Private Multi-party Matrix Multiplication and Trust Computations
Jean-Guillaume Dumas, Pascal Lafourcade, Jean-Baptiste Orfila, Maxime Puys

To cite this version:
Private Multi-party Matrix Multiplication and Trust Computations*

Jean-Guillaume Dumas¹, Pascal Lafourcade², Jean-Baptiste Orfila¹ and Maxime Puys³
¹ Université Grenoble Alpes, CNRS, LJK, 700 av. centrale, IMAG - CS 40700, 38058 Grenoble cedex 9, France
² University Clermont Auvergne, LIMOS, Campus Universitaire des Cézeaux, BP 86, 63172 Aubière Cedex, France
³ Université Grenoble Alpes, CNRS, Verimag, 700 av. centrale, IMAG - CS 40700, 38058 Grenoble cedex 9, France
{Jean-Guillaume.Dumas, Jean-Baptiste.Orfila, Maxime.Puys}@imag.fr, Pascal.Lafourcade@udamail.fr

Keywords: Secure Multiparty Computation (MPC); Distributed Matrix Multiplication; Trust evaluation; ProVerif.

Abstract: This paper deals with distributed matrix multiplication. Each player owns only one row of both matrices and wishes to learn about one distinct row of the product matrix, without revealing its input to the other players. We first improve on a weighted average protocol, in order to securely compute a dot-product with a quadratic volume of communications and linear number of rounds. We also propose a protocol with five communication rounds, using a Paillier-like underlying homomorphic public key cryptosystem, which is secure in the semi-honest model or secure with high probability in the malicious adversary model. Using ProVerif, a cryptographic protocol verification tool, we are able to check the security of the protocol and provide a countermeasure for each attack found by the tool. We also give a randomization method to avoid collusion attacks. As an application, we show that this protocol enables a distributed and secure evaluation of trust relationships in a network, for a large class of trust evaluation schemes.

1 Introduction

Secure multiparty computations (MPC), introduced by Yao (Yao, 1982) with the millionaires’ problem, has been intensively studied during the past thirty years. The idea of MPC is to allow n players to jointly compute a function f using their private inputs without revealing them. In the end, they only know the result of the computation and no more information. Depending on possible corruptions of players, one may prove that a protocol may resist against a collusion of many players, or that it is secure even if attackers try to maliciously modify their inputs. Mostly any function can be securely computed (Ben-Or et al., 1988) and many tools exist to realize MPC protocols. They comprise for instance the use of a Trusted Third Party (Du and Zhan, 2002), the use of Shamir’s secret sharing scheme (Shamir, 1979), or more recently the use of homomorphic encryption (Goethals et al., 2005). It is also possible to mix these techniques (Damgård et al., 2012).

Our goal is to apply MPC to the distributed evaluation of trust, as defined in (Jøsang, 2007; Dumas and Hossayni, 2012). There, confidence is a combination of degrees of trust, distrust and uncertainty between players. Aggregation of trusts between players on a network is done by a matrix product defined on two monoids (one for the addition of trust, the other one for multiplication, or transitivity): each player knows one row of the matrix, its partial trust on its neighbors, and the network as a whole has to compute a distributed matrix squaring. Considering that the trust of each player for his colleagues is private, at the end of the computation, nothing but one row of the global trust has to be learned by each player (i.e., nothing about private inputs should be revealed to others). Thus, an MPC protocol to resolve this problem should combine privacy (nothing is learned but the output), safety (computation of the function does not reveal anything about inputs) and efficiency (Lindell, 2009). First, we need to define a MPC protocol which allows us to efficiently compute a distributed matrix product with this division of data between players. The problem is reduced to the computation of a dot product between vectors U and V such that one player knows U and V is divided between all players.

Related Work. Dot product in the MPC model has been widely studied (Du and Atallah, 2001; Amirbekyan and Estivill-Castro, 2007; Wang et al., 2008).
However, in these papers, assumptions made on data partitions are different: there, each player owns a complete vector, and the dot product is computed between two players where; in our setting, trust evaluation should be done among peers, like certification authorities. For instance, using a trusted third party or permuting the coefficients is unrealistic. Now, computing a dot product with n players is actually close to the MPWP protocol of (Dolev et al., 2010), computing a mean in a distributed manner: computing dot products is actually similar to computing a weighted average where the weights are in the known row, and the values to be averaged are privately distributed. In MPWP the total volume of communication for a dot product is $O(n^3)$ with $O(n)$ communication rounds. Other generic MPC protocols exist, also evaluating circuits, they however also require $O(n^3)$ computations and/or communications per dot-product (Bendlin et al., 2011; Damgård et al., 2012).

Contributions. We provide the following results:

- A protocol P-MPWP, improving on MPWP, which reduces both the computational cost, by allowing the use of Paillier’s cryptosystem, and the communication cost, from $O(n^3)$ to $O(n^2)$.
- An $O(n)$ time and communications protocol Distributed and Secure Dot-Product (DSDP) (for i participants) which allows us to securely compute a dot product UV, against a semi-honest adversary, where one player owns a vector U and where each player knows one coefficient of V.
- A parallel variant that performs the dot-product computation in parallel among the players, limits its total number of rounds. This is extended to a Parallel Distributed and Secure Matrix-Multiplication (PDSMM$_i$) family of protocols.
- A security analysis of the DSDP protocol using a cryptographic protocol verification tool, here ProVerif (Blanchet, 2001; Blanchet, 2004). This tool allows us to define countermeasures for each found attack: adapted proofs of knowledge in order to preserve privacy and a random ring order, where private inputs are protected as in a wiretap code (Ozarow and Wyner, 1984) and where the players take random order in the protocol to preserve privacy with high probability, even against a coalition of malicious insiders.
- Finally, we show how to use these protocols for the computation of trust aggregation, where classical addition and multiplication are replaced by more generic operations, defined on monoids.

In Section 2, we thus first recall some multi-party computation notions. We then introduce in Section 3 the trust model based on monoids. In Section 4, we present our quadratic variant of MPWP and a linear-time protocol in Section 5. We then give the associated security proofs and countermeasures in Section 6 and present parallelized version in Section 7. Finally, in Section 8, we show how our protocols can be adapted to perform a private multi-party trust computation in a network.

