networks, vol.21, issue.3, pp.125-142, 2006.
DOI : 10.1007/978-1-4615-4567-5_6

M. L. Balinski, On finding integer solutions to linear programs, Proceedings of the I.B.M. Scientific Computing Symposium on Combinatorial Problems, pp.225-248, 1966.

S. Li and O. Svensson, Approximating k-median via pseudo-approximation, Proc. of the forty-fifth annual ACM symposium on Theory of computing (STOC'13), pp.901-910, 2013.
DOI : 10.1145/2488608.2488723

URL : http://arxiv.org/pdf/1211.0243.pdf

M. Van-der-laan, K. Pollard, and J. Bryan, A new partitioning around medoids algorithm, Journal of Statistical Computation and Simulation, vol.73, issue.8, pp.575-584, 2003.
DOI : 10.1080/0094965031000136012

J. Peng and Y. Xia, A New Theoretical Framework for K-Means-Type Clustering, Foundations and Advances in Data Mining, pp.79-96, 2005.
DOI : 10.1007/11362197_4

J. Peng and Y. Wei, Approximating K???means???type Clustering via Semidefinite Programming, SIAM Journal on Optimization, vol.18, issue.1, pp.186-205, 2007.
DOI : 10.1137/050641983

URL : http://www.cas.mcmaster.ca/~oplab/publication/report/2005-5.pdf

P. Awasthi, A. S. Bandeira, M. Charikar, R. Krishnaswamy, S. Villar et al., Relax, No Need to Round, Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS '15, pp.191-200, 2015.
DOI : 10.1137/070697835

K. Pelckmans, J. De-brabanter, J. A. Suykens, B. De, and . Moor, Convex clustering shrinkage, Proc. of Workshop on Statistics and Optimization of Clustering Workshop (PASCAL), 2005.

T. Hocking, J. Vert, F. Bach, and A. Joulin, Clusterpath: an algorithm for clustering using convex fusion penalties, Proc. of the 28th International Conference on Machine Learning (ICML), pp.745-752, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00591630

F. Lindsten, H. Ohlsson, and L. Ljung, Clustering using sum-of-norms regularization: With application to particle filter output computation, 2011 IEEE Statistical Signal Processing Workshop (SSP), pp.201-204, 2011.
DOI : 10.1109/SSP.2011.5967659

C. Zhu, H. Xu, C. Leng, and S. Yan, Convex optimization procedure for clustering: theoretical revisit, Proc. of NIPS, pp.1619-1627, 2014.

E. C. Chi and K. Lange, Splitting Methods for Convex Clustering, Journal of Computational and Graphical Statistics, vol.2, issue.4, pp.994-1013, 2015.
DOI : 10.1198/jasa.2010.tm09415

I. Kärkkäinen and P. Fränti, Dynamic local search algorithm for the clustering problem, 2002.

E. S. Barnes and N. J. Sloane, The Optimal Lattice Quantizer in Three Dimensions, SIAM Journal on Algebraic Discrete Methods, vol.4, issue.1, pp.30-41, 1983.
DOI : 10.1137/0604005