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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Nonsmooth Mechanics. Models, Dynamics and Control:

Erratum/Addendum. Springer International Publishing Switzerland,

Communications and Control Engineering, Third Edition, 2016

Bernard Brogliato∗

February 15, 2017

(I will be glad to receive any comment which helps me to improve this Erratum/Addendum).

• page 21: Figure 1.3 (b) has a severe shortcut in the right curved arrow indicating “Yosida
approximation”. A better view of the transformations is depicted in Figure 1 below. In the
same vein it is worth reading [1].

• page 49, section 1.4.3.1: other studies using the Zhuravlev-Ivanov nonsmooth transformation
may be found in [6, 5, 4, 3].

• pages 71-72: A first comment is that the damping coefficients that incorporate en (as those
listed page 71), may be seen as extensions to the nonlinear spring-dashpot model, of (2.9) page
56 which also involves the CoR. We note that in reference 1220, the coefficient p in (2.24) is

found heuristically to be p = 1
4 . Thus their model has a dissipative force equal to α

√
mKhx

1

4 ẋ

if x is the normal indentation, with α = − ln(en)
√

5
π2+ln(e2n

(compare with the expression in

(2.9) dropping km outside the parantheses). In [7] it is proposed to enlarge the right-hand

side of (2.24) to −γx(t)pẋ(t) − kx(t)w, and γ is chosen as αmẋ(t0)
(

k
mẋ(t0)2

)
1+p

1+w
. They find

that p = 1−w
2 yields α = − ln(en)

√

2(1+w)
π2+ln(en)2

. According to [7, Figure 2], their model has a

loading-unloading curve similar to Figure 2.4 (a) page 70, with no negative contact force near
zero indentation. Several nonlinear spring-dashpot models (Kuwabara-Kono, Hu et al, Tsuji et
al) are further compared in [8] in terms of variation of en with respect to the damping coefficient,
acceleration histories, acceleration/identation loading/unloading curves, etc, for the case of two
spheres colliding. Then [8] investigates the influence of the spring-dashpot models on a multiple
impact process in a chain of aligned balls. To this aim they rely on the experimental data in
reference 625. In particular [8, Figure 11] is exactly Figure 20 in [9] (reference 928) and Figure
29 in [10] (reference 629), where the numerical results are obtained with the LZB model (section
6.3). More work is necessary to determine the domains of validity (in terms of applications, ease
of numerical simulation, etc) of these models.

∗INRIA Grenoble, Université Grenoble-Alpes, 655 avenue de l’Europe, Inovallée, 38334 Saint-Ismier, France.
bernard.brogliato@inria.fr
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Figure 1: Enhanced Fig. 1.3 (b).
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• page 75: footnote 21 should be on page 74, at the end of the framed paragraph.

• page 99, line 5: replace (B.5) by (B.6). The calculations after (3.13) are in fact the proof in this
particular case, that the normal cone can also be written as in (B.5) page 549.

• page 102, line -5: replace ni ∈ IR3 by n ∈ IR3 (the subscript i in Fn,i refers to the contact point
number).

• page 103, line 4: Pi = vn,iFn,i = ....

• page 113: equation (3.41) is obtained assuming that at an impact instant all virtual displacements
and velocities are allowed. This indeed results in zero impact because M(q(tk))(q̇(t

+
k )− q̇(t−k )) =

0 ⇒ q̇(t+k ) − q̇(t−k ) = 0 (the mass matrix is assumed to be full rank). In reference 724 it is
supposed that the generalized momentum satisfies p(t+k ) − p(t−k ) ∈ −NΦ(q(tk)), as a modelling
assumption since constraints are perfect during impacts (see (iii) page 104). It is shown in
reference 724 that this inclusion is equivalent to the variational inequality 〈p(t+k )−p(t−k ), δ̄q〉 ≥ 0
for all δ̄q ∈ TΦ(q(tk), where the virtual displacements δ̄q are continuous (we can therefore see
these developments as the extension of the material in (3.13) and below, to the case with elastic
impacts). This equivalence is not surprizing when we consider the normal cone definition in (B.5),
recalling that this definition remains true even for nonconvex sets, see Remark B.1 page 550.
Using that p(t) = M(q(t))q̇(t) and Moreau’s set inclusion in section B.2.2, we may impose the
stricter inclusion M(q(tk))(q̇(t

