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Abstract—The Intrinsic Dimensionality (ID) of multivariate ~ and almost all of them require an estimation of the intrinsic
data is a very important concept in spectral unmixing of dimensionality.
hyperspectral images. A good estimation of the ID is crucial Let us denote a hyperspectral dataset %y 2 Rd n
for a correct retrieval of the number of endmembers (the
spectral signatures of macroscopic materials) in the image, for i ; .
dimensionality reduction or for subspace learning, among others. @ hyperspectral sample vectare. a pixel with d spectral
Recently, some approaches to perform spectral unmixing and channels, anch denotes the number of samples. Usually,

super-resolution locally have been proposed, which require a the dimensionality of hyperspectral vectods,is large, with
local estimation of the number of endmembers to use. However, ,\ndreds or thousands of spectral bands. Assuming the ob-

the role of ID in local regions of hyperspectral images has not fi be d d into si land noi
been properly addressed. Some important issues when dealingserval Ions may beé decomposed Into sigisaland noisen,

with small regions of hyperspectral data can seriously affect thatis,x = s+ n, Cawse-Nicholsoret al. [14] introduce the
the performance of conventional hyperspectral ID estimators. following de nition:

We show that three factors mainly affect local ID estimation: . L. . .
the number of pixels in the local regions, which has to be Denition 1. The Intrinsic Dimension (ID) of a dataset,

hyperspectral bands which complicates the estimations if the spanned by the signals;;:::;sn.
ambient space has a high dimensionality, and the noise, which can ) _ ) N
be misinterpreted as signal when its power is important. Here, Different authors have given alternative de nitions of the

we review the hyperspectral ID estimators on the literature for intrinsic dimension or of similar terms. Chang and Du [16]
local ID estimation, we show how they behave in a local setting ya e the ‘virtual dimensionality as the the number of
on synthetic and real datasets, and we provide some gwdelmesendmembers necessary to give accurate unmixing. Bajorski [5]
to make proper use of these estimators in local approaches. - ’ " ) ; " ;

de nes the ‘effective dimensionalityas the dimensionality
of the af ne subspace giving an acceptable approximation to
all pixels. De nition 1 is equivalent to the ones provided
in [7], [40]. Besides conceptual aspects, all of them are
. INTRODUCTION used in spectral unmixing to estimate the actual number of

YPERSPECTRAL unmixing is one of the most impOr_endmembers or the dimensionality of the subspa'ce spanned
bg these endmembers. Hereafter, for sake of clarity, we will

tant and widely used techniques in hyperspectral imagnake use of the ID term only, and follow De nition 1.

analysis [9], [10]. It decomposes a hyperspectral image 'ntoRecentIy, some local approaches have been proposed for

a set of spgctral signatures corresponding to macroscoplc%ll bctral unmixing [12], [20], [23], [31], [42], in order to
pure materials, named endmembers, and a set of cover pro- . .

. : : : : overcome some of the issues of global approadtespectral
portions comprised in a fractional abundance matrix. The ~ . .
: : : . . variability [41], [45]. Furthermore, the local spectral unmix-
information provided by spectral unmixing enables a myria

of applications requiring ne identi cation of materials orIng approach proposed in [20] has proven to be useful to

T : Xpropose new unmixing-based segmentation techniques [44]
estimation of physical parameters [9]. Many approaches e (')Srtto improve unmixing-based hyperspectral super-resolution
in the literature to perform spectral unmixing [10], [19], [32],[ P 9 ypersp P

Index Terms—Intrinsic dimensionality, virtual dimensionality,
local spectral unmixing, hyperspectral imagery.

echniques using the local low rank property of hyperspectral
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by the numerous spectral bands. Most of the existing lidtegralC( ) has the following asymptotic behavior:
estimation algorithms are based on the eigen-decomposition 0)

of some data dependent statistical matrix, often second order C()= g—z k1. (2)
statistics. The basic idea is that if some noiseless sigrnedan n

ak-dimensional vector space, then their covariance mitgx Wherek 1is here the dimension of the manifold (akds the
should have a rank which is equal ko Then this covariance ID of the data). This behavior can be intuitively understood
matrix should only havek nonzero eigenvalues. The mairPy the fact that in higher dimensions, there are more possible
issue with this strategy is that noisy signals have more nonzd¥gys for one point to reach neighboring points. One can then
eigenvalues than their ID value, and the problem boils down fgcover the ID by computing:

being able to sort the eigenvalues related to signal and the ones k 1= lim In(C()) A3)

related to noise in the following eigenvalue decomposition: 1o In()
Note that since the ID is here estimated in each point of the
Ky =B>DB (1) data cloud, in the signal processing literature this category

. ) ) ) . of ID estimation technique can be referred to as local ID
whereB is a change of basis matrix, ardl is a diagonal estimation [13], [11]. However, the concept differs from the
matrix containing the eigenvalues Kfy on its diagonal. one we are interested in since we consider spatially local ID

A simple baseline approach is to de ne the ID as thggtimation.
number of the largest eigenvalues that must be retained tqpu [28], Kyubedaet al. proposed thévaximum Orthogonal
represent a percentage of the total variance of the data [Qébmplement Algorithm (MOCAwhich solves an optimizia-
I.e, 95% or 99% Chang and Du [16] proposed the widelftion problem exploiting the sensitivity of thé norm to
usedHarsanyi-Farrand-Chang (HFC)nethod, based on theare materials, so the signal subspace preserves them. In [1],
comparison of the eigenvalues obtained from the covarianggitg et al. proposed a version of MOCA, calleRobust
and the correlation matrices. The validity of the HFC methogigna| Subspace Estimator (RSSHjat improves the latter
has been questioned in [3], [6], and Bajorski proposed an altg{-terms of computational speed and lighter parametrization.
native algorithm, calleecond Moment Linear dimensionalityrhe same authors summarized in [2] both approaches, MOCA
(SML), based on similar concepts. Another popular algorithglag RSSE, using a common theoretical framework, and also
to perform hyperspectral ID estimation is thyperspectral proposed a more computationally ef cient version of the
Subspace Identi cation by Minimum Error (HySIMEB], MOCA algorithm namedviodi ed MOCA (MMOCA) They
which is an evolution of th&ignal Subspace Estimation (SSE}|sg derived from the RSSE algorithm a method to account
algorithm presented in [7]. The HySIME algorithm worksgr signal dependent noise [3]. Chaeg al. [17] proposed a
by identifying the signal subspace achieving a residual erQeyman-Pearson detector version of MOCA linking the ideas
comparable to the estimated noise power. A different approagbhind MOCA with those of the HFC algorithm. Recently,

has been proposed in [14], where new resultsRandom changet al. [18] have proposed an extension of the latter
Matrix Theory (RMT)used to determine which eigenvaluegyork based on high-order statistics.

