A. O. Olivares, T. A. Baker, and R. T. Sauer, Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines, Nature Reviews Microbiology, vol.8, issue.1, pp.33-44, 2016.
DOI : 10.1371/journal.ppat.1002511

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458636/pdf

R. T. Sauer, T. A. Baker, and . Proteases, AAA+ Proteases: ATP-Fueled Machines of Protein Destruction, Annual Review of Biochemistry, vol.80, issue.1, pp.587-612, 2011.
DOI : 10.1146/annurev-biochem-060408-172623

S. Prakash and A. Matouschek, Protein unfolding in the cell, Trends in Biochemical Sciences, vol.29, issue.11, pp.593-600, 2004.
DOI : 10.1016/j.tibs.2004.09.011

W. Baumeister, J. Walz, F. Zuhl, and E. Seemuller, The Proteasome: Paradigm of a Self-Compartmentalizing Protease, Cell, vol.92, issue.3, pp.367-380, 1998.
DOI : 10.1016/S0092-8674(00)80929-0

A. Ciechanover, Timeline: Proteolysis: from the lysosome to ubiquitin and the proteasome, Nature Reviews Molecular Cell Biology, vol.1, issue.1, pp.79-86, 2005.
DOI : 10.1152/physrev.00027.2001

A. L. Goldberg, Nobel Committee Tags Ubiquitin for Distinction, Neuron, vol.45, issue.3, pp.339-344, 2005.
DOI : 10.1016/j.neuron.2005.01.019

URL : https://doi.org/10.1016/j.neuron.2005.01.019

P. I. Hanson and S. W. Whiteheart, AAA+ proteins: have engine, will work, Nature Reviews Molecular Cell Biology, vol.87, issue.7, pp.519-529, 2005.
DOI : 10.1074/jbc.274.37.26225

A. Martin, T. A. Baker, and R. T. Sauer, Diverse Pore Loops of the AAA+ ClpX Machine Mediate Unassisted and Adaptor-Dependent Recognition of ssrA-Tagged Substrates, Molecular Cell, vol.29, issue.4, pp.441-450, 2008.
DOI : 10.1016/j.molcel.2008.02.002

A. Martin, T. A. Baker, and R. T. Sauer, Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding, Nature Structural & Molecular Biology, vol.12, issue.11, pp.1147-1151, 2008.
DOI : 10.1016/j.jsb.2006.01.009

Y. Kim, A. Snoberger, J. Schupp, and D. M. Smith, ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function, Nature Communications, vol.22, issue.1, p.8520, 2015.
DOI : 10.1021/bi802198q

URL : http://www.nature.com/articles/ncomms9520.pdf

O. Iosefson, A. R. Nager, T. A. Baker, and R. T. Sauer, Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine, Nature Chemical Biology, vol.11, issue.3, pp.201-206, 2015.
DOI : 10.1073/pnas.0910392106

E. U. Weber-ban, B. G. Reid, A. D. Miranker, and A. L. Horwich, Global unfolding of a substrate protein by the Hsp100 chaperone ClpA, Nature, vol.371, issue.6748, pp.90-93, 1999.
DOI : 10.1038/371614a0

O. Iosefson, A. O. Olivares, T. A. Baker, . Sauer, and T. Robert, Dissection of Axial-Pore Loop Function during Unfolding and Translocation by a AAA+ Proteolytic Machine, Cell Reports, vol.12, issue.6, pp.1032-1041, 2015.
DOI : 10.1016/j.celrep.2015.07.007

V. Baytshtok, T. A. Baker, and R. T. Sauer, Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases, Proceedings of the National Academy of Sciences, vol.112, issue.17, pp.5377-5382, 2015.
DOI : 10.1016/0076-6879(88)56014-7

N. Medalia, Architecture and Molecular Mechanism of PAN, the Archaeal Proteasome Regulatory ATPase, Journal of Biological Chemistry, vol.156, issue.34, pp.22952-22960, 2009.
DOI : 10.1038/35040607