2 Background and Definitions

We use a public-key homomorphic encryption scheme where both addition and multiplication are considered. There exist many homomorphic cryptosystems, see for instance (Mohassel, 2011, § 3) and references therein. We need the following properties on the encryption function E (according to the context, we use E_{PubB}, or E_1 or just E to denote the encryption function, similarly for the signature function, D_1 or D_{PrivB}): computing several modular additions, denoted by $\text{Add}(c_1; c_2)$, on ciphered messages and one modular multiplication, denoted by $\text{Mul}(c; m)$, between a ciphered message and a cleartext. That is, $\forall m_1, m_2 \in \mathbb{Z}/m\mathbb{Z}$: $E(\text{Add}(m_1; m_2)) = E(m_1 + m_2 \mod m)$ and $\text{Mul}(E(m_1); m_2) = E(m_1 m_2 \mod m)$. For instance, Paillier’s or Benaloh’s cryptosystems (Pail- lier, 1999; Benaloh, 1994; Fousse et al., 2011) can satisfy these requirements, via multiplication in the ground ring for addition of enciphered messages ($\text{Add}(E(m_1); E(m_2)) = E(m_1 + m_2 \mod m)$), and via exponentiation for ciphered multiplication ($\text{Mul}(E(m_1); m_2) = E(m_1)^{m_2} \mod m$), we obtain the following homomorphic properties:

$$E(m_1)E(m_2) = E(m_1 + m_2 \mod m)$$ \hspace{1cm} (1)

$$E(m_1)^{m_2} = E(m_1 m_2 \mod m)$$ \hspace{1cm} (2)

Since we consider the semantic security of the cryptosystem, we assume that adversaries are probabilistic polynomial time machines. In MPC, most represented intruders are the following ones:

- **Semi-honest (honest-but-curious) adversaries**: a corrupted player follows the protocol specifications, but also tries to gather as many information as possible in order to deduce some private inputs.
- **Malicious adversaries**: a corrupted player that controls the network and stops, forges or listens to messages in order to gain information.

3 Monoids of Trust

There are several schemes for evaluating the transitive trust in a network. Some use a single value representing the probability that the expected action will
happen; the complementary probability being an uncertainty on the trust. Others include the distrust degree indicating the probability that the opposite of the expected action will happen (Ghah et al., 2004). More complete schemes can be introduced to evaluate trust: Jøsang introduces the Subjective Logic notion which expresses beliefs about the truth of propositions with degrees of "uncertainty" in (Jøsang, 2007). Then the authors of (Huang and Nicol, 2010) applied the associated calculus of trust to public key infrastructures.

For E an encryption function, we define the natural morphism on pairs, so that it can be applied to trust values: $E((a,b)) = (E(a), E(b))$. We can thus extend homomorphic properties to pairs so that the parallel and sequential aggregation can then be computed homomorphically, provided that one entry is in clear.

Lemma 2. With an encryption function E, satisfying the homomorphic Properties (1) and (2), we have:

\[\text{Mul}(E((a,b)); (c,d)) = E((a,b) \supset (c,d)) \]
\[= (E(a)c, E(b)c, E(a)d, E(b)d) \]
\[\text{Add}(E((a,b)); (c,d)) = E((a,b) \centerdot (c,d)) \]
\[= (E(a)E(c)E(a)^{-c}, E(b)d) \]

Moreover, those two functions can be computed on an enciphered (a,b), provided that (c,d) is in clear.

Proof. From the homomorphic properties of the encryption functions, we have: $E(a)cE(b)d = E(ac + bd)$, $E(a)dE(b)c = E(ad + bc)$, $E(a)E(c)E(a)^{-c} = E(a + c + a(-c))$ and $E(b)d = E(bd)$. For the computation, both right hand sides depend only on deciphered values $E(a)$, $E(b)$, and on clear values c and d ($E(c)$ can be computed with the public key, from c).

This shows, that in order to compute the aggregation of trust privately, the first step is to be able to compute dot-products privately.

4 From MPWP to P-MPWP

4.1 MPWP description

The MPWP protocol (Dolev et al., 2010) is used to securely compute private trust values in an additive reputation system between n players. Each player...
\(P_i\) (excepted \(P_1\), assumed to be the master player) has a private entry \(v_i\), and \(P_1\) private entries are weights \(u_i\) associated to others players. The goal is to compute a weighted average trust, i.e., \(\sum_{i=2}^{n} u_i * v_i\). The idea of MPWP is the following: the first player creates a vector \(TV\) containing her private entries ciphered with her own public key using Benaloh’s cryptosystem, i.e., \(TV = [E_1(w_2), \ldots, E_1(w_n)]\). Then, \(P_1\) also sends a \((n-1) \times (n-1)\) matrix \(M\), with all coefficients initialized to 1 and a variable \(\alpha = 1\). Once \((M, TV, A)\) received, each player computes: \(A = A \ast E_1(u_i)^{w_i} \ast E_i(z_i)\), where \(z_i\) is a random value generated by \(P_i\). At the end, the first player gets \(D_1(A) = \sum_{i=2}^{n} u_i v_i + z_i\). Then, the idea is to cut the \(z_i\) values in \(n-1\) positive shares such that \(z_i = \sum_{j=2}^{n} z_{i,j}\). Next, each \(z_{i,j}\) is ciphered with the public key of \(P_j\), and the result is stored into the \(j^{th}\) column of \(M\), and \(M\) is forwarded to the next player. In a second phase, players securely remove the added random values to \(A\), from \(M = (m_{i,j}) = (E_i(z_{i,j}))\); each player \(P_i\), except \(P_1\), computes her \(PSS_j = \sum_{i=2}^{n} D_j(m_{i,j}) = \sum_{i=2}^{n} z_{i,j}\), by deciphering all values contained in the \(j^{th}\) row of \(M\); then they send \(\gamma_j = E_i(PSS_j)\) to \(P_1\), their \(PSS_i\), ciphered with the public key of \(P_1\). At the end, \(P_1\) retrieves the result by computing \(Trust = D_1(A) - \sum_{i=2}^{n} D_1(\gamma_j) = D_1(A) - \sum_{i=2}^{n} PSS_j = D_1(A) - \sum_{i=2}^{n} \sum_{j=2}^{n} z_{i,j} = D_1(A) - \sum_{i=2}^{n} z_i = \sum_{i=2}^{n} u_i v_i\).

\subsection{4.2 P-MPWP: A lighter MPWP}

P-MPWP is a variant of MPWP with two main differences: first Paillier’s cryptosystem is used instead of Benaloh’s, and, second, the overall communications cost is reduced from \(O(n^3)\) to \(O(n^2)\) by sending parts of the matrix only. All steps of P-MPWP but those clearly identified in the following are common with MPWP, including the players’ global settings. Since P-MPWP is using a cryptosystem where players can have different modulus, some requirements must be verified in the players’ settings. First of all, a bound \(B\) needs to be fixed for the vectors’ private coefficients:

\[\forall i, 0 \leq u_i \leq B, 0 \leq v_i \leq B\]

(3)

With Benaloh, the common modulus \(M\) must be greater than the dot product, thus at most:

\[(n-1)B^2 < M\]

(4)

Differently, with Paillier, each player \(P_i\) has a different modulus \(N_i\). Then, by following the MPWP protocol steps, at the end of the first round, \(P_1\) obtains \(A = \prod_{i=2}^{n} E_1(u_i)^{w_i} \ast E_i(z_i)\). In order to correctly decipher this coefficient, if the players’ values, as well as their random values \(z_i\), satisfy the bound (3), her modulo \(N_i\) must be greater than \((n-1)(B^2+B)\).