+
k )− q̇(t−k )) ∈ −NTΦ(q(tk))(q̇(t

+
k ) which is equivalently rewritten as

the variational inequality: find q̇(t+k ) ∈ TΦ(q(tk)) such that 〈M(q(tk))(q̇(t
+
k )−q̇(t−k )), v−q̇(t+k )〉 ≥

0 for all v ∈ TΦ(q(tk)) (see (5.53) and (5.60) in section 5.2). Thus we obtain this time the
extension of (3.7) where virtual velocities are considered, and the extension of (5.45) for the case
of impacting motions. We note in passing that the arguments that yield [13, Equation (1a)]
(which is the same as p(t+k ) − p(t−k ) ∈ −NΦ(q(tk)) with missing mass matrix and minus sign
in the right-hand side) are spurious: there is a shortcoming in the reasoning in [13] because of
the use of the condition δq(tk) + q̇(tk)δtk ∈ Tq(tk)bd(Φ), while q̇(·) jumps at tk, and Tq(tk)bd(Φ)
denotes the tangent plane at q(tk) (and not the tangent cone) to the boundary of the admissible
domain (the correct way to derive the material page 385 in [13], is in section 6 of reference 724
by Leine et al).

The above basic assumption yields Theorem 3 in reference 724 which is a Hamilton principle
in strong norm, or strong Hamilton principle. There exists a weak norm for a weak Hamilton’s
principle which somewhat relaxes the assumption on the generalized momenta at impact times,
see Theorem 4 and condition (99) in reference 724.

• page 130, about the calculation of the normal and tangential vectors at the contact point A
(local kinematics): the starting point is that if a 3D surface is defined by two parameters u and
v and a differentiable function r(u, v), r : IR2 → IR3, then ∂r

∂u(u1, v1) ∈ IR3 and ∂r
∂v (u1, v1) ∈ IR3

span the tangent plane at the point A1 parameterized by u1 and v1, and one can then define the

normal vector as the cross product n1 = ∂r
∂u

T
(u1, v1) × ∂r

∂v

T
(u1, v1) (one should take care of the

correct order to get the right orientation of the normal).
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• page 133, about the time-derivative of the right-hand side of (4.17): Let us denote the Galilean
frame as L0 = G and the local frame as L. The angular velocity vector between both frames is
denoted as ΩL/L0

. We obtain d
dt [(A2A1)

T
n] = d

dt [(A2A1)
T ]n + (A2A1)

T d
dtn = d

dt [(A2A1)
T ]n +

(A2A1)
T d
dtn. Assume that the vectors are expressed in L0. Then basic kinematics say that d

dtn =
d
dtn|L +ΩL/L0

×n = ΩL/L0
×n since n is constant in L. Thus (A2A1)

T d
dtn = (A2A1)

T (ΩL/L0
×

n) = 0 since the vector product is orthogonal to n and the vector (A2A1) is along n. Therefore
d
dt [(A2A1)

T
n] = d

dt [(A2A1)
T ]n. The vector d

dt [(A2A1)
T ] is the time derivative of (A2A1) in L0

and may be named the relative velocity between both bodies. The sentence “In particular...,
except if n is fixed in G” is meaningless and should be deleted. It becomes true if stated in terms
of the acceleration d

dtVAi
and v̇i,n.

• page 162, section 4.2.3 (also page 169, section 4.2.5.2): [25] study the force/identation relation
f(δ) = kδn for an elastic body with a rough surface in contact with a rigid flat surface. A three-
dimensional rough surface is constructed using a modified two-variable Weierstrass-Mandelbrot
fractal function. Results in [25, Table 2] show that n can vary between 2.11 and 1.19 depending
on some parameters (like fractal dimension, fractal roughness, root-mean-square roughness and
arithmetic average height Ra). Thus the elasticity is found to be superlinear and even sometimes
super-Hertz. Compared with the study described in section 4.2.3 where n = 1 in (4.61), it seems
that surface roughness increases n. The interest of such study is to show that Hertz’ fundamental
assumption (ii) page 147 (introduction of section 4.2.1.1) on smooth contacting surfaces, may
play a role in the elasticity coefficient. However we should also note that the surfaces in contact
considered in [25] are conforming in addition to be rough, and that contrary to (4.61) the flat is
considered non-deformable.