M. E. Matyskiela, G. C. Lander, and A. Martin, Conformational switching of the 26S proteasome enables substrate degradation, Nature Structural & Molecular Biology, vol.263, issue.7, pp.781-788, 2013.
DOI : 10.1016/j.jsb.2006.06.010

S. E. Glynn, A. Martin, A. R. Nager, T. A. Baker, and R. T. Sauer, Structures of Asymmetric ClpX Hexamers Reveal Nucleotide-Dependent Motions in a AAA+ Protein-Unfolding Machine, Cell, vol.139, issue.4, pp.744-756, 2009.
DOI : 10.1016/j.cell.2009.09.034

B. M. Stinson, Nucleotide Binding and Conformational Switching in the Hexameric Ring of a AAA+ Machine, Cell, vol.153, issue.3, pp.628-639, 2013.
DOI : 10.1016/j.cell.2013.03.029

D. I. Svergun, M. H. Koch, P. A. Timmins, and R. P. May, Small Angle X-ray and Neutron Scattering from Solutions of Biological Molecules, 2013.

P. A. Timmins and G. Zaccai, Low resolution structures of biological complexes studied by neutron scattering, European Biophysics Journal, vol.15, issue.5, pp.257-68, 1988.
DOI : 10.1007/BF00256476

B. Jacrot, The study of biological structures by neutron scattering from solution, Reports on Progress in Physics, vol.39, issue.10, pp.911-953, 1976.
DOI : 10.1088/0034-4885/39/10/001

C. D. Putnam, M. Hammel, G. L. Hura, and J. A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution, Quarterly Reviews of Biophysics, vol.52, issue.03, pp.191-285, 2007.
DOI : 10.1016/j.str.2007.02.007

E. A. Sweeny, The Hsp104 N-Terminal Domain Enables Disaggregase Plasticity and Potentiation, Molecular Cell, vol.57, issue.5, pp.836-885, 2015.
DOI : 10.1016/j.molcel.2014.12.021

URL : https://doi.org/10.1016/j.molcel.2014.12.021

D. A. Jacques and J. Trewhella, Small-angle scattering for structural biology-Expanding the frontier while avoiding the pitfalls, Protein Science, vol.394, issue.4, pp.642-657, 2010.
DOI : 10.1016/j.jmb.2009.08.061

N. Benaroudj and A. L. Goldberg, PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone, Nat Cell Biol, vol.2, pp.833-839, 2000.

J. C. Cordova, Stochastic but Highly Coordinated Protein Unfolding and Translocation by the ClpXP Proteolytic Machine, Cell, vol.158, issue.3, pp.647-658, 2014.
DOI : 10.1016/j.cell.2014.05.043

URL : https://doi.org/10.1016/j.cell.2014.05.043

H. Dietz and M. Rief, Exploring the energy landscape of GFP by single-molecule mechanical experiments, Proceedings of the National Academy of Sciences, vol.83, issue.1, pp.16192-16199, 2004.
DOI : 10.1016/S0006-3495(02)75182-5

M. Roessle, Time-resolved small-angle neutron scattering of proteins in solution, Physica B: Condensed Matter, vol.276, issue.278, pp.276-278, 2000.
DOI : 10.1016/S0921-4526(99)01732-9

N. M. Kirby and N. P. Cowieson, 40948 | DOI: 10.1038/srep40948 29 Time-resolved studies of dynamic biomolecules using small angle X-ray scattering, Curr Opin Struct Biol, vol.7, issue.28, pp.41-47, 2014.