For others players, there is only one deciphering step, at the second round. They received \((n-1)\) shares all bounded by \(B\). Hence, their modulus \(N_i\) need only be greater than \((n-1)B\). These modulus requirements are summarized in the following lemma:

Lemma 3. Let \(n > 3\) be the number of players. Under the bound (3), if \(\forall i, 0 \leq z_i \leq B\) and if also the modulus satisfy \((n-1)(B^2+B) < N_i\), then at the end of P-MPWP, \(P_1\) obtains \(S_n = \sum_{i=2}^{n} u_i v_i\).

Now, the reduction of the communications cost in P-MPWP, is made by removing the exchange of the full \(M\) matrix between players. At the \(z_{i,j}\) shares computation, each \(P_i\) directly sends the \(j^{th}\) coefficient to the \(j^{th}\) player instead of storing results in \(T\). In the end, each player \(P_i\) receives \((n-1)\) values ciphered with his public key, and he can compute the \(PSS_i\) by deciphering and adding each received values, exactly as in MPWP. Thus, each player sends only \(O(n)\) values, instead of \(O(n^2)\). All remaining steps can be executed as in MPWP.

Both Paillier’s and Benaloh’s cryptosystems provides semantic security, thus the security of P-MPWP is not altered. Moreover, since a common bound is fixed \textit{a priori} on private inputs, P-MPWP security can be reduced to the one in MPWP with the common modulo \(M\) between all players (Michalas et al., 2012). Finally, since all exploitable (i.e., clear or ciphered with the dedicated key) information exchanged represents a subset of the MPWP players’ knowledge, if one is able to break P-MPWP privacy, then one is also able to break it in MPWP.

\section{5 A Linear Dot Product Protocol}

\subsection{5.1 Overview with Three Players}

We first present in Figure 1 our DSDP protocol (Distributed and Secure Dot-Product), for 3 players. The idea is that Alice is interested in computing a dimension 3 dot-product \(S = u^T \cdot v\), between her vector \(u\) and a vector \(v\) whose coefficients are owned by different players. The other players send their coefficients, encrypted, to Alice. Then she homomorphically multiplies each one of these by her \(u_i\) coefficient and masks the obtained \(u_i \cdot v_i\) by a random value \(r_i\). Then the other players can decrypt the resulting \(u_i \cdot v_i + r_i\); with two unknowns \(u_i\) and \(r_i\) they are not able to recover \(v_i\). Finally the players enter a ring computation of the overall sum before sending it to Alice. Then only, Alice removes her random masks to recover the final dot-product. Since at least two
players have added $v_i v_j$ for all $i \neq j$ in the Paillier-like cipher, at the end of the protocol, Alice can re-encrypt the values by say B, and if the third modulo is larger than the second, $N_3 > N_2 + B^2$, the obtained value is actually the exact value over the naturals: $S_3 = (u_2 v_2 + r_2) \mod N_2 + u_3 v_3$. Then Alice can remove the second random value, this time modulo N_2: $S_2 = (u_2 v_2 + u_3 v_3) \mod N_2$, where now $N_2 > B^2$ suffices to recover $S = S_2 \in \mathbb{N}$. We generalize in this way in the following section.

5.2 General Protocol with n Players

We give the generalization $DSDP_n$, of the protocol of Figure 1 for n players in Algorithm 4 thereafter. For this protocol to be correct, we use the previously defined bound (3) on the players’ private inputs. Then, for n players, there are two general cases: First, if all the players share the same modulo $M = N_i$ for all i for the homomorphic properties, then Alice can also use M to remove the r_i. Then, to compute the correct value S, it is sufficient to satisfy the bound (4). Second, for a Paillier-like cipher, differently, the modulo of the homomorphic properties are distinct. We thus prove the following Lemma 5.

Lemma 5. Under the bound (3), and for any r_i, let $M_2 = (u_2 v_2 + r_2) \mod N_2$ and $M_i = (M_{i-1} + u_i v_i + r_i) \mod N_i$, for $i = 2 \ldots n - 1$. Let also $S_{n+1} = M_n$ and $S_i = (S_{i+1} - r_i) \mod N_i$ for $i = n \ldots 2$. If we have:

\[
\begin{align*}
N_{i-1} + (n-i+1)B^2 &< N_i, \\
(n-1)B^2 &< N_2
\end{align*}
\]

then $S_2 = \sum_{i=2}^{n} u_i v_i \in \mathbb{N}$.

Proof. By induction, we first show that $S_i = M_{i-1} + \sum_{j=i}^{n} u_j v_j$, for $i = 3 \ldots n$: indeed $S_0 = (M_0 - r_0) \mod N_0 = (M_0 - u_0 v_0) \mod N_0$. But M_{n-1} is modulo N_{n-1}, so $(M_{n-1} + u_n v_n) \leq N_{n-1} + B^2$, and then (5) for $i = n$, ensures that $N_{n-1} + B^2 < N_n$ and $S_n = M_{n-1} + u_n v_n \in \mathbb{N}$. Then, for $3 \leq i < n$, $S_i = (S_{i+1} - r_i) \mod N_i = (M_{i+1} + \sum_{j=i+1}^{n} u_j v_j - r_i) \mod N_i = (M_{i+1} + u_{i+1} v_{i+1} + \sum_{j=i+1}^{n} u_j v_j - r_i) \mod N_i = (M_{i+1} + \sum_{j=i+1}^{n} u_j v_j) \mod N_i$, by induction. But (3) enforces that $M_{i+1} + \sum_{j=i+1}^{n} u_j v_j < N_{i+1} + (n-i+1)B^2$ and (5) also ensures the latter is lower than N_i. Therefore $S_i = M_{i+1} + \sum_{j=i+1}^{n} u_j v_j$ and the induction is proven. Finally, $S_2 = (S_3 - r_2) \mod N_2 = (M_2 + \sum_{j=3}^{n} u_j v_j - r_2) \mod N_2 = (\sum_{j=3}^{n} u_j v_j) \mod N_2$. As $\sum_{j=3}^{n} u_j v_j < (n-1)B^2$, by (5) for $i = 2$, we have $S_2 = \sum_{j=3}^{n} u_j v_j \in \mathbb{N}$.

This shows that the $DSDP_n$ protocol of Algorithm 4 can be implemented with a Paillier-like underlying cryptosystem, provided that the successive players have increasing modulo for their public keys.

Theorem 6. Under the bounds (3), and under Hypothesis (4) with a shared modulus underlying cipher, or under Hypothesis (5) with a Paillier-like underlying cipher, the $DSDP_n$ protocol of Algorithm 4 is correct. It requires $O(n)$ communications and $O(n)$ encryption and decryption operations.