• page 164, section 4.2.4: see a comment below (page 384).

• page 165: Hurmuzlu’s analysis of the micro-impact phenomenon (section 4.3.10.2) seems to
contradict Love’s criterion, because micro-collisions excite transversal modes in the beam (page
228) and these vibrations dissipate energy.

• pages 165-166: estimations of the CoR for harmonic chains of aligned beads colliding a wall, and
taking into account sequences of repeated impacts as well as the vibrational energy trapped in
the chain, are given in [28, 29].

• page 200, equation (4.124): the last term is dp
dt′ , .

• page 245, line 6: ...+ wb(q, q̇, t)).

• pages 247-248, Proposition 5.3: The equality h(t′) − h(t) =
∫ t′

t ḣ(s)ds used in the proof means

that h(·) is absolutely continuous (not just continuous) and that what is denoted as ḣ(·) is its
almost-everywhere derivative. The same holds for (ii), where ḣ(·) has to be absolutely continuous
as well.

• page 270, line above (5.61): [780,781].
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• page 280, in Theorem 5.3, line 3: replace TΦ(q(t0)) by V (q(t0)), as it is not guaranteed in general
that both tangent cones are equal. Same page 282 in Remark 5.13.

• page 286, about Coulomb’s friction: notice that in the sliding mode one has ||Ft|| = α||vt|| =
µ||Fn|| ⇔ α = µ||Fn||

||vt||
. Hence we recover the equivalent classical way of expressing sliding

Coulomb’s friction as Ft = −µ||Fn|| vt
||vt||

.

• page 293, line 5: ...sgn(ẍ(t+)) when ẋ(t) = 0,...

• page 295: in case of non trivial mass matrix, equation (5.97) becomes u(t+k ) = proj(0, [u(t−k ) +
M(q(t))−1C(q(t))] ∩ T (q(t)) [15]. Proposition 3.3 in [16] extends (5.97), and Figure 5.12 which
depicts the algorithm in case of a trivial mass matrix. Additional figures which complete Fig. 5.12
page 295, are in Figure 2. Case (a) shows that if the mass matrix is trivial (the identity matrix)
then when u(t−) is tangent to the constraint boundary, there is no velocity jump (no impact
without collision). Case (b) shows that when the mass matrix is not trivial and the generalized
friction cone dips below the tangent hyperplane, then the velocity may jump. But case (c)
shows that depending on the tangent velocity signum, the velocity may remain continuous. It
is noteworthy that the zero vector in (5.97) refers to velocities, not positions.

u+ = u−

n

u− u+ = 0

n

u+ = u−

000

n

(c)(b)(a)

T (q) T (q) T (q)

Figure 2: Sweeping process with friction.

• page 298, last line: replace x2,n by (A2A1)
T
n.

• page 299, more details about P-matrices and the difference with positive definite matrices.
Principal minors are the determinants of the principal submatrices, they are sometimes also
called principal subdeterminants. Principal submatrices of a matrix M ∈ IRn×n are constructed
as follows: let the index set I = {1, 2, ..., n}, and consider any subset J ⊆ I. Let us denote
J = {i1, i2, ..., im}, with m ≤ n, and ik ∈ I for all 1 ≤ k ≤ m. Delete all rows and columns of M
which are indexed by i with i 6∈ J . The obtained matrix MJ ∈ IRm×m is a principal submatrix
of M . A leading principal submatrix of M is obtained by considering ik = k, k = 1, 2, ...,m. The
determinant of a leading principal submatrix is a leading principal minor.

Theorem 5.5 states that a P-matrix has to have all its principal submatrices with positive
determinant, i.e. all positive principal minors. A (real) matrix M (nor necessarily symmetric)
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is positive definite if and only if MT +M has all its leading principal minors positive (and also
its leading principal submatrices are positive definite matrices). If in addition M = MT , then
M ≻ 0 if and only if all its principal minors are positive (and another characterization is: if and
only if all its leading principal minors are positive, showing in passing that a positive definite
matrix is a P-matrix). A (real) matrix M (nor necessarily symmetric) is positive semidefinite
if and only if MT +M has all its principal minors non negative. Thus for positive definiteness
it is sufficient to check the leading principal submatrices, while for positive semi definiteness all
principal submatrices have to be checked.