M. Sen, The ClpXP Protease Unfolds Substrates Using a Constant Rate of Pulling but Different Gears, Cell, vol.155, issue.3, pp.636-646, 2013.
DOI : 10.1016/j.cell.2013.09.022

N. Benaroudj, P. Zwickl, E. Seemüller, W. Baumeister, A. L. Goldberg et al., ATP Hydrolysis by the Proteasome Regulatory Complex PAN Serves Multiple Functions in Protein Degradation, Hydrolysis by the Proteasome Regulatory Complex PAN Serves Multiple Functions in Protein Degradation, pp.69-78, 2003.
DOI : 10.1016/S1097-2765(02)00775-X

J. A. Kenniston, T. A. Baker, J. M. Fernandez, and R. T. Sauer, Linkage between ATP Consumption and Mechanical Unfolding during the Protein Processing Reactions of an AAA+ Degradation Machine, Cell, vol.114, issue.4, pp.511-520, 2003.
DOI : 10.1016/S0092-8674(03)00612-3

M. Y. Sherman and A. L. Goldberg, Cellular Defenses against Unfolded Proteins, Neuron, vol.29, issue.1, pp.15-32, 2001.
DOI : 10.1016/S0896-6273(01)00177-5

URL : https://doi.org/10.1016/s0896-6273(01)00177-5

J. M. Davies, H. Tsuruta, A. P. May, and W. Weis, Conformational Changes of p97 during Nucleotide Hydrolysis Determined by Small-Angle X-Ray Scattering, Structure, vol.13, issue.2, pp.183-95, 2005.
DOI : 10.1016/j.str.2004.11.014

D. I. Svergun, Protein hydration in solution: Experimental observation by x-ray and neutron scattering, Proceedings of the National Academy of Sciences, vol.46, issue.3, pp.2267-2272, 1998.
DOI : 10.1038/368444a0

URL : http://www.pnas.org/content/95/5/2267.full.pdf

H. S. Kim and F. Gabel, Uniqueness of models from small-angle scattering data: the impact of a hydration shell and complementary NMR restraints, Acta Crystallographica Section D Biological Crystallography, vol.71, issue.1, pp.57-66, 2015.
DOI : 10.1107/S1399004714010372

URL : https://hal.archives-ouvertes.fr/hal-01131169

D. M. Engelman and P. B. Moore, Determination of Quaternary Structure by Small Angle Neutron Scattering, Annual Review of Biophysics and Bioengineering, vol.4, issue.1, pp.219-241, 1975.
DOI : 10.1146/annurev.bb.04.060175.001251

S. Djuranovic, Structure and Activity of the N-Terminal Substrate Recognition Domains in Proteasomal ATPases, Molecular Cell, vol.34, issue.5, pp.580-590, 2009.
DOI : 10.1016/j.molcel.2009.04.030

T. A. Sysoeva, S. Chowdhury, and B. Nixon, Breaking symmetry in multimeric ATPase motors, Cell Cycle, vol.139, issue.10, pp.1509-1519, 2014.
DOI : 10.1016/j.cell.2009.08.043

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.28957?needAccess=true

T. A. Sysoeva, S. Chowdhury, L. Guo, and B. Nixon, Nucleotide-induced asymmetry within ATPase activator ring drives ??54-RNAP interaction and ATP hydrolysis, Genes & Development, vol.27, issue.22, pp.2500-2511, 2013.
DOI : 10.1101/gad.229385.113

D. M. Smith, H. Fraga, C. Reis, G. Kafri, and A. L. Goldberg, ATP Binds to Proteasomal ATPases in Pairs with Distinct Functional Effects, Implying an Ordered Reaction Cycle, Cell, vol.144, issue.4, pp.526-538, 2011.
DOI : 10.1016/j.cell.2011.02.005

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. Koch, and D. I. Svergun, : a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.5, pp.1277-1282, 2003.
DOI : 10.1107/S0021889803012779

E. S. Day, A. D. Capili, C. W. Borysenko, M. Zafari, and A. Whitty, Determining the affinity and stoichiometry of interactions between unmodified proteins in solution using Biacore, Analytical Biochemistry, vol.440, issue.1, pp.96-107, 2013.
DOI : 10.1016/j.ab.2013.05.012

D. I. Svergun, Determination of the regularization parameter in indirect-transform methods using perceptual criteria, Journal of Applied Crystallography, vol.25, issue.4, pp.495-503, 1992.
DOI : 10.1107/S0021889892001663