Proof. First, each player sends his ciphered entry
to P_1, then homomorphically added to random values, r_i. Then, P_i ($i \geq 2$) deciphers the message received by P_{i-1} into Δ_i. By induction, we obtain $\Delta_i = \sum_{j=2}^{n} u_j v_j + r_i$. This value is then re-encrypted with next player’s key and the next player share is homomorphically added. Finally, P_1 just has to remove all the added randomness to obtain $S = \Delta_n - \sum_{j=2}^{n} r_j + u_1 v_1 = \sum_{j=1}^{n} u_j v_j$. For the complexity, the protocol needs $n - 1$ encryptions and communications for the c_i; $2(n - 1)$ homomorphic operations on ciphers and $n - 1$ communications for the α_i; $n - 1$ decryptions for the Δ_i; $n - 1$ encryptions, homomorphic operations and communications for the β_i; and finally one encryption and one communication for γ. Then P_1 needs $O(n)$ operations to recover S.

\section{Security of the DSDP protocol}

We study the security of DSDP_n using both mathematical proofs and automated verifications. We first demonstrate the security of the protocol for semi-honest adversaries. Then we incrementally build its security helped by attacks found by ProVerif, an automatic verification tool for cryptographic protocols.

\subsection{Security Proofs}

The standard security definition in MPC models (Lindell, 2009) covers actually many security issues, such as correctness, inputs independence, privacy, etc. We first prove that under this settings, computation of the dot product is safe.

\begin{lemma}
For $n \geq 3$, the output obtained after computing a dot product where one player owns complete vector U, and where each coefficient v_i of the second vector V is owned by the player P_i, is safe.
\end{lemma}

\begin{proof}
After executing DSDP_n with $n \geq 3$, P_1 received the dot product of U and V. Therefore, it owns only one equation containing $(n - 1)$ unknown values (coefficients from v_2 to v_n). Then, he cannot deduce other players’ private inputs.
\end{proof}

Then, proving the security relies on a comparison between a real-world protocol execution and an ideal one. The latter involves an hypothetical trusted third party (TTP) which, knowing only the players’ private inputs, returns the correct result to the correct players. The protocol is considered secure if the players’ views in the ideal case cannot be distinguished from the real ones. Views of a player P_i (denoted View_{P_i}) are defined as distributions containing: the players’ inputs (including random values), the messages received during a protocol execution and the outputs. The construction of the corrupted players’ view in the ideal world is made by an algorithm called Simulator.

\begin{definition}
In the presence of a set C of semi-honest adversaries with inputs set X_C, a protocol Π securely computes $f : \{0, 1\}^m \rightarrow \{0, 1\}^m$ (and f_C denotes the outputs of f for each adversaries in C) if there exists a probabilistic polynomial-time algorithm Sim, such that: $\{\text{Sim}(C, \{X_C, f_C(X)\})\}_{X \in \{0, 1\}^m}$ is computationally indistinguishable from $\{C, \{\text{View}_{P_i}^\Pi\}_{P_i \in C}\}$.
\end{definition}

For DSDP_n, it is secure only if C is reduced to a singleton, i.e. if only one player is corrupted.

\begin{lemma}
By assuming the semantic security of the cryptosystem E, for $n \geq 3$, DSDP_n is secure against one semi-honest adversary.
\end{lemma}

\begin{figure}[h]
\centering
\begin{tabular}{c c c}
\hline
Alice (P1) & Bob (P2) & Charlie (P3) \\
\hline
\hline
c_2 & $c_2 = E_{pubA}(v_2)$ & $c_3 = E_{pubC}(v_3)$ \\
\hline
$\alpha_2 = c_2^{\gamma} + E_{pubA}(r_2)$ & $\alpha_3 = c_3^{\gamma} + E_{pubC}(r_3)$ & u_2, u_3 \\
$\Delta_2 = D_{privA}(\alpha_2)$ & $\beta_3 = \alpha_3^{\gamma} + E_{pubC}(\Delta_2)$ & p_i \\
$\beta_3 = \alpha_3^{\gamma} + E_{pubC}(\Delta_2)$ & $\gamma = E_{pubA}(\Delta_3)$ & $\gamma = E_{pubA}(\Delta_3)$ \\
$\gamma = E_{pubA}(\Delta_3)$ & $\gamma = E_{pubA}(\Delta_3)$ & $\gamma = E_{pubA}(\Delta_3)$ \\
\hline
\end{tabular}
\caption{DSDP$_3$: Secure dot product of vectors of size 3 with a Paillier-like asymmetric cipher.}
\end{figure}
Proof. We assume that the underlying cryptosystem E is semantically secure (IND-CPA secure). First, we suppose that only P_1 is corrupted. His view, in a real execution of the protocol, is $\text{View}_{P_1} = \{U, R, \gamma, S, A, B, C\}$, where $U = \{u_i\}_{i \leq n}$, $R = \{r_i\}_{i \leq n}$, $A = \{\alpha_i\}_{i \leq n}$, $B = \{\beta_i\}_{i \leq n-1}$ and $C = \{c_i\}_{i \leq n}$. Now, Sim_1 is the simulator for P_1 in the ideal case, where a simulated value x is denoted x'. By definition, P_1’s private entries (vectors U and R) are directly accessible to Sim_1, along with the output S, sent by the TTP. Sim_1 starts by generating n random values, and thenciphersthem using the corresponding public keys: this simulates the C_i values. Then, using the provided r_i and u_i with the associated c_i and P_1’s public key, Sim_1 computes: $\alpha_i' = c_i^{u_i} * \alpha_i$, $2 \leq i \leq n$. Next, the simulation of B_i' is done by deciphering random values with the appropriate public key. The γ value is computed using R along with the protocol output S: $\gamma' = E_1(S + \sum_{i=2}^{n} r_i + u_1 v_1)$. In the end, the simulator view is $\text{View}_{\text{Sim}_1} = \{U, R, \gamma', S, A', B', C'\}$. If an adversary is able to distinguish any ciphered values (e.g. C' from C and thus A' from A), hence he is able to break the semantic security of the underlying cryptographic protocol. This is assumed impossible. Moreover, since the remaining values are computable as in a real execution, P_1 is not able to distinguish View_{P_1} from $\text{View}_{\text{Sim}_1}$. Second, we suppose that a player P_i, $i \geq 2$ is corrupted and denote by Sim_i the simulator in this case. Since the role played by each participant is generic, (except for P_n, which only differs by his computation of γ instead of β_{n+1}), the simulators are easily adaptable. During a real protocol execution, the view of P_i is $\text{View}_{P_i} = \{v_i, A, B, C, \gamma, \Delta_i\}$. Simulating the values also known to P_i is similar, up to the used keys. Hence, the simulation of A', B', γ', C' (except c_i) is made by deciphering random values using the adequate public key. c_i is deciphered using v_1 and the public key of P_i. For Δ_i, the simulator Sim_i has to forward the random value previously chosen to be ciphered as α_i. Indistinguishability is based on the semantic security of E (for A, B, C and γ) and on the randomness added by P_i (and thus unknown by P_i). Then, Δ_i is computationally indistinguishable from the real Δ_i. Hence, View_{P_i} and $\text{View}_{\text{Sim}_i}$ are indistinguishable and DSDP_i is secure against one semi-honest adversary.}

