Values of globally bounded G-functions

Abstract : In this paper we define and study a filtration (G_s) on the algebra of values at algebraic points of analytic continuations of G-functions: G_s is the set of values at algebraic points in the disk of convergence of all G-functions sum_n a_n z^n for which there exist some positive integers b and c such that d_{s b}^n c^{n+1} a_n is an algebraic integer for any n, where d_n = lcm(1, 2,. .. , n). We study the situation at the boundary of the disk of convergence, and using transfer results from analysis of singularities we deduce that constants in G_s appear in the asymptotic expansion of such a sequence (a_n).
Type de document :
Pré-publication, Document de travail
IF_PREPUB. 2017
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

http://hal.univ-grenoble-alpes.fr/hal-01493550
Contributeur : Tanguy Rivoal <>
Soumis le : mardi 10 octobre 2017 - 19:32:41
Dernière modification le : lundi 6 novembre 2017 - 15:02:02

Fichier

GBvaleurs15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01493550, version 2

Citation

S Fischler, Tanguy Rivoal. Values of globally bounded G-functions. IF_PREPUB. 2017. 〈hal-01493550v2〉

Partager

Métriques

Consultations de
la notice

33

Téléchargements du document

6