Positional scoring-based allocation of indivisible goods

Abstract : We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent reports her preferences simply by ranking single goods. Similarly to positional scoring rules in voting, a scoring vector s=(s1,…,sm) consists of m nonincreasing, nonnegative weights, where si is the score of a good assigned to an agent who ranks it in position i. The global score of an allocation for an agent is the sum of the scores of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores of all agents, for some aggregation function ⋆ such as, typically, + or min. The rule associated with s and ⋆ maps a profile to (one of) the allocation(s) maximizing social welfare. After defining this family of rules, and focusing on some key examples, we investigate some of the social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity, and separability. Finally, we focus on the computation of winning allocations, and on their approximation: we show that for commonly used scoring vectors and aggregation functions this problem is NP-hard and we exhibit some tractable particular cases.
Document type :
Journal articles
Complete list of metadatas

Cited literature [35 references]  Display  Hide  Download

http://hal.univ-grenoble-alpes.fr/hal-01399842
Contributor : Sylvain Bouveret <>
Submitted on : Thursday, July 4, 2019 - 10:22:20 AM
Last modification on : Friday, October 25, 2019 - 1:30:58 AM

File

BBLNNRS17.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Dorothea Baumeister, Sylvain Bouveret, Jérôme Lang, Nhan-Tam Nguyen, Trung Thanh Nguyen, et al.. Positional scoring-based allocation of indivisible goods. Autonomous Agents and Multi-Agent Systems, 2017, 31 (3), ⟨10.1007/s10458-016-9340-x⟩. ⟨hal-01399842⟩

Share

Metrics

Record views

381

Files downloads

51