Another characterization of P-matrices is as follows [2, Lemma 16, Theorem 59]: if M is a P-
matrix, the inequalities Mx ≤ 0 and x ≥ 0 have only the trivial solution x = 0. Also there exists
x > 0 such that Ax > 0.

• section 5.4.2: I said nothing on cone linear complementarity problems of the form K ∋ z ⊥ w =
Mz + r ∈ K⋆ where K is a closed convex cone. See Theorem 8 and Corollary 5 in reference 23
for the existence of solutions to CLCP.

• section 5.4.2. Another result that completes this section concerns the number of solutions to
LCPs for which uniqueness fails. This is tackled in [14]. A matrix is said to be an N -matrix if
its all principal minors are negative. For such matrices, the LCP (5.105) has either 0, 1, 2 or 3
solutions. A solution z∗ is degenerate if z∗i = 0 and wi = (Mz∗)i + ri = 0 for some i.

Lemma 1 [14, Lemma 2.4, Theorem 3.2, Theorem 3.3, Theorem 3.4] (i) Let M be an N -matrix
and M ≺ 0. Then for each r ≥ 0, the LCP in (5.105) has a solution, and has no solution for
r 6≥ 0 (componentwise inequality). The LCP has exactly two solutions for r > 0. (ii) Let M be
an N -matrix and r ∈ IRn. Then if M is not negative definite and r 6≥ 0, the LCP (5.105) has
a unique solution. (iii) Let M be an N -matrix, non negative definite, and r > 0. Then if all
solutions of the LCP (5.105) are non degenerate, the LCP has exactly three solutions. Otherwise
it has exactly two solutions. (iv) Let M be an N -matrix, non negative definite, and 0 6= r ≥ 0,
with ri = 0 for some i. Then the LCP (5.105) has exactly two solutions, with one solution
degenerate.

• page 313: replace u2(t) − u1(t) by u2(t), and replace u2(t) by u2(t) − u1(t), in the dynamical
equations (5.130).

• pages 320-321: further studies on the stability of nonsmooth circuits (characterization of equi-
libria, Lyapunov stability) may be found in [20, 21].

• page 322: in the paragraph after Theorem 5.12: ε > 0.

• page 323: in (5.150) it happens that V (t+) − V (t−) ≤ 0 provided that 0 ∈ S(t), with S(t) in
(5.139). See reference 480, Lemma 3.

• page 328, line 1: delete the “and”.
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• page 332, Proposition 5.24 and equation (5.158): the matrix Pµ(q) is defined as

−∇f(q)TM(q)−1Ht,u(q)[µisgn(vt,u,i)].

• page 352, section 5.6.4. Mathematical results on the existence of solutions (velocity u(·) of local
bounded variation, q(t) = q(0) +

∫ t
0 u(s)ds) which extend results in both references 867 and

1141, 1142, can be found in [15, 16]. It incorporates Painlevé paradoxes, in the sense that the
generalized friction cone may dip below the tangent cone boundary at the considered contact
point (as pointed out in footnote 31 page 295, and in a paragraph above Figure 5.24 page 353).
An example of calculation of the generalized friction cone for the Painlevé sliding rod system,
may be found in [17, Section 2.2]. Using the notation of equation (5.1) and of section 6.2, the
Painlevé sliding rod example of section 5.6.1 may be written as q̈ = nqλn +M−1Ht(q)λt. The
generalized friction cone is the cone generated by nq = 1

m(0, 1,−3
l cos(θ))

T and ±µM−1Ht(q),
Ht(q) = M(1, 0, 3l sin(θ))

T , M = diag(m,m, I), with the edges e± = nq ± µM−1Ht(q). It is not
symmetric around nq, and n

T
q Me+ = ∇f(q)T e+ = B(θ, µ) in (5.175) so that the generalized

cone may dip below the tangent hyperplane T (q), this reflects normal/tangential couplings as in
equation (6.30). This is depicted in Figure 3.

nq = M−1∇f(q)

∇f(q)

q

T (q) in Problem 5.2
page 294

e+

e−

Φ

Figure 3: Painlevé paradox and generalized friction cone.