are due to noise and which are due to signal have been o

adapted for the identi cation of the hyperspectral ID. Th8: Contributions

Outlier Detection Method (ODMJ4] is another eigen-based In [15], Cawse-Nicholsoret al. studied the effect of corre-
algorithm, although ODM focuses on modelling the noise andted noise on ID estimation, and Hasanlou and Samadzadegan
treats the signal as outliers to the noise distribution. performed in [25] a comparative study of some ID estimation
Three non eigen-based hyperspectral ID estimators have akgorithms for classi cation. A recent survey of ID estimation
cently been proposed. The rst one, introduced in [34] aalgorithms compares ve methods, three of which are also
part of a Negative ABundance-Oriented (NAB@hmixing considered in this study, mostly in terms of ID estimation
algorithm, borrows the main idea from the HySIME algorithmperformance on the whole image, and in terms of the impact
Basically, it decomposes the residual error from the uncoof the noise correlation and estimation [37]. Here, we are
strained unmixing into two components, a rst due to noismterested in the performance of hyperspectral ID estimation
and a second due to ID. The algorithm works by starting froaigorithms when going from global to local studies, that is, the
an underestimate of the ID, and then, iteratively increments tbapacity of the algorithms to correctly estimate the ID on small
ID value until the unmixing error can be solely explained byegions or subsamples of a hyperspectral image. In addition,
the noise term. The second non eigen-based method, calleel present study includes several algorithms not considered
Hyperspectral Image Dimension Estimation through Neareist [37].

Neighbor distance ratios (HIDENN]26] is based on local Hyperspectral ID estimation algorithms can be grouped ac-
geometrical properties of the data manifold. The techniquedserding to two main characteristics: i) whether they are based
aimed at computing the correlation dimension of the dataset) eigen-decomposition or not, and ii) the requirement of a
which is itself closely related to the concept of fractal dimerde-noising step or of a noise power estimation. When trying to
sion. The basic idea is to count (in the neigborhood of origentify the ID of local (often small) regions in hyperspectral
data point) the total number of pairs of poirg§ ) which images, eigenvalue-based methods can be severely affected
have a distance between them that is less tharhen it can by the so-called curse of dimensionality [29] and the high
be shown thatih!1 and ! O, the so-called correlation between-band correlation. The curse of dimensionality refers



to: i) the empty space phenomenon in high dimensions, whiektensively for dimension reduction, among other applications.
makes it necessary to use more and more data samplesTioe idea is to perform a Singular Value Decomposition on
estimation purposes when the dimension becomes higher, #imel sample covariance matrix of a given dataset. The resulting
to ii) the fact that high-dimensional data often show mulkigenvectors are then sorted by decreasing order of eigenval-
ticollinearity, which can hamper noise estimation regressiares. The subspace spanned by the k'gtigenvectors is thk-
(see the Appendix). The effects of the local de-noising amtimensional space whose explained variance percentage is the
the local estimation of the noise power can also in uence IBighest. This means that when the data cloud is projected onto
estimation. Usually, small regions present a relatively highis k-dimensional subspace, the relative difference between
spectral homogeneity, in the sense that the materials in the variance of the data cloud and its projection is the lowest
different pixels of small regions are likely to be the samgyossible. To estimate the dimensionality of a dataset, one has
with slowly varying abundance coef cients. Then, noise cato select a threshold on the percentage of the explained vari-
be sometimes misinterpreted as a signal, compromising #mece. However, for some applications, including hyperspectral
local de-noising and noise power estimation. imaging, the manual choice of a threshold is not an easy
We describe and compare nine ID estimation algorithnigsk, since explained variance is not directly linked to the
when going from global to local studies of hyperspectradumber of sources, and also because variance can be very
data. We catalogue the ID algorithms according to their basell explained in a very low-dimensional subspace while the
methodologies and we highlight their main drawbacks whéentrinsic dimension of the data manifold might be higher. In the
working on local, often small, subsets of data. We also provigaperiments, we selected a threshold of 95% of the explained
some guidelines for a better use of these algorithms in loaadriance to determine the ID values.
studies which can be summarized as: (i) perform a global d8- Harsanyi, Farrand, and Chang (HFC)
noising or estimation of the noise power, that is, avoid the This dimensionality estimation method, termed HFC (for

use of local de-noising or local noise power estimation; (ip-larsanyi Farrand, and Chang) is another rather simple and
subsets below a size threshold produce unreliable estimati | ’

: o i CWﬁiely adopted technique to compute the ID of a hyperspectral
usually presgntmg an overestimation peak and an IncreaseyfRaset. The sample correlation and covariance matrRgs (
the :rror var]a(rj]ce. t th , foll ) . andKy, respectively) of the observations are both computed,
T © remfauz er of t edp?ger IS as 10 OIWS'_ ﬁec. g's <?Qnd their eigenvalues are sorted in decreasing order. HFC
overview of the compare estimation algorithms, Sec. ssumes that the sources are deterministic and nonnegative,

and hSeF:. IVdpresle;t the experllm?n.trl:ll local ID studies USIBAq that the noise is spectrally white (i.e. uncorrelated with
synthetic and real data, respectively; in Sec. V, we summarizgaqiant variance) with zero mean. In this case, if the ID is

the experlmentgl opservatlor)s and.prowde some guideline t,othen thek largest eigenvalues d®, are supposed to be
use the ID estimation algorithms in local experiments; an

. : . rger than those oK x because in the corresponding com-
nally, we give some conclusions in Sec. V1. ponents (coming from the transformation by the eigenvalue
decomposition) an endmember contributes to the correlation
eigenvalues in addition to the noise. Based on this, the