\subsection{6.2 Automated Verification}

Alongside mathematical proofs, we use an automatic protocol verification tool to analyze the security of the protocol. Among existing tools, we use ProVerif (Blanchet, 2001; Blanchet, 2004). It allows users to add their own equational theories to model a large class of protocols. In our case, we model properties of the underlying cryptosystem including addition and multiplication. Sadly, verification of protocol in presence of homomorphic function over abelian groups theory has been proven undecidable (Delaune, 2006). Moreover, as showed in (Lafourcade and Puys, 2015), some equational theories such as Exclusive-Or can already outspace the tool’s capacities. Thus we have to provide adapted equational theories to be able to obtain results with the tool. We modeled the application of Pailler’s or shared modulus encryption properties on α_i messages that Bob receives as follows:

(i). $\forall u, v, r, k, \ bob(E_k(r), u, E_k(v)) = E_k(uv + r)$

This property allows Bob to obtain $uv_2 + r_2$ from α_2. This also allows an intruder to simulate such calculus and impersonate Bob. We also model:

(ii). β_3 by $\forall u, v, r, x, y, z, k, \ charlie(E_k(uv + r), E_k(xy + z)) = E_k(ux + vy + r + z)$

(iii). β_4 by $\forall u, v, r, x, y, z, a, b, c, k, \ dave(E_k(uv + xy + rz + c), E_k(ab + c)) = E_k(ux + xy + ab + rz + c)$

In the following, we use ProVerif to prove the security of our protocols under the abstraction of the functionalities given in our equational theory. ProVerif discovers some attacks in presence of active intruder. We then propose some countermeasures. The limits of ProVerif are reached and it does not terminate. The associated source files are available in a web-site: matmuldistribsforge.imag.fr.

\textbf{Analysis in case of a passive adversary.} Using these equational theories on the protocol described in Figure 1, we verify it in presence of a passive intruder. Such adversary is able to observe all the traffic of the protocol and tries to deduce secret information of the messages. This corresponds to a ProVerif intruder that only listens to the network and does not send any message. By default, this intruder does not possess the private key of any agent and thus does not belong to the protocol. To model a semi-honest adversary as defined in Section 2, we just give secret keys of honest participants to the passive intruder knowledge in ProVerif. Then the tool proves that all secret terms cannot be learn by the intruder for any combinations of leaked key. This confirms the proofs given in Section 6.1 against the semi-honest adversaries.

\textbf{Analysis in case of a malicious adversary.} The malicious adversary described in Section 2 is an active intruder that controls the network and knows a private key of a compromised honest participant. Modeling this adversary in ProVerif, we are able to spot the two following attacks and give some countermeasures:

(i) Only the key of Alice is compromised and the countermeasure uses proofs of knowledge.
(ii) Only the key of Charlie is compromised and the countermeasure uses signatures. In the rest of the section, we present these two points. In the Section 7.2, we also give a solution called random ring for the case where both keys of Alice and Charlie are compromised.

(i) The key of Alice is compromised. An attack on the secrecy of \(v_2\), the secret generated by Bob, is then presented in Figure 2.

The malicious adversary usurps Alice and replaces all the \(\alpha_i\) messages, arriving from the other agents, with one message she generated, except one message, denoted \(c_2\) in Figure 2. He lets the protocol end normally and obtains a term where only \(v_2\) is unknown. He learns \(v_2\). If the key of Alice (\(P_1\)) is compromised, ProVerif also finds an attack on any of the other players secrecy. Suppose, w.l.o.g., that \(P_2\) is the target. \(P_1\) replaces each \(\alpha_2\) except \(\alpha_2\) by ciphers \(E_{\alpha_i}(x_j)\) where \(x_j\) are known to him. \(x_j = 0\) could do for instance (\(x_j = 0v_j + r_j\) also), since after completion of the protocol, \(P_1\) learns \(uv_2 + r_2 + \sum_{i=3}^n x_i\), where the \(u_i\) and \(r_i\) are known to him. Therefore, \(P_1\) learns \(v_2\). Note also that similarly, for instance, \(\alpha_2 = 1v_2 + 0\) and \(x_3 = v_3\) could also reveal \(v_2\) to \(P_1\). Countermeasure: this attack, and more generally attacks on the form of the \(\alpha_i\) can be counteracted by zero-knowledge proofs of knowledge. \(P_1\) has to prove to the other players that \(\alpha_i\) is a non trivial affine transform of their secret \(v_i\). For this we use a variant of a proof of knowledge of a discrete logarithm (Chaum et al., 1986) given in Figure 3.

In the Protocol 4, this proof of a non trivial affine transform applies as is to \(\alpha_2\) with \(\mu_2 = g^{\mu_2}, \rho_2 = g^{\rho_2}\) so that the check of \(P_2\) is \(\delta_2 = g^{\alpha_2} = \mu_2^{\mu_2} \rho_2\). Differently, for the subsequent players, the \(\delta_{i-1} = g^{\alpha_{i-1}}\) used to test must be forwarded: indeed the subsequent players have to check in line 10 that \(\Delta = u_i v_i + r_i + \Delta_{i-1}\). Thus with \(P_1\) providing \(\mu_i = g^{\mu_i}, \rho_i = g^{\rho_i}\) and \(P_{i-1}\) providing \(\delta_{i-1}\), the check of player \(P_i\) ends with \(\delta_i = g^{\delta_i} = \mu_i^{\mu_i} \rho_i \delta_{i-1}\). As for proofs of knowledge of discrete logarithm, secrecy of our proof of non trivial affine transform is guaranteed as long as the discrete logarithm is difficult. The overhead in the protocol, in terms of communications, is to triple the size of the messages from \(P_1\) to \(P_i\), with \(\alpha_i\) growing to \((\alpha_i, \mu_i, \rho_i)\), and to double the size of the messages from \(P_i\) to \(P_{i+1}\), with \(\beta_i\) growing to \((\beta_i, \delta_i)\). In terms of computations, it is also a negligible linear global overhead.

(ii) The key of Charlie is compromised. There ProVerif finds another attack on the secrecy of \(v_2\). This time the key of Charlie is compromised and the malicious adversary blocks all communications to and from Alice who is honest. The adversary performs the same manipulation on the \(\alpha_i\) terms which are directly sent to Bob. Thus, this attack becomes feasible since the adversary knows the terms \(u_3, u_2, r_2, r_3\) and \(v_3\) that he generated and \(\Delta_3 = (uv_2 + r_2) + (v_3u_3 + r_3)\) using the private key of Charlie. Such an attack relies on the fact that Bob has no way to verify if the message he receives from Alice has really been sent by Alice. This can be avoided using cryptographic signatures.

