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ABSTRACT

The paper addresses the problem of approximating the detector dis-
tribution used in target detection embedded in a disturbance com-
posed of a low rank Gaussian noise and a white Gaussian noise. In
this context, it is interesting to use an adaptive version of the Low
Rank Normalized Matched Filter (LR-ANMF) detector, which is a
function of the estimated projector onto the low rank noise subspace.
We will show that the traditional approximation of the LR-ANMF
detector distribution is not always the better one. In this paper, we
propose to perform its limits when the number of secondary data
K and the data dimension m both tend to infinity at the same rate
m/K → c ∈ (0,∞). Then, we give the theoretical distributions
of these limits in the large dimensional regime and approximate the
LR-ANMF detector distribution by them. The comparison of empir-
ical and theoretical distributions on a jamming application shows the
interest of our approach.

Index Terms— Low rank detection, Random matrix theory,
Asymptotic distribution, Adaptive Normalized Matched Filter.

1. INTRODUCTION

In the context of target detection in a noise composed of a low
rank (LR) Gaussian noise and an AWGN (Additive White Gaussian
Noise), one could use the Low Rank Normalized Matched Filter
(LR-NMF) detector [1] in order to exploit this low rank structure.
Indeed, although its full rank version (NMF detector [2]) depends
on the covariance matrix, the LR-NMF detector only requires the
projector onto the LR noise subspace.

However, in practice, this projector and the covariance matrix
are unknown and it is necessary to estimate them usingK secondary
data which share the same properties as the tested data. Traditionally,
the projector is estimated using the estimated covariance matrix: the
Sample Covariance Matrix (SCM). Then, the adaptive detector is
obtained substituting the true projector by the estimated one in the
LR-NMF detector. The obtained detector is then named LR-ANMF
(LR Adaptive NMF) detector. One also could note that it needs much
less secondary data as its classical version (ANMF detector [3]) for
equivalent performances in terms of filtering [4, 5], which is useful
in practice.

Hence, engineers should want to calibrate their detector with an
automatic tuning of the threshold in order to obtain a certain false
alarm probability. In order to do this, they need the knowledge of
the distribution of the employed detector, here the LR-ANMF de-
tector. Unfortunately, its distribution is not known. That is why,
we classically approximate it by the well-known distribution of the
LR-NMF detector [1].

Nevertheless, depending on the data dimension m and the num-
ber of secondary data K, this approximation could not be always

the most appropriated. However, using the Random Matrix The-
ory (RMT), one could better approximate the distribution of the LR-
ANMF detector. Indeed, it is composed of 3 quadratic forms and,
under the large dimensional regime (i.e. m,K → ∞ at the same
rate m/K → c ∈ (0,+∞)), their limits differ and depend on c
and on the SCM model. Thus, we propose to study the LR-ANMF
detector convergences when m,K →∞ at the same ratio under the
two main data/SCM models considered in RMT. The first model is
a basic model proposed by [6, 7] where the multiplicity of the co-
variance matrix’s eigenvalues grows with the dimensionm at a fixed
ratio. The second data model, the spiked model introduced by [8]
considers that the eigenvalues multiplicity corresponding to the low
rank signal is fixed at the same value even if m increases and leads
to a deterministic limit of the quadratic forms [9]. Then, the distribu-
tion of the limits in the large dimensional regime will be established
in an intermediate form which will be finalized in a forthcoming pa-
per. They will allow to more precisely approximate the LR-ANMF
detector distribution.

As an illustration of the interest of the proposed approximations,
the jamming application is studied. The purpose of this applica-
tion is to detect a target despite jammers which emit energy in order
to disrupt the target signal. In this case, the LR Gaussian noise is
composed of the different jammers. The simulations will compare
the empirical distributions of the LR-NMF, the LR-ANMF and their
RMT limits as well as their theoretical distributions.

The paper is organized as follows: Section 2 presents the prob-
lem statement and the definition of the LR-NMF and the LR-ANMF
detectors. Section 3 contains the main theoretical contributions of
this work, i.e. the limits of the LR-ANMF detector in the large
dimensional regime for two models of covariance matrix and their
theoretical distributions. Finally, Section 4 shows the jamming ap-
plication which illustrates the obtained results.

Notations: An italic letter stands for a scalar quantity, boldface
lowercase (uppercase) characters stand for vectors (matrices) and
(.)H stands for the conjugate transpose. IN is the N × N iden-
tity matrix. diag(.) denotes the diagonalization operator such as
(A)i,i = (diag(a))i,i = (a)i and equal to zero otherwise. [[a, b]]
is the set defined by

{
x ∈ Z : a 6 x 6 b, ∀(a, b) ∈ Z2

}
. X ⊥ Y

for the random variables X and Y stands for independence between
them. The abbreviation iid stems for independent and identically
distributed.