In this section, some methods for the estimation of the ID @fgorithm performs a hypothesis test on each eigenvalue set to
a hyperspectral image are listed and presented. These methpdsimine if the eigenvalues of the covariance and correlation
are the ones used for the experiments in Sections Ill and Iatrices are statistically signi cantly different or not. Note
Several algorithms in the following require a noise estimatigfat the algorithm's results depend on a user-tuned false alarm
step before computing the ID. The algorithm used in this papgfopability, setto =10 5 in the experiments. Every time the
to perform this noise estimation (originally suggested in [38{hst fails in a component, the ID value is incremented. The 1D
is presented in the Appendix. In [22], several algorithms fopa)ly corresponds to the number of times this test has failed.
noise estimation for hyperspectral images, based on linear fgy alternative version of the algorithm, called Noise Whitened
gression are compared. The noise estimation method suggegieg: (N\WHFC), assumes that the noise is uncorrelated but
in [38] was shown to be relatively robust in the simulations Gfjith possibly non-constant variance. It includes a noise-
that study. It is also the most widely used in the Communi%hitening step before using the same methodology as HFC.
Anyway, by running similar experiments as the ones describedBajorSki has argued in [5], [6] that the HFC method
below with known noise values (or equivalently a perfect nois@in only measure the dependence of the difference between
estimation), we obtained comparable results to those obtaingghsecutive eigenvalues of the covariance to the average values
by estimating the noise globally on the whole image. Thig the bands, which is unrelated to the ID value. Therefore,
shows that the noise estimation provided by this method seefié HEC method may be conceptually wrong. However, the
suited for local ID estimation. More details can be found ifhethod provides consistent results because the differences
a supplementary material document provided by the authosgtween consecutive covariance eigenvalues is in itself a useful
Next, we describe all the algorithms compared in this studygicator of the ID of the dataset, while relating this difference
Some of the properties of those are listed in Table I. to eigenvalues of the correlation matrix is not relevant [6].

A. Principal Component Analysis (PCA) C. Hyperspectral Subspace Identi cation by Minimum Error

Principal Component Analysis (PCA) is an extremely pogHYSIME)
ular technique for data analysis [27], which has been usedBonjour En V

Il. INTRINSIC DIMENSIONALITY ESTIMATION METHODS



Another popular algorithm to perform hyperspectral intrinE. Outlier Detection Method (ODM)
sic dimensionality estimation is Hyperspectral Subspace lden-
ti cation by Minimum Error (HySIME) [8]. For this algorithm,  The algorithm introduced in [4] estimates the ID of a
the noisen is assumed to be zero-mean Gaussian distributdgperspectral image by focusing on the noise and treating
the noise valuen and the noise correlation matriR, are the signal data points as outliers to the noise distribution. It
estimated using the band correlation method described in t@mprises three steps: the rst is a whitening step performed
Appendix. The sample observation correlation mafix is by a Minimum Noise Fraction (MNF) transform [24], in
computed, as well as the signal sample correlation m&gix which the noise estimation is performed using once again
taking the signal value$ by subtracting the estimated noisé¢he band-regression method. The noise is then whitened by
valuesft from the observations. The eigenvectors of the latteran eigenvalue decomposition of the noise covariance matrix
matrix are computed and sorted in descending order accordifig and scaled so as to get equal variances in each band,
to the corresponding eigenvalues. The subspace spanned byhhe de ning a noise hypersphere in the spectral space, and a
rst k eigenvectors corresponding to tkdargest eigenvalues principal component analysis is performed on the transformed
is the signal subspace, whereas the orthogonal complemerdata to obtain the nal transformed components. The nal
associated with the noise subspace. The separation betweerstep is the ID estimation through outlier detection, using
two is found by looking for the value df which minimizes Inter-Quartile Range (IQR) to de ne a boundary between the
the Mean Squared Error (MSE) between the signal and theise and the “outliers”. The Euclidean distances between the
projection of the observations on the subspace spanned bystandard deviation of each transformed band and the standard
rst k eigenvectors, taking into account the projection errateviation of the previous one are computed, and the ID is
power (decreasing function d&f) as well as the noise powerincremented every time the value is above the IQR threshold.
(increasing withk). Note that in this case, using the correlatiofit is a nonparametric technique, which does not make any
matrix is meaningful because iks rst eigenvectors de ne the assumption on the noise distribution (even though the band-
subspace minimizing the MSE between the projected data aegression based noise estimation algorithm used will provide

the original data. optimal performance when the noise is Gaussian, because of
the least squares step), and hence the nal step is supposed to
D. Random Matrix Theory (RMT) be robust to a small number of samples used for the estimation.

This technique was recently introduced in [14] and makes
use of the tools of Random Matrix Theory (RMT) to estimatE. Vertex Component Analysis/Negative ABundance Oriented
the ID of a hyperspectral dataset. It requires a noise estimatagorithm (VCA/NABO)
step which, in [14], is performed by the method presented
in [35]. The method extends an existing RMT-based methodThis technique [34] performs spectral unmixing and di-
for dimensionality estimation [33] to the case of spectralljnensionality estimation at the same time. It is noteworthy
correlated Gaussian noise. The underlying mixing model tisat this method is not eigenvalue-based. The idea is to start
also assumed to be linear. The general idea is that, unfflem an underestimation of the dimensionality of the dataset,
the assumption that each column of the n noise image and an estimation of the noise. Then an endmbember extrac-
is distributed according t¢ N (0; ), the random cross tion (using any Endmember Extraction Algorithm (EEA)) is
product matrixar” follows a Wishart distribution (which can performed, and the abundances are computed through linear
be seen as a multivariate generalization of tRedistribution) unconstrained least squares unmixing, dropping both the usual
Wq4( ;N), with d representing the degrees of freedom, amtlbundance Sum-to-one Constraint (ASC) and the Abundance

thed d scale matrix. The probability density function ofNonnegativity Constraint (ANC). Then, the power of the Root
the largest eigenvalue of such matrices has been extensiidigan Square Error (RMSE) is compared to the estimated
studied in RMT. In the context of dimensionality estimatiomoise power. If the former is higher than the latter, the
a criterion has been found to test which is the largest samplienensionality is incremented until the error power becomes
covariance eigenvalue which is statistically consistent with tisenaller than the estimated noise power. At this step, it should
distribution of the largest eigenvalue of a Wishart matrix. Inot be necessary to increase the dimensionality further since
other words, this means that the eigenvaluekgf found by the potential gain in RMSE will not be meaningful, and so
this process is the largest noise eigenvalue, and that all the number of endmembers has been found. It should be
larger sample covariance eigenvalues are associated to a sigoééd that the abundances are computed without using any
component. This criterion, originally derived for a numbeconstraints so that RMSE (in other words, the projection error)
of samplesn ! 1 and a number of variables (bands ins not due to the projection of the data onto the feasible
this application)d ! 1, with their ratio constant% = ¢ set of solutions but mainly to the fact that the subspace on
(usual conditions in RMT), has also shown to be reliable favhich the data are projected has too small a dimension. In
large but niten andd (see [14] and references therein). Théhe experiments described below, the chosen EEA is Vertex
computation of the eigenvalues of interest to be tested agai@stmponent Analysis (VCA) [36]. As this widely used EEA is
those of a Wishart matrix, as well as the testing criterion, diffstochastic by nature, the VCA/NABO algorithm is performed
in the general case if the uncorrelated noise assumption Réstimes, and the nal ID value is the mean of the results of
been dropped, but the basic principle remains the same. each iteration.