• page 352, section 5.6.4, line 18: replace [755, Theorem 1] by [1328, Theorem 1].

• page 352, section 5.6.4: the article [11] is worth reading.

• pages 367 and 430 (sections 5.7.3.5 and 7.3.2): a (θ, γ) time stepping scheme is used in [12] to
calculate periodic solutions of set-valued Lur’e systems (as in Figure 2.2 but with a feedback set-
valued nonlinearity of the more general form (w, λ) ∈ R). After discretization a mixed quadratic
complementarity problem (MQCP) is constructed. State jumps are incorporated in the problem
(remind that LCS may have state discontinuities, see section 5.4.4.3). The period, the state and
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the multiplier λ are unknowns of the MQCP. A MQCP is a complementarity problem of the
form: Find z, w, v such that

ϕ(z) +Mz + q = w − v
l ≤ z ≤ u, (z − l)Tw = 0, (u− z)T v = 0

(1)

where ϕ(·) is a vector of quadratic forms in z. The solver path is used to solve the discretized
MQCP.

• page 363, section 5.7.3.2: an interesting application of the NSCD method is in [24] that deals
with collapse mechanism of ancient stone arches. Though the NSCD method (the Moreau-Jean
algorithm in section 5.7.3.1) has several shortcomings (like a simplistic impact law as explained
in Example 5.6 page 275, see also section 6.3.3 and the comments page 411), it is interesting for
complex systems with many degrees of freedom and unilateral contacts and seems to encapsulate
essential modeling features in this case. For a finer analysis of stacked blocks dynamics under
base excitation, one should certainly use more sophisticated models like LZB.

• page 384: it is shown that varying the stiffness ratio γ in the 3-ball system, changes a lot the
impact outcome, and this is also true when the mass ratios are varied (the kinetic angle between
the two constraints surfaces). This is also true for the 2-ball system hitting a rigid wall (take
m3 = +∞ in Figure 6.5 page 383). The analysis in [27] shows that the mass ratio and the
stiffness ratio have a great influence on the kinematic CoR, which varies between 0.2 and 1
(the possibility of several impacts before definitive separation –a kind of micro-collisions effect–
between the first ball and the wall is taken into account1). For the 2-ball system hitting a wall,

the kinematic CoR is defined as −v(tf )
v(t0)

where v = m1v1+m2v2
m1+m2

is the center of mass velocity, t0 is
the time of the first impact, tf is the time of the last impact before complete separation of the
2-ball system and the wall. Thus depending on these ratios, the system made of the two beads
(which we can see as an approximation of the flexibilities in a rigid body like a rod) will rebound
with a low or a high velocity. The apparently loss kinetic energy is in fact transformed into
potential energy stored in the system’s spring under the form of vibrations that persist after the
impact is ended. This is therefore also quite related to sections 4.2.4 and 4.4 material. It is also
interesting to compare this result to Theorem 4.1 page 238, which stipulates that an elastic rod
that collides a wall with zero external force, has en = 1. Thus the 2-ball system is not in general
a good approximation of the infinite dimensional model. However the results in [27, Figure 2a]
show that with equal masses and equal stiffnesses, then en ≈ 1. This is extended to N−ball
systems (see also [28, 29]). One assumption that is made in these studies, and might make the
analysed chains behaviour different from an elastic rod impacting axially a wall, is that it is
assumed that the first (colliding) ball reverses its velocity instantaneously [29].

• page 394 (relations between Moreau’s impact law in (5.60) (5.61), and the restitution mapping
in (6.44) (6.45)). Here I also refer to the reference [210, section 3.1.1], with some inaccuracies
in equation (44). Let I(q(t)) be the index set of active constraints at position q(t). Moreau’s

1In [27] this is called multiple impacts, however in our terminology multiple impacts are simultaneous collisions, not
a sequence of separated collisions.
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law states that q̇(t+) = q̇(t−)− (1 + en)projM(q(t))[N(q(t)); q̇(t−)], see (5.60). Clearly if q̇(t−) is
in the interior of N(q(t)) then q̇(t+) = −enq̇(t