This attack can be generalized to any number of participants. The attack needs the adversary to know the key of Alice (since she is the only one to know the \(u_i\) and \(r_i\) values thanks to the signatures). Then, to obtain the secret value of a participant \(P_i\), the key of participants \(P_{i-1}\) and \(P_{i+1}\) are also needed:

(i) \(P_{i-1}\) knows \(\Delta_{i-1} = (uv_{i-1} + \ldots + u_i v_i + \ldots + r_{i-1})\).

(ii) \(P_{i+1}\) knows \(\Delta_{i+1} = (uv_{i+1} + \ldots + u_i v_i + \ldots + r_{i+1})\).

Thus, by simplifying \(\Delta_{i-1}\) and \(\Delta_{i+1}\), the malicious adversary obtains \(u_i v_i + u_i v_{i+1} + r_i + r_{i+1}\) where he can remove \(u_i v_i, v_{i+1}, r_i, r_{i+1}\) and \(u_i\) to obtain \(v_i\). For more than three participants, we see in Section 7.2 that these kinds of threats can be diminished if the protocol is replayed several times in random orders.
7 Parallel Communications

In order to speed up the overall process, we show that we can cut each dot-product into blocks of 2 or 3 coefficients. On the one hand, the overall volume of communications is unchanged, while the number of rounds is reduced from \(n \) to a maximum of 5. On the other hand, semantic security is dropped, but we will see at the end of this section that by simply repeating the protocol with a wiretap mask it is possible to make the probability of breaking the protocol negligible.

An application of the DSDP protocol is the computation of matrix multiplication. In this case, instead of knowing one vector, each player \(P_i \) owns two rows, \(A_i \) and \(B_i \), one of each \(n \times n \) matrices \(A \) and \(B \). At the end, each \(P_i \) learns a row \(C_i \) of the matrix \(C = AB \). In order to compute the matrix product, it is therefore natural to parallelize DSDP, each dot-product is cut into blocks of 2 or 3 coefficients. Indeed, scalar product between three players (resp. four) involves two (resp. three) new coefficients in addition to the ones already known by \(P_i \). For \(P_i \), the idea is to call DSDP on the coefficients \(a_1, v_1 \) and \(u_2, u_3 \) of \(P_2 \), and \(v_2, v_3 \) of \(P_3 \). Then \(P_i \) knows \(s = a_1 v_1 + u_2 v_2 + u_3 v_3 \). \(P_i \) can then continue the protocol with \(P_2 \) and \(P_3 \), using \((s, 1)\) as his first coefficient and \(a_4 u_3 \) to be combined with \(v_4, v_5 \), etc. \(P_i \) can also launch the computations in parallel. Then \(P_i \) adds his share \(a_1 v_1 \) only after all the computations. For this it is sufficient to modify line 13 of DSDP, as: \(P_i : S = D_i(\gamma) = \sum_{i=1}^{n-1} r_i \). This is given as the ESDP protocol variant in Algorithm 10.

Algorithm 10 ESDP \(n \) Protocol: External Secure Dot-Product of size \(n \)

Require: \(n+1 \) players, \(P_i \) knows a coefficient vector \(U \in \mathbb{F}^n \), each \(P_i \) knows components \(v_{i-1} \) of \(V \in \mathbb{F}^n \), for \(i = 2 \ldots n+1 \).

Ensure: \(P_i \) knows \(S = UTV \).

return \(\text{DSDP}_{n+1}(P_1 \ldots P_{n+1}, [0, U], [0, V]) \).

7.1 Partition in Pairs or Triples

Depending on the parity of \(n \), and since \(\gcd(2,3) = 1 \), calls to ESDP2 and ESDP3 are sufficient to cover all possible dot-product cases, as shown in protocol PDSMM \(n \) of Algorithm 11. The protocol is cut in two parts. The loop allows us to go all over coefficients by block of size 2. In the case where \(n \) is even, a block of 3 coefficients is treated with an instance of ESDP3. In terms of efficiency and depending on the parity of \(n \), ESDP2 is called \(\frac{n-1}{2} \) or \(\frac{n}{2} - 2 \) times, and ESDP3 is called 0 or 1 times.

Algorithm 11 PDSMM \(n \) Protocol: Parallel Distributed and Secure Matrix Multiplication

Require: \(n \) players, each player \(P_i \) knows rows \(A_i \) and \(B_i \) of two \(n \times n \) matrices \(A, B \).

Ensure: Each player \(P_i \) knows row \(i \) of \(C = AB \).

1: for Each row: \(i = 1 \ldots n \) do
2: for Each column: \(j = 1 \ldots n \) do
3: \(s \leftarrow a_i b_{i,j} \)
4: if \(n \) is even then
5: \(k_1 \leftarrow (i-1) \mod n + 1; k_2 \leftarrow (i-2) \mod n + 1; k_3 \leftarrow (i-3) \mod n + 1; \)
6: \(s \leftarrow s + \text{ESDP}_3(P_i, [b_{k_3}, b_{k_2}, b_{k_1}], [a_{i,k_3}, a_{i,k_2}, a_{i,k_1}], [b_{k_1,j}, b_{k_2,j}, b_{k_3,j}]) \)
7: \(t \leftarrow \frac{n-1}{2} \)
8: else
9: \(t \leftarrow \frac{n-2}{2} \)
10: for \(h = 1 \ldots t \) do
11: \(k_1 \leftarrow (i+2h-1) \mod n + 2; k_2 \leftarrow (i+2h) \mod n + 1; \)
12: \(s \leftarrow s + \text{ESDP}_2(P_i, [b_{k_1}, b_{k_2}], [a_{i,k_1}, a_{i,k_2}], [b_{k_1,j}, b_{k_2,j}]) \)
13: \(c_{i,j} \leftarrow s \)

Theorem 12. The PDSMM \(n \) Protocol in Algorithm 11 is correct. It runs in less than 5 parallel communication rounds.

Proof. Correctness means that at the end, each \(P_i \) has learnt row \(C_i \) of \(C = AB \). Since the protocol is applied on each rows and columns, let us show that for a row \(i \) and a column \(j \), Algorithm 11 gives the coefficient \(c_{i,j} \) such that \(c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} \). First, the \(k \) coefficients are just the values \(1 \ldots (i-1) \) and \((i+1) \ldots n \) in order. Then, the result of any ESDP2 step is \(a_{i,k_3} b_{k_1,j} + a_{i,k_2} b_{k_2,j} + a_{i,k_1} b_{k_3,j} \) and the result of the potential ESDP3 step is \(a_{i,k_3} b_{k_1,j} + a_{i,k_2} b_{k_2,j} + a_{i,k_1} b_{k_3,j} \). Therefore accumulating them in addition of \(a_{i,j} b_{i,j} \) produces as expected \(c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} \).