G. Hyperspectral Intrinsic Dimensionality Estimator through
Nearest Neighbor distance ratios (HIDENN)

The dimensionality estimation method described here was
presented in [26] and is called Hyperspectral Image Dimension
Estimation through Nearest Neighbor distance ratios (HI-
DENN). As VCA/NABO (though the methods are completely
different in nature), it differs from most of the other methods
mentioned in this paper in the sense that it is not based on any
eigenvalue decomposition whatsoever. The data is assumefi9ol- The spatial pattern used for the creation of the synthetic datasets.
come from samples of a manifold (it does not require any
particular mixing model, so long as the abundances are subject . . . o
to the ANC and the ASC), whose dimension is equal to t sed on a hypothe_S|s t_est using a Maximum A?Postenorl
number of endmembers in the image minus one. A particu AP) criterion. The |de§1 IS t(.) dgtermme whethgrf PaY 9
case of this is thék 1)-simplex de ned by a linear mixture gpends only on the noise distribution or also on the residual
of k materials. The algorithm estimates the dimension 8]{gnal.
the manifold (locally isomorphic t&®R* 1) using geometrical
properties and then provides the number of endmembers. In
that case, the distance between each data sample ahd ita. Datasets

nearest neighbor is computed for two well chosen valuds of . . . .
and using a variant of Eq. (3), an estimator of the correlationThe synthetic datasets built for this study were designed to
pEVvaluate how the previous algorithms behave from a local to a

dimension is built to estimate the ID at this location in th&
Igbal scale, and to assess the effects of the SNR as well as the

spectral space. The choice of these values is critical sing : o
they need to be small enough to reduce the in uence of tl%meerof bands of the hyperspectral data in the ID estimation.

noise, but also large enough to be statistically robust. T spatial pattern 0800 300 pixels comprising two kinds of

individual pixel values are then averaged to give the glob igned geometrical shapes (rectangles and ellipses) of various

ID of the dataset, requiring a suf cient number of sample%zes was synthesized (see Fig. 1). Different variants of the

for the estimation to be meaningful. As the estimation of th ptaset were created with different numbers of bar_1ds (48.0’
dimension of such a manifold in the spectral space is hig #0, 120, 60 and 30 bands) and a spectrally and spatially white

sensitive to noise, a denoising may be performed beforeha IélLIJQSSiZ%n ggisgowgg i%dg‘g So'alfj'to reach Idif][ezrgnt vaLue; of
in order to allow a more robust estimation of the ID. Th (20, 25, 30, 35, ), yielding a total o synthetic
algorithm becomes D-HIDENN (for Denoised-HIDENN) and™29¢s:

makes use once again of the band correlation noise estimatioh!€®: We have considered a spectrally and spatially white
technique described in [38]. noise. However as shown in [37], coloration of the noise

_ ) . (different variances in each bands, but still a diagonal noise
H. Modied Maximum Orthogonal Complement Algorithnq, 4 ance matrix) and correlation between bands for the
(MMOCA) noise can be signi cant in real scenarios. We have performed
This non eigenvalue-based ID estimation technique [2xperiments on synthetic datasets accounting for these two
MMOCA (for Modi ed Maximum Orthogonal Complement properties of the noise, in order to see the impact of non
Analysis), is actually a combination of the NWHFC algorithnyhite noise on local ID estimation. However, the conclusions
described above and the MOCA algorithm [28]. The formegre very similar to those of the experiments with white noise.
is used to provide an underestimation of the ID of the dataSHence' these results are not shown here but gathered in a
so that the latter can iterate on the ID values from th@pplementary document le provided by the authors.
starting point. More precisely, for a given candidate ID valye Furthermore, since we want to focus on the capability of
MOCA aims at nding a suboptimal solution to the followingthe different algorithms for local ID estimation, we only
optimization problem: consider Roger's method [38] for noise estimation. We tested
4) the impact of this choice by comparing the results of the
local ID estimation using this noise estimation strategy on
the whole image, to the use of the actual noise values. The
: results are similar in both cases, which shows that Roger's
(x; is the " column of X), and M is taken from the set of noise estimation strategy has little impact on the results, at
all possible bases of &-dimensional subspace &Y. P;r least when the noise is estimated globally.
is the projection matrix on the orthogonal complement of the From the spatial pattern of Fig 1, three distinct mixtures
subspace spanned By, such thatP? Y is the error of the were created: two mixtures of ve endmembers and one
projection of the whitened data on the signal subspace. Tokethree endmembers. A mixture of three endmembers was
I3 norm is used for its sensitivity to rare materials, since @mployed to de ne the background, while two other mixtures
rare material not accounted for by th& matrix will result of ve endmembers were situated in the rectangles and the
in a high error on the concerned pixels, even if they asmdlipses, respectively. The endmembers were randomly chosen
very few. The stopping criterion for this iterative process isom a mineral sublibrary of the U.S. Geological Survey

IIl. EXPERIMENTS ON SYNTHETIC DATASETS

M = arg minl} fP7 Yg
Nt

whereY is the whitened data matrix} (X) = SUgjXijj2



Property * Algorithm HySIME | RMT | ODM | VCA/NABO | HIDENN | D-HIDENN | PCA | HFC | MMOCA
Eigenvalue based X X X X X
Nearest neighbor distance ratids X X
Subspace estimation X X X
Noise estimation step X X X X X
Underlying Mixing Model Free LMM Free LMM Free Free Free | Free Free

TABLE |
PROPERTIES OF THE ALGORITHMS USED

(USGS) spectral librafy with the constraint that the Spectraland10 10 pixels are truncated for the sake of visibility, since
Angle Mapper between two signatures should not be less tH2600 and 900 tiles of this size can be tted into the image,
10 degrees or more than 30 degrees. This library contaimespectively).

the spectral signatures of various minerals acquired on theFor all the 25 con gurations of SNR and number of
ground with a eld spectrometer. The original endmembeisands, and for all tile sizes, each ID estimation algorithm
were downsampled by a factor of 2, 4, 8 and 16 to provids independently run on each tile. Since the noise is here
datasets with the selected range of spectral bands. Note #mctrally white, we used the HFC algorithm rather than its
some of the endmembers can be common to the differemise whitened counterpart, which has minimal impact on
mixtures. In the end, there are 9 distinct endmembers in tthe results. The ID estimation is performed in two different
image: 2 endmembers are common between the backgrogades, depending on the way the noise is estimated: locally
and the ellipses, another is common between the backgroumdglobally. The local noise estimatiormakes use of the
and the rectangles, and a last one is common between pideel values of the local subset only, while tigdobal noise
ellipses and the rectangles. Thus we can deduce that thereemtémationmakes use of the whole image. In both cases, we
4 endmembers which are repeated among the different pattezngployed a fast implementation of Roger's method [38], due
in the image, leading to a total of 9 distinct endmembert [8], and presented in Appendix.