−). If this is not the case, one has to project q̇(t−)
onto the normal cone, which is a polyhedral cone generated by the normals nq,i, i ∈ I(q(t)).
In case N(q(t)) is a so-called latticial cone, then the material in [210, section 3.1.1] is correct.
We recall that N(q(t)) is a latticial cone if dim(q(t)) =card(I(q(t)), in other words the number
of active constraints is equal to the dimension of q(t)) (the configuration space), and the active
constraints (hence the vectors nq,i, i ∈ I(q(t))) are independent (see Németh and Németh, How
to project onto an isotone projection cone, Linear Algebra and its Applications, vol.433, 41-51,
2010). In this case the projection of q̇(t−) onto NM

Φu
(q) in [210, section 3.1.1, line 8 after (43)],

is correct according to Theorem 2 in Németh and Németh.

One difference between the impact law in (6.44) (6.45), and Moreau’s impact rule, is first on
the choice of the vectors q̇norm and q̇tan. This explains some discrepancies between both models,
as demonstrated for instance on the rocking block problem, see [228, section 3.4] which shows
that with a specific choice of q̇norm,1 and q̇norm,2, rocking motion is possible only if off-diagonal
terms in the restitution matrix in (6.45) are introduced, whatever the kinetic angle value. On
the contrary Moreau’s law allows for rocking in some situations when the kinetic angle between
the two active constraints, is larger than π/2, see [31].

In practice one uses the equivalent form of Moreau’s law in (5.66) and solves a LCP or a mLCP.
Using (5.67) and assuming that Du(q(tk)) ≻ 0, it is easy to construct a LCP with unknown

W (tk)
∆
= Un(t

+
k ) + EnnUn(t

−
k ):

0 ≤ W (tk) ⊥ Du(q(tk))
−1W (tk)−Du(q(tk))

−1(Im + Enn)Un(t
−
k ) ≥ 0. (2)

This LCP always has a unique solution. If Du(q(tk))
−1(Im + Enn)Un(t

−
k ) < 0, then Un(t

+
k ) +

EnnUn(t
−
k ) = 0 which gives Newton’s law at each contact with CoR en if Enn = diag(en) (see

Proposition 5.15 for the link between Moreau’s impact law and Newton’s law at each contact
with complementarity, see also the seminal reference [454]). The next step is to write down
Moreau’s law when q̇(t−) is not in the interior of N(q(t)), but has to be projected on it. When
the constraints are not independent, one can still use a numerical solver that computes a solution
for LCPs with positive semi-deifnite matrices (like Lemke’s algorithm).

• page 398, line 2: choosing

• page 400, line just above Proposition 6.6: replace M̄(M(q, µ, vt) by M̄(q, µ, vt).

• page 406, line 7 after (6.68): δ̇j(pf,j) ≤ 0 (here we assume that compression occurs with positive
identation velocity δ̇j > 0 and expansion occurs with negative identation velocity δ̇j < 0), in
agreement with Figure 6.6. Thus indentation increases during compression and decreases during
expansion (or restitution).

• page 407: Notice that equations (6.71) (6.72) can be rewritten in a differential form
dEj

dpj
(pj) =

δ̇j(pj)dpj and similarly for (6.72), so that the whole LZB dynamics is a first-order dynamics with
augmented state variable (the potential energy becomes a state variable). Thus the calculation
of the positions (assumed to be constant in the LZB approach) is not at all needed to integrate
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the system (see reference 929 equations (4.42) and (4.43) where a midpoint rule is used to
approximate the potential energies). Notice further that (6.72) indeed stipulates that according
to the energetic constraint We,j = −e2⋆,jWc,j (using (4.159)), then at the end of the impact
Ej(pf,j) = 0.

• page 407 section 6.3.2: another interesting application of the LZB model is in [26].

• page 415, line 8: drop the “be”.

• page 419, Theorem 7.2: some constants a, bj , b̄j ∈ IR such that...

• page 429, equation (7.18): replace e in σ1 and σ2 by en.

• page 452, equation (7.51): 0 ≤ f(q⋆) ⊥ λ⋆
n,u ≥ 0.

• page 456, equation (7.62), last two lines: Σk∈[k0,k1] instead of Σk∈{k0,k1} which might let one
think that only the two values k0 and k1 are taken into account.