Now for the number of rounds, for all \(i \) and \(j \), all the ESDP calls are independent. Therefore, if each player can simultaneously send and receive multiple data we have that: in parallel, ESDP3, like DSDP3 in Figure 1, requires 4 rounds with a constant number of operations: one round for the \(c_i \), one round for the \(\gamma \), one round for the \(\alpha \) and one round for the \(\gamma \). As shown in Algorithm 4, ESDP3, like DSDP3, requires only a single additional round for \(\beta_1 \).
first player cooperates with two well placed players she can recover the private value of a player in between. In the truth evaluation setting every malicious player plays the role of the first player in its row and therefore as soon as there is a collaboration, there is a risk of leakage. To mitigate this cooperation risk, our idea is to repeat the dot product protocol in random orders, except for the first player. To access a given private value, the malicious adversaries have to be well placed in every occurrence of the protocol. Therefore if their placement is chosen uniformly at random the probability that they recover some private value diminishes with the number of occurrences. In practice, they use a pseudo, but unpredictable, random generator to decide their placement: as each of them has to know their placement, they can for instance use a cryptographic hash function seeded with the alphabetical list of the players distinguished names, with the date of the day and with random values published by each of the players. We detail the overall procedure only for one dot-product, within the PDSMMn protocol. Each player except the first one masks his coefficient v as in a simple wiretap channel (Ozarow and Wyner, 1984), as sketched in Algorithm 13.

Algorithm 13 Wiretap repetition of the dot-product

1: The players agree on d occurrences.
2: Each player computes his placement order in each occurrence of the protocol from the cryptographic hash function.
3a: With a shared modulus cryptosystem, the players share a common modulo M satisfying Hypothesis (4). In the first occurrence, each player \(P_j \) then masks his private input coefficient \(v_j \) with \(d - 1 \) random values \(\lambda_{j,i} \in \mathbb{Z}/M\mathbb{Z} \): \(v_j - \sum_{i=2}^{d} \lambda_{j,i} \).
3b: With a Paillier-like cryptosystem, the players choose their moduli according to Hypothesis (5), where \(B^2 \) is replaced by \(dB^2 \) in groups of size \(n = 4 \) (the requirements of (5) on the moduli are somewhat sequential, but can be satisfied independently if each modulo is chosen in a distinct interval larger than \(3dB^2 \)). Then, in the first occurrence, each player \(P_j \) masks his private input coefficient \(v_j \) with \(d - 1 \) random values \(0 \leq \lambda_{j,i} < B: v_j + \sum_{i=2}^{d} (B - \lambda_{j,i}) < dB \).
4: Then for each subsequent occurrence, each player replaces its coefficient by one of the \(\lambda_{j,i} \).
5: In the end, the first player has gathered \(d \) dot-products and just needs to sum them in order to recover the correct one.

Theorem 14. Algorithm 13 correctly allows the first player to compute the dot-product.

Proof. First, in a shared modulus setting, after the first occurrence, Alice (\(P_{i} \)) gets \(S_1 = \sum_{j=2}^{n} u_j (v_j - \sum_{i=2}^{d} \lambda_{j,i}) \). Then in the following occurrences, Alice gets \(S_i = \sum_{j=2}^{n} u_j v_j \). Finally she computes \(\sum_{j=2}^{n} S_j = \sum_{j=2}^{n} u_j v_j \). Second, similarly, in a Paillier-like setting, after the first occurrence, Alice recovers \(S_1 = \sum_{j=2}^{n} u_j v_j \). Then in the following occurrences, Alice gets \(S_i = \sum_{j=2}^{n} u_j \lambda_{j,i} \). Finally she computes \(\sum_{j=2}^{n} S_i = (d-1)B(\sum_{j=2}^{n} u_j) = \sum_{j=2}^{n} u_j(v_j +(d-1)B) - (d-1)Bu_j = \sum_{j=2}^{n} u_j v_j \).

We give now the probability of avoiding attacks in the case when \(n = 2t + 1 \), but the probability in the even case should be close.

Theorem 15. Consider \(n = 2t + 1 \) players, grouped by 3, of which \(k \leq n - 2 \) are malicious and cooperating, including the first one Alice. Then, it is on average sufficient to run Algorithm 13 with \(d \leq 2\ln(\min(k - 1, n - k, \frac{n - 1}{n-k})) (1 + \frac{1}{n-k-1}) \) occurrences, to prevent the malicious players from recovering any private input of the non malicious ones.

Proof. The idea is that for a given private input of a non malicious player Bob, to be revealed to Alice, Bob needs to be placed between cooperating malicious adversaries at each occurrence of the protocol. If there is only one non malicious player, then nothing can be done to protect him. If there is 2 non malicious, they are safe if they are together one time, this happens with probability \(\frac{1}{n-2} \), and thus on average over \(n - 2 \) occurrences. Otherwise, PDSMMn uses \(t = \frac{n-1}{3} \) groups of 3, including Alice. Thus, each time a group is formed with one malicious and one non malicious other players, Alice can learn the private value of the non malicious player. Now, after any occurrence, the number \(a \) of attacked players is less than the number of malicious players minus 1 (for Alice) and obviously less than the number of non malicious players: \(0 \leq a < \min(k - 1, n - k) \). Thus let \(b = k - 1 - a \) and \(c = n - k - a \). In the next occurrence, the probability of saving at least one more non malicious is \(\frac{a(n-1-c)(n-3)}{(n-1)!} \leq \frac{a(n-1-c)}{a(n-1)} \). The average number of occurrences to realize this is \(\mathbb{E}_{n,k}(a) = \frac{2(n-2)}{a(n-k-1)} \), so that the average number of occurrences to save all the non malicious players, satisfies \(\mathbb{T}_{n,k}(a) \leq \mathbb{E}_{n,k}(a) + \mathbb{T}_{n,k}(a-1) \leq \sum_{i=0}^{a} \mathbb{E}_{n,k}(i) + \mathbb{T}_{n,k}(2) = \left(\binom{n-3}{a} \right) \frac{2(n-2)}{a(n-k-1)} + \mathbb{T}_{n,k}(2) \). With 2 attacked and \(c \) saved, \(\mathbb{T}_{n,k-2c-2}(2) = \frac{a}{c+1} \) so that \(\mathbb{T}_{n,k}(a) \leq (H_{n} - \frac{3}{2}) \frac{2(n-2)}{a(n-k-1)} + \frac{n-2}{a(n-k-1)} \), where bounds on the Harmonic numbers give \(H_{n} \leq \ln a \) (see, e.g. (Batir, 2013)).
and since \(a \leq k - 1 \) and \(a \leq n - k \), this shows also that \(2a \leq n - 1 \). Therefore, \(T_{n,k}(a) \leq 2\ln \left(\frac{k}{n-k} \right) \). □

For instance, if \(k \), the number of malicious insiders, is less than the number of non-malicious ones, the number of repetitions sufficient to prevent any attack is on average bounded by \(O(\log k) \). To guaranty a probability of failure less than \(\varepsilon \), one needs to consider also the worst case. There, we can have \(k = n - 2 \) malicious adversaries and the number of repetitions can grow to \(n \ln(1/\varepsilon) \):

Proposition 16. With \(n = 2r + 1 \), the number \(d \) of random ring repetitions of Algorithm 13 to make the probability of breaking the protocol lower than \(\varepsilon \) satisfies \(d < n \ln(1/\varepsilon) \) in the worst case.