The abundances of each pixel are sampled from a uniformNext, we describe the quality metrics de ned to evaluate
distribution over the probability simplex of the correspondinthe performance of each algorithm. Given the &et=
dimension (depending on the considered mixture), so that the 10; 15 ;100,110,120 ; 300y of window sizes, let
ASC and ANC are enforced. The mixed pixels are nallys = card(S) be the number of possible lengths; denotes
generated using the linear mixing model [10]: the number of windows of siz&, 1 i s. Letd; and

6”‘ respectively denote the actual and estimated ID values of

X = X a e +n 8i=1 ‘n (5) the f" window of sizeS;. We de ne ; as the average of the
i = ij ©ij i -4, ) . . .
i1 relative absolute errors committed on all windows of size
with x;;n; 2 RY, g 2 RY is thej™ endmember in pixel 1 Xi jd (’fij i

(6)

i, a 2 RP is the abundance vector for pixelandp; is the

number of endmembers in the considered pixel. ' !

i=1
We also de ne as the average of all the; values for all

B. Experimental setu
P P possible window lengths. This provides a single number to

Here we present the experimental methodology we followedsess the overall performance of the algorithms from the most
to assess how the different algorithms behave to estimate fhe,, (.e. smallest window size) to global ID estimation:

ID locally. Each of the 25 synthetic datasets was divided into

non-overlapping square tiles of various sizes, ranging fsom 1
5t0 100 100pixels with steps 06 5 pixels, and fromL00 = s i- (@)
100to 300 300pixels with steps o0 10 pixels. Therefore, i=1

we can study the performance of ID estimation algorithnfinally, 2 is an estimator of the variance of the absolute
from a very small local subset (25 pixels) to a global scenarielative error committed on all tiles of siZ:
(90000 pixels). The actual ID of each tile depends on which ',
region of the image it falls into (see Fig. 1). The possible , 1 Xi jd; Cli\ijj o 8
actual ID values plotted against the tile length size are shown PN 1 T (®)
in Fig. 2: 5 if the tile falls into a rectangle or an ellipse only, 3 1=t
if the tile falls into the background only, 6 if the tile falls intoC R

) i . . . Results
the background and one or multiple ellipses, 7 if the tile falls o )
into the background and one or multiple rectangles, and 9 if the e results of the ID estimations on the 25 synthetic datasets
tile falls into the background, one or multiple ellipses and orff® Presented for all algorithms in Figs. 4 to 14. In Fig. 4,
or multiple rectangles. A summary of these considerationstR€ value of (see Eq. (7)) is displayed as an image, for all
presented in Fig. 3, in which a stacked histogram of the tiles#9iS€ powers and numbers of bands, in the case of a local

shown. The rst two tile sizes (the bars corresponding to5 noise estimation. From this gure, we see that the algorithms
of the bottom row (PCA, HFC and MMOCA) are nearly

Lhttp://speclab.cr.usgs.gov/spectral-lib.html insensitive to the number of bands or the noise power. This is




because these algorithms do not require any noise estimatiggme everywhere), where a precise local noise estimation is
The results of PCA are highly dependent on the chosénpossible because of the too low number of samples. The
threshold for the explained variance, which is not directlpDM algorithm does not seem very affected by the change in
related to the ID value. MMOCA and HFC seem to perforrthe noise estimation. This probably comes from the paradigm
relatively well in all cases. The case of HIDENN is differentised in this algorithm: the objective of ODM is to identify the
since estimating the dimension of a manifold is an operatigignal as an outlier in a noise distribution.
which is highly sensitive to noise, and also dependent of theFig. 6 sums up these considerations by showing the differ-
dimension of the ambient space. We can see that if any exice between the values estimated using local and global
the two tested parameters here are tuned to a more favoraiése estimations,ocai  globa ThUS, @ positive value means
value (higher SNR or lower number of bands), the overathat local noise estimation performed worse than global noise
results get better, while in unfavourable con gurations, outliemsstimation, and vice versa. From the gure, it is clear than
in the estimated values severely decrease the performarncealmost all cases, global noise estimation performs better
The denoised version of the algorithm, D-HIDENN, helps téor algorithms sensitive to the way the noise is estimated. We
reduce the impact of this phenomenon, although it is stdkee that when the con guration becomes more favorable, the
present. This algorithm is still sensitive to the noise powetgesults of local noise estimation become closer to the ones
because the noise is not only estimated through its covariangéh global noise estimation. It happens in some cases that
matrix, but also subtracted from the observations. The last faestimating the noise locally performs slightly better than doing
algorithms, Hysime, RMT, ODM, and VCA/NABO presentit globally, but in most cases the results show that global noise
a more similar behavior. They all require a noise estimatioastimation is much more robust.
whose performance greatly impacts the ID estimation. We canin Figs. 7 and 8 we show in detail the results of the
notice immediately that the ID estimation for these algorithmi® estimation for all algorithms and all window lengths
is much more sensitive to the number of bands than to thre one representative noise and band number con guration,
noise power, which can be explained by the fact that tmespectively 30 dB and 120 bands, corresponding to the central
algorithm used for the noise estimation is based on a regressixels of the images of Figs. 4 and 5. This con guration was
of each band on the others, an operation becoming less precisesen because it is representative of many real scenarios.
when the number of bands increases. This is due to thbese gures are to be compared to the actual ID values
multicollinearity effect: when there are more bands, they ane Fig. 2. Two patterns in the ID estimations can be found
more correlated since adjacent wavelengths become clok®rmost algorithms: (i) a window size range where the 1D
and closer, and there are multiple good candidates for thstimate has a peak, which is too large, and (ii) a set of window
regression coef cients. Hence a small change in the data csimes for which there is a slow stabilization of the results, until
induce a large change in the regression coef cients (see tie support of the global image is reached.
Appendix). Fig. 7 shows, as expected, that for local noise estimation
Fig. 5 shows the same metric in the case of a global and for most algorithms, the ID estimation provides erroneous
noise estimation. For MMOCA, HFC, PCA and HIDDEN,\values for the smallest windows. For HySIME, RMT and
the results are very similar to the ones obtained for théCA/NABO we can observe an important peak in the esti-
local noise estimation since these algorithms do not estimaf@ted ID values for a certain window size. This peak means
the noise (they are not exactly equivalent since for bothat nearly all the values between zero and the maximum
experiments a different noise realization was used). Howevef,the peaks were attained for the different windows of this
for the other algorithms, notable differences are visible: tigéze, conrming the instability of the algorithms, and more
algorithms perform much better in the least favorable cas&peci cally of the noise estimation for small windows. The
As we will see in the following, this is due to the fact thaheight and position of the peak depends on the noise and band
global noise estimation allows a much better ID estimaticg#Pn guration, as we will discuss in the following. The peak
in small windows (provided the noise distribution is thds also present, to a lesser extent for HIDENN/D-HIDDEN
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. ) ) Fig. 3. Stacked Histogram of the tiles for each size, depending on the ID
Fig. 2. True ID values plotted against size of the subset. value.
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axis). The color scale ranges from blue (0.0002) to yellow (3.6 or higher).window size for all algorithms, for SNR = 30dB and 120 bands.
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algorithms because they estimate the dimension of a manifold
with too few samples, in which case noise is mistaken for
signal, especially for small regions which are likely to have
a low rank. ODM also shows this peak because of the noise
estimation, although its importance is mitigated by the outlier
in noise paradigm. For MMOCA, the peak has another origin
since the low dimensional subspace is estimated by resorting to
an optimization problem. In this case, for too small windows,
this problem is very ill-conditioned, which entails erroneous
estimations. Below a certain size, singular matrices appear
during the estimation and the algorithm fails to produce an
estimated value. Finally, PCA seems affected inasmuch as the
(overall small) variance seems harder to capture with only a
few dimensions. Finally, HFC seems to be less affected by the
number of pixels in the local regions, since the estimation does