• pages 457-458: The stability (finite-time convergence to a fixed point, plus Lyapunov stability)
of simple systems with set-valued terms encompassing Coulomb’s friction with constant normal
force, is analysed in [22]. The discretisation of the same dynamics is studied in [23], where
it is shown that the sequence of discrete solutions converges in a finite number of steps to its
limit. This is quite similar to the results mentioned in section 5.7.3.7 about implicit discrete-
time sliding mode control (though control has its own peculiarities like the fact that one wants
to study robustness with respect to parameter uncertainties, unmatched disturbances, more
complex attractive surfaces, etc). It may also be seen as a generalization of the case treated in
Remark 5.33 pages 362-363.

• pages 457-458: it is clear that the fixed points of a system with unilateral contact and Coulomb
friction are also solutions of a generalized equation, extending (7.51). As said page 458, in
general uniqueness of the equilibrium is lost. Consider for instance (5.162) page 336. For this
system the equilibria (q, q̇) = (q⋆, 0) satisfy the generalized equation:















(

0
0

)

=

(

sin(α)
cos(α)

)

λ⋆
n +

(

− cos(α)
sin(α)

)

λ⋆
t +

(

Fx

0

)

0 ≤ f(q⋆) ⊥ λ⋆
n ≥ 0

λ⋆
t ∈ −µλ⋆

nsgn(0)

(3)

with sgn(0) = [−1, 1]. It is noteworthy that usually the generalized equation for equilibria and
the generalized equation for sticking contacts, are not the same (in this example they are the
same because sticking contact implies that the system does not move, and conversely). Also
this is different from the generalized equation in (5.165) which is obtained from the acceleration
Coulomb’s friction model.

• page 462: Chapter 7 could ne nicely completed with the study in [32] which analyzes the contact
stability of a simple system, with a force feedback controller, and subject to delay in the force
feedback. These theoretical results were experimentally validated by Tornambé in [33].
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• page 531, section 8.5.2: controllability of juggling systems (with the important assumption that
the robot dynamics in (8.74) has much bigger mass than the object, so that q̇2 is continuous at
impacts) as well as their stabilization, is studied in [30].

• page 550, Remark B.1: the definition in (B.3) (b) is that of contingent cones (as taken from
the book reference 385, page 15) and as such it may not be convex, see Figure B.1. Thus the
sentence “It still holds that it is closed convex even if Φ is not convex” is true only for (B.3) (c).

• page 551, Lemma B.1: it is more appropriate to write f : dom(f) ⊆ IRn → IR ∪ {+∞} (though
one might understand that IR contains the infinity).

• page 551, Corollary B.1: ...be a monotone multivalued operator...

• page 552, figure B.2: in the first figure on the left, replace fλ(x) by −fλ(x). The Moreau-
Yosida approximation is a convex function. It becomes obvious also from this figure, that the
function −fλ(·) represents the potential energy function of a unilateral spring, and has to be
compared with the indicator function which represents the potential energy associated with
complementarity conditions (which are a particular contact model).

• page 553: For better clarity replace the set Φ in the paragraph after (B.12), by C.

• page 558: let M be a P-matrix. Then the quadratic program (B.22) is equivalent to the
LCP(q,M), see reference [307, p.149]. The quadratic program may be non convex if M is
not positive definite.

• page 560, section B.2.2: line 3: replace (5.35) by (5.35), line 6: replace Definition 5.34 by (5.34).

• pages 561-562, about prox-regular sets. Characterizations of finitely represented sets which are
prox-regular are given in [18, Theorems 3.1, 4.1], in addition to Theorem B.5. An interesting
result about the preservation of prox-regularity under an inverse linear transformation S′ =
H−1(S) = {z|Hz ∈ S}, is in [19, Lemma 2.7] (reference 1181 in the book’s bibliography). If
S ⊂ IRl is r−prox-regular, and if S is in the range space of H : IRn → IRl, then S′ is r′−prox-

regular with r′ =
rσ+

H

||H||2
, where σ+

H is the least positive singular value of H and ||H|| is an induced

matrix norm. An extension is in [18, Corollary 6.5].

• page 622, index for G, add for Gauss’s principle: systems with friction, 332
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