Proof. There are at least 2 non-malicious players, otherwise the dot-product reveals the secrets in any case. Any given non-malicious player is safe from any attacks if in at least one repetition he was paired with another non-malicious player. In the worst case, \(k = n - 2 \) players are malicious and the latter event arises with probability \(1 - \frac{1}{n-1} \) for \(d \) repetitions. If \(d \geq n \ln(\varepsilon^{-1}) \), then \(d > (n-1)\ln \varepsilon > \frac{\ln \varepsilon}{\ln(1-\varepsilon)} \), which shows that \(1 - \frac{1}{n-1} \) (ε) < ε. □

Overall, the wiretap variant of Algorithm 13 can guaranty any security, at the cost of repeating the protocol. As the number of repetitions is fixed at the beginning by all the players, all these repetitions can occur in parallel. Therefore, the overall volume of communication is multiplied by the number of repetitions, while the number of rounds remains constant. This is summarized in Table 1 and Figure 4, for the average (Theorem 15) and worst (Proposition 16) cases of Algorithm 13, and where the protocols of the previous sections are also compared.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Volume</th>
<th>Rounds</th>
<th>Paillier</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPWP</td>
<td>(O(n^3))</td>
<td>(O(n))</td>
<td>×</td>
</tr>
<tr>
<td>P-MPWP (§ 4)</td>
<td>(n^{2+\circ(1)})</td>
<td>(O(n))</td>
<td>✓</td>
</tr>
<tr>
<td>Alg. 13 (Wiretap)</td>
<td>(n^{2+\circ(1)} \ln(\frac{1}{\varepsilon}))</td>
<td>5</td>
<td>✓</td>
</tr>
<tr>
<td>Alg. 4 (DSDP)</td>
<td>(n^{1+\circ(1)})</td>
<td>(O(n))</td>
<td>✓</td>
</tr>
<tr>
<td>Alg. 11 (PDSMMn)</td>
<td>(n^{1+\circ(1)})</td>
<td>5</td>
<td>✓</td>
</tr>
<tr>
<td>Alg. 13 (Average)</td>
<td>(n^{1+\circ(1)})</td>
<td>5</td>
<td>✓</td>
</tr>
</tbody>
</table>

On the one hand, we see in Figure 4 that quadratic protocols, with homomorphic encryption, are not usable for a realistic large group of players (trust aggregation could be used for instance by certificate authorities, and there are several hundreds of those in current operating systems or web browsers). On the other hand, quasi linear time protocols present good performance, while preserving some reasonable security properties: the average wiretap curve is on average sufficient to prevent any attack and still has a quasi linear asymptotic behavior. The steps in this curve are the rounding of \(\log(n) \) to the next integer and correspond to one more random ring wiretap round.

8 Conclusion: MPC of Trust

We now come back to the aggregation of trust. As shown in Section 3, the first step is to reduce the computation to that of dot-products. We show how to fully adapt the protocol of Section 5 to the evaluation of trust values with parallel and sequential aggregations:

Corollary 17. The protocol DSDP of Algorithm 4 can be applied on trust values, provided that the random values \(r_i \) are invertible for \(\bigodot \).

Proof. • \(u_i, v_i, r_i, c_i, \alpha_i, \beta_i, \Delta_i, \gamma \) are now couples;
• Encryption and decryption \(E(v_i), D(\beta_i), E(\Delta_i) \), \(E(\gamma) \), etc.) now apply on couples, using the morphism \(E(\langle a, b \rangle) = (E(a), E(b)) \);
• \(\alpha_i \) is \(E(u_i \bigodot v_i) \bigodot r_i = \text{Add}(\text{Mul}(E(v_i); u_i); r_i) \), and can still be computed by \(P_1 \), since \(c_i = E(v_i) \) and \(u_i \) and \(r_i \) are known to him;
• Similarly, \(\beta_i = E(\alpha_i \bigodot \Delta_i) = \text{Add}(E(\alpha_i); \Delta_i) \);
• Finally, as \(\bigodot \) is commutative, \(S \) is recovered by adding the inverses for \(\bigodot \) of the \(r_i \).

From (Dumas and Hossayni, 2012, Definition 11), the \(d \)-aggregation of trust is a dot-product but slightly modified to not include the value \(n_1 r_1 \). Therefore at line 3, in the protocol of Algorithm 11, it suffices to set \(s \) to the neutral element of \(\bigodot \) (that is \(s \leftarrow \langle 0, 1 \rangle \), instead of \(s \leftarrow a_i \bigodot b_i \)).
There remains to encode trust values that are proportions, in $[0,1]$, into $D = \mathbb{Z}/N\mathbb{Z}$. With n participants, we use a fixed precision 2^p such that $2^{n(2^p+1)} > N \geq 2^{n(2^p+1)-1}$ and round the trust coefficients to $\lfloor x2^p \rfloor \mod N$ from $[0,1) \rightarrow D$. Then the dot-product can be bounded as follows:

Lemma 18. If each coefficient of the u_i and v_i are between 0 and $2^p - 1$, then the coefficients of $S = \bigotimes_{i=1}^{n}(u_i \star v_i)$ are bounded by $2^{n(2^p+1)}$ in absolute value.

Proof. For all u, v, the coefficients of $(u \star v)$ are between 0 and $(2^p - 1)(2^p - 1) + (2^p - 1)(2^p - 1) = 2^{2p+1} - 2^{p+2} + 2 < 2^{2p+1} - 1$ for p a positive integer. Then, by induction, when aggregating k of those with \bigotimes, the absolute values of the coefficients remain less than $2^{n(2^p+1)} - 1$. \square

Therefore, with N an 2048 bits modulus and $n \leq 4$ in the ESDP protocols of Algorithm 11, Lemma 18 allows a precision close to $2^{-355} \approx 10^{-177}$.

In conclusion, we provide an efficient and secure protocol DSDP, to securely compute dot products (against semi-honest adversary) in the MPC model, with unusual data division between n players. It can be used to perform a private matrix multiplication and also be adapted to securely compute trust aggregation between players.

REFERENCES