Xnot show a peak in the ID values but more a linear increase

axis). The color scale ranges from blue (0.0002) to yellow (3.1 or higher).WIth the window size.
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In Fig. 8, the same plots are presented, but in this case
for global noise estimation. As before, HIDDEN, PCA, HFC
and MMOCA are not affected since they do not require a
noise estimation step. ODM does not seem very affected
either, probably because of its particular signal and noise
model. For HySIME the peak is also present, because while
the noise correlation matrix estimation is much more precise,
the signal correlation matrix still has to be estimated in a
small dataset. However, the peak decreases faster and is less
important in amplitude than in the local case. However, RMT
and VCA/NABO, seem very affected by the change in noise
estimation. The corresponding plots are now quite similar in
shape to the actual ID values in Fig. 2 (VCA/NABO does
not require the estimation of the signal covariance matrix).
Finally, for D-HIDENN, global noise estimation allows the
suppression of the most aberrant outliers from the estimated
ID values. Overall, it seems that global noise estimation is very
bene cial to ID estimation, but it relies on the assumption that

global @s a function of SNR in dB (y axis) and number ofthe nojse is spatially i.i.d. in all the image.

bands (x axis). The color scale ranges from blue (-0.48) to yellow (3.49 or

higher).

Another aspect of local ID estimation shown in Figs. 9to 12,
is the transition between erroneous ID estimations for small
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Fig. 8. Estimated ID in the case of global noise estimation plotted against

window size for all algorithms, for SNR = 30dB and 120 bands. Fig. 9. ; as a function of the window size2 S in the case of local noise

estimation, for SNR = 30dB and 120 bands. The standard deviation of the
estimated values is represented by the red curves.

windows to correct ID estimations when the window sizes get

suf ciently high, until the size of the whole image is reached. HySIME RMT
The quality metric ; (see Eq. (6)) is plotted in blue against ©9 0.6
. . 0.4 0.4
the window lengtt5;, while the dashed red curves correspond- '] "0 5
to the quality metric plus and minus one standard deviatior g~ 0
(the standard deviation is de ned as the square root of Eq. (8) 50 100 150 200 50 100 150 200 50 100 150 200
are shown in dashed red. Fig. 9 shows the value;dbr the VCA/NABO HIDENN D-HIDENN

local noise estimation. Fig. 10 is simply a zoomed version of 0.6
Fig. 9 to show what happens after the peak in the estimation:- 4 . -
From these two gures, we clearly see that for the algorithms og :.'\"’,'.M_\_': A
concerned, the peak is accompanied by a large variance intt 50 100 150 200 %0 100 150 200 %0 100 150 200

estimations, which quickly decreases as the number of sampls e e MMOGA
get higher. Note that for large window sizes, this phenomenol ¢ 77— N 0.6 0.6
is also due to the fact that there are fewer windows of this 0.4~~~ -/ _0.4 ) .04
size that we can t into the image. For global noise estimation 92 NN 02

. 0 o= & e —
(Figs. 11 and 12), we see that apart from HySIME and ODM. 55150 150 200 50 100 150 200 50 100 150 200
the estimations in small windows are less subject to a higt. Window size | Window size | Window size |
Va,mance’ ,and the eStlmatlon,for ea(_:h window size in Sm%'.'g. 10. ; as a function of the window size2 S\ [50;200] in the case
windows is much more precise, which conrms the results local noise estimation, for SNR = 30dB and 120 bands. The results for
of the previous gures. The observations drawn from theg#denn are shown on a different scale than the other algorithms.

gures allow one to de ne empirically a size threshold above

which the noise estimation will be reliable. _ . .

. . . is correctly estimated (except for MMOCA which does not
: Finally, Figs. 13 and 1.4 deplg:t a last but ponethele guire a noise estimation), and its position is less in uenced
important aspect of the noise estimation: for which W|nd0\6/ the number of bands
size does the peak appear? We discuss this particular p0|r¥t, '
very linked to the de nition of a reliability threshold for
the estimation, considering this time several band number IV. EXPERIMENTS ON REAL DATASETS
con gurations at xed SNR, and vice versa, but only for the al- In this section we present the experiments we performed on
gorithms concerned.é. HySIME, RMT, ODM, VCA/NABO two real datasets in order to validate the observations made
and MMOCA). For local noise estimation (Fig. 13), weon the synthetic datasets.
immediately see that the size at which the peak appears for
all algorithms is much more related to the number of bands Datasets
considered in the estimation than it is to the noise level, whichThe rst dataset we used is an image acquired by NASA's
more in uences its height. The higher the number of band8VIRIS sensor over the Cuprite mining district in Nevada,
the later the peak appears, which means that larger windoWSA. It is a 350 350 image comprising188 spectral
will be necessary for a correct ID estimation. In the case bands, which has been often used to validate ID estimation
global noise estimation (Fig. 14), many cases are favoralakgorithms. We estimated the SNR of each band of this image
enough for the algorithms not to present a peak, since the naising the algorithm presented in the Appendix and obtained an
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Fig. 14. Window size of the ID peak (corresponding to spurious estimation)
plotted against SNR for 120 bands (top row) or against number of bands at
xed SNR = 30dB (bottom row), for global noise estimation.Blank values
indicate that no peak is present in the corresponding con guration.

Fig. 15. RGB representation of the Cuprite dataset.

average SNR (over all bands) of 27dB. It is usually considered
that there are at least 17 different materials (mostly minerals)
in this image, based on ground observations and mineral maps
of the sité. In addition, according to experiments performed in
[15], the noise in this image in not very spectrally correlated.
An RGB representation of this image is shown in Fig 15, using
bands 40,30 and 20 of the image.

The second dataset was acquired by the CASI 1500 sensor
over the Barrax region, in the south of Spain, in 200Bhe
97 847image comprises 144 bands in the VNIR region (370-
%950 nm) and the estimated average SNR is 43dB. A RGB
representation of this scene is shown in Fig. 16, using bands
52,35 and 25.

B. Experimental setup

For both datasets, as for the synthetic data, we perform
local ID estimation on non-overlapping square tiles of different
sizes, from5 5 to 100 100 pixels size with steps of
5 5 pixels, and from then on, frod00 100 pixels size
to the maximum possible with steps &0 10 pixels. For
the Barrax dataset, we considered only the tiles in which
no unobserved values were present. For both datasets, ID

2http://speclab.cr.usgs.gov/cuprite95.tgif.2. 2unap. gif.
Shitp://www.uv.es/ leo/sen2 ex/

Fig. 13. Window size of the ID peak (corresponding to spurious estimatio|

plotted against SNR for 120 bands (top row) or against number of band
xed SNR = 30dB (bottom row), for local noise estimation. Blank value

indicate that no peak is present in the corresponding con guration.

Fig. 16. RGB representation of the Barrax dataset.
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estimation was carried out for all algorithms, for local and HySIME RMT ODM
10

global noise estimation. In the absence of ground truth, ngo e 550
cannot compute the metrics used for the synthetic datase'& so g 50 g
but we can compare qualitatively the shapes of the local IL& N — i . ——] )
plots to the observations made for the synthetic data. o 20 ~ 400 0 200 = 400 O 200 ~ 400
indow size Window size Window size
VCA NABO HIDENN D-HIDENN
C. Results o4 020 o 507
First, we compared the results of the ID estimations for bott ; 201 § 10 g
datasets in the case of local noise estimation (see Figs. 17 a i £ L
18). The res_ults s_hovv_ th_at in both cases, the gent_aral behavi © 200 ~ 400 0 200 ~ 400 O 200 = 400
of the algorithms is similar to that for the synthetic datasets PCA HFC MMOCA

50

We can see that HySIME, RMT, ODM and VCA/NABO 27
show a clear peak in the ID estimations for small windows 10;
which is clearer for the Cuprite dataset, probably because @ S o
is noisier than the Barrax data. The peaks appear rough ° 200 400 Wi 400 b 200 400
for the same window sizes as in the simulated data, which

is Iogical since the number of bands is comparable in boﬁg‘. 17‘. Estimated II_D of t_he Cup_rite dataset in.the case of local noise
datasets. Then the peaks quickly decrease and seem to stabfffiggation plotted against window size for all aigorithms.

around different values for each algorithm when we approach

global ID estimation. Note that the zero values which can

appear for very small windows and some algorithms are due

to a very poor noise estimation. For example, in the case of

HySIME, the estimated noise values were so high that the

curves showing the projection error and the noise power never

crossed, hence the zero estimated value. For HIDENN and D-

HIDENN, the results are consistent with the synthetic data:

large outliers appear for very small windows, and then, the

algorithm quickly stabilizes with smaller outlier values if the

data has been de-noised beforehand. The performance of PCA

still depends heavily on the arbitrary choice of the variance

percentage (still 95% here). For a percentage lower than 95%,

the estimated ID is rarely above 3 for the global images,

showing that the ID is not linked to the variance of the data

cloud. The performance improves for larger thresholds, but the

tuning is empirical and data-dependent. HFC still obtains a

more or less linear behavior with the increase in window size.

Finally, the MMOCA algorithm fails to produce a value forrig. 18. Estimated ID of the Barrax dataset in the case of local noise
a large range of window sizes because of the ill-conditioni timation plotted against window size for all algorithms. Some outliers for
of the subspace estimation problem (which explains why orrﬁpe”” and D-Hidenn are not displayed.

windows bigger tharb0 50 pixels appear for the Cuprite

dataset and windows ove20 20 pixels for the Barrax hejr estimated global ID values (in the Cuprite case, around
dataset). 20 for HySIME, HFC and HIDENN, and less for VCA/NABO
For global noise estimation, and for the algorithms requiringag pcA, and much higher for RMT, ODM and MMOCA).
noise estimation, the results are still consistent with the onesygtice that for both datasets, the estimated global noise ID
obtained on the synthetic data (see Figs. 19 and 20). The pggfes for large window sizes match the ones with the same
in the estimated values is still present for the HySIME angingows, but obtained in a local noise estimation context. This

ODM algorithms with the Cuprite data, but very attenuate@ngs to con rm that the spatial i.i.d. assumption for the noise
with respect to the case of local noise estimation. For RM{y|ds in these datasets.

and VCA/NABO, as for the synthetic datasets in such noise
and band con guration, the peak has vanished. We can see that
when the windows get larger, both noise estimation strategiedn this section, we summarize the observations made for the
perform in an increasingly similar way, as expected. Froﬁynthetic and real datasets, and we provide some indications
the gures above, we can de ne an empirica| threshold abo how to use the ID estimation algorithms in a local setting.
which the ID estimation would be reliable: for instance, for thErom the results, we observed that there are three main
Cuprite dataset, we can set the window size threshoBDto ~Parameters in uencing local ID estimation:

30 pixels for the case of local noise estimation, and a window 1) The number of pixels in the local region.

size threshold oft5 15 pixels for global noise estimation, 2) The number of spectral bands.

for all algorithms. Note that the algorithms can differ a lot in 3) The noise level.

L ; ' . NCRPRN
e IR S
0

Estimated ID

Estimated ID
Estimated ID

V. DISCUSSION
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hamper noise estimation strategies exploiting the between band
correlations.

These considerations raise the question of how to choose
a minimum value for the window size, below which the ID
estimation is unreliable. One has to take into account the
position of the peak, but also the speed of the decrease after
it. A threshold can be roughly de ned visually from plots
similar to those in Fig. 7. The most favorable con guration
for local ID estimation is then a low number of bands and a
good SNR. In any case, for those algorithms, a global noise
estimation is preferable, since it largely reduces the uncertainty
due to the noise estimation. The only case when a local noise
estimation is preferable is in the case of a spatially non-i.i.d.
noise. MMOCA does not require a noise estimation, but fails
to produce a result when the underlying optimization problem
is too ill-conditioned. For the other algorithms, HIDDEN and
D-HIDDEN have a tendency to produce large outliers when

Fig. 19. Estimated ID of the Cuprite dataset in the case of global noi$8€ number of samples is too few. HFC seems to behave more

estimation plotted against window size for all algorithms

naturally for small windows, since small estimated ID values
come out in this case.

Next, we need to determine which algorithm to choose to
estimate the ID locally. To guide the reader in his choice, we
summarize below and in Table Il the strengths and weaknesses

of each tested algorithm:

Fig. 20. Estimated ID of the Barrax dataset in the case of global noise
estimation plotted against window size for all algorithms. Some outliers for
Hidenn and D-Hidenn are not displayed.

A majority of the tested algorithms require a noise estima-
tion step. For these algorithms, a clear pattern can be seen
when estimating ID in regions of the datasets at different
scales, often comprising a peak in the overestimation of the
ID in unfavorable cases. This pattern is especially present
when the noise is estimated locally, in each tile of the image.
When such a peak appears, its amplitude increases with the
noise power, while its position is especially determined by
the number of bands in the image: the more bands, the
larger the window size where the peak appears, which means
that the ID estimation will be unreliable for larger windows
than if there were fewer spectral bands. This phenonenon is
linked to the curse of dimensionality: since higher dimensional

HySIME: relatively robust for local ID estimation, pro-
vided the noise is estimated globally, but still subject to
overestimation when the window size is too small because
it requires the estimation of the signal correlation matrix.
It is also relatively fast and produced good results on
synthetic datasets.

RMT: comparable to HySIME, with good performance
on the synthetic datasets. It does not show a peak in the
ID values when the noise is estimated globally (at least
for reasonable band and noise con gurations). Relatively
fast.

ODM: Relatively fast, but less precise and more sensitive
to the number of bands than the previous two algorithms.
Less sensitive to local/global noise estimation.
VCA/NABO: same advantages as the previous ones,
which fall in the same category (although NABO is not
eigenvalue-based), but quite computationally intensive
since it requires a spectral unmixing step. Slightly more
sensitive to noise than most algorithms.

HIDENN / D-HIDENN: Not eigenvalue based, but very
sensitive to noise, even though its effect can be mitigated
but not suppressed when a de-noising step is performed.
Poor precision in low SNR cases. Relatively slow.

HFC: Practically insensitive to noise and band number.
Provides underestimated ID values independently of the
scale, although they are overall relatively accurate. De-
pends on a user-de ned threshold. It can be argued that
it is theoretically wrong and that the results depend on
the average values of the bands and not directly on the
ID of the data. Fast.

PCA: De nitely not a good candidate: the performance

spaces are sparser, more samples are required in order thatis conditioned to the arbitrary choice of the threshold.

estimation algorithms obtain reliable results. In addition, the
multicollinearity phenomenon in high dimensions can also

MMOCA: Does not require a noise estimation, good
performance. Computationally rather intensive, especially
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for small windows. Does not work for too small windowsused in hyperspectral data analysis, have been evaluated and
because of ill conditioning. discussed (especially for their behavior in case of correlated

VI. CONCLUSIONS noise) in [15].

In this paper, we presented a study of several Intrinsic Di-
mensionality estimation algorithms for hyperspectral imaging The authors would like to thank Prof. Marco Diani and Prof.
in the context of local ID estimation. The results on botRob Heylen for providing the codes of the MMOCA and HID-
synthetic and real data show that in general, when tryif@EN / D-HIDDEN algorithms, respectively. The CASI 1500
to use these algorithms on local subsets of a large imag®age used in this paper has been acquired in the framework
one has to be careful with: (i) the number of samples in tltd the SEN2FLEX campaign and is provided by ESA under
subsets, which have to be suf ciently numerous for estimatidhe project 6519. We gratefully thank the Associate Editor
processes to be reliable; and, (ii) when noise estimation or d¢io handled our manuscript and the Anonymous Reviewers
noising is required, a local approach will yield a decrease far their comments and suggestions which greatly improved
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performance, although this problem can be highly mitigated Ibye
estimating the noise on the whole image. Two other important

factors also have consequences on the results: the noise level

and the number of spectral bands. A low SNR and a high
number of bands will increase the chance of mistaking noisé]
for signal and make the estimation more prone to fail in
higher dimensional settings, respectively. We summed up the
properties of nine ID estimation algorithms and showed how?!
they behaved in local areas of the image, and evidenced their
respective strengths and weaknesses for local ID estimatioR]
Future work will includeconsiderations developed in this paper
in the pipelines of algorithms designed for other application§4]
on hyperspectral imaging which resort to local subsets of
the image, such as local spectral unmixing or local supelié
resolution techniques.

APPENDIX 6]
NOISE ESTIMATION

The noise estimation algorithm used in the experiments ig]
based on the use of the high correlation between adjacent
bands and was rst brought to the hyperspectral imagingg)
community in [38]. The idea behind this strategy is to perform
a linear regression of each spectral band on all the other ban(@,
that is to say to express all the pixels from one spectral ban
(stacked into en 1 vector) as a linear combination of the
pixel vectors of all the other bands. If we denote Xy« the
data matrixX with the k™ row x, (one entire band) removed,
we can estimate the optimal regression paramésterd R9 !
of xx on Xg in a least square sense by:

b = Xk X3k (XekXge) *

10]

(11]

9)
and we can nally estimate the noise vecto 2 R" in

bandk by:
y bk X6k (10)

[12]
Wy = Xk [13]
This difference between the observations in the considered
spectral band and the result of the regression is assumeq; 9
be due to noise, providing the estimated noise values and
allowing the estimation of the noise sample correlation matri

which is assumed to be diagonal (and hence does not consﬁj%]r

spectrally correlated noise) with difference variances in each
spectral band. Other methods exist to perform hyperspec}irlaflgj
noise estimation, such as the so-called shift difference metho

[24] for instance, which assumes that the differences between
adjacent pixels are mainly due to different realizations of i.i.&7]
noise, the signal component being practically the same. Two
other noise estimation strategies [35] [39] which have been

quality of the paper.
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