2. LOW RANK DETECTION

2.1. Problem formulation

In an observation vector x ∈ Cm×1, the problem consists in de-
tecting a complex signal d corrupted by an additive noise c + n.
This detection problem can be formulated as the following binary



hypothesis test:{
H0 : x = c+ n xk = ck + nk, k ∈ [[1,K]]
H1 : x = d+ c+ n xk = ck + nk, k ∈ [[1,K]]

(1)

where the target response d = αa(Θd), α is the unknown am-
plitude and a(Θd) is the target localization steering vector. The
xk’s∈ Cm×1 correspond to the K iid signal-free data (secondary
data) used for the noise parameters estimation. This noise is com-
posed of an AWGN, nk ∈ Cm×1 (resp. n) ∼ CN (0, σ2Im) and a
LR Gaussian noise ck ∈ Cm×1 (resp. c), modeled by a zero-mean
complex Gaussian vector with a normalized covariance matrix C
(tr(C) = m), i.e. ck ∼ CN (0,C). Consequently, the covariance
matrix of the secondary data is R = C + σ2Im ∈ Cm×m. More-
over, considering a LR Gaussian noise, one has rank (C) = r � m
and hence, the eigendecomposition of C is C =

∑r
i=1 γiuiu

H
i

where γi and ui are the non-zero eigenvalues and the associated
eigenvectors of C respectively and unknown in practice. This leads
to R =

∑m
i=1 λiuiu

H
i with λ1 = γ1+σ2 > · · · > λr = γr+σ

2 >
λr+1 = · · · = λm = σ2. Then, we define the projector onto the
LR Gaussian noise subspace Πc and the projector onto the subspace
orthogonal to the LR Gaussian noise subspace Π⊥c :{

Πc =
∑r
i=1 uiu

H
i

Π⊥c = Im −Πc =
∑m
i=r+1 uiu

H
i

(2)

2.2. LR-NMF and LR-ANMF detectors

A filtering preprocessing is applied on the observation vector x in
order to remove the LR Gaussian noise. This leads to the following
standard signal detection problem:{

H0 : r = UH
0 x = n0

H1 : r = UH
0 x = d0 + n0

(3)

where U0 = [ur+1, · · · ,um]. Solving this detection problem and
considering the white noise power of n0 as unknown leads to the
LR-NMF [1] detector:

Λ(Θ) =
|a(Θ)HΠ⊥c x|2

(a(Θ)HΠ⊥c a(Θ))(xHΠ⊥c x)

H1

≷
H0

δ (4)

where δ stands for the detection threshold.
However, in practice, the covariance matrix R and the projector

Π⊥c are unknown and have to be estimated. Classically, the Sample
Covariance Matrix (SCM) is computed from the K secondary data
and can be written as R̂SCM = 1

K

∑K
k=1 xkx

H
k =

∑m
i=1 λ̂iûiû

H
i

where λ̂i and ûi are the SCM eigenvalues and eigenvectors respec-
tively. Finally, the estimated projectors are:

Π̂c,SCM =
∑r
i=1 ûiû

H
i

Π̂⊥c,SCM = Im − Π̂c,SCM =
∑m
i=r+1 ûiû

H
i ,

(5)

leading to the LR-ANMF detector, written as:

Λ̂(Θ) =
|a(Θ)HΠ̂⊥c,SCMx|2

(a(Θ)HΠ̂⊥c,SCMa(Θ))(xHΠ̂⊥c,SCMx)

H1

≷
H0

ξ (6)

where ξ stands for the detection threshold.

3. STATISTICAL ANALYSIS OF THE LR-ANMF
DETECTOR

This section contains the main theoretical contributions of this work.
First, the limits of the LR-ANMF detector are established for differ-
ent covariance matrix models in the large dimensional regime. Then,
the corresponding asymptotic distributions are derived.

3.1. Convergences

It is well known that the LR-ANMF is consistent for a fixedm when
K → ∞, i.e. it converges to the LR-NMF. However, it has been
proved in [10], using RMT techniques, that the LR-ANMF con-
verges to another undetailed quantity when both m,K → ∞ with
m/K → c. This quantity depends on the covariance matrix model
(and of course on c). This paper focuses on the two most prevalent
models: the model proposed by [6, 7] (named GMUSIC model in
the remainder of the paper) and the spiked model [8, 9, 11].

The GMUSIC model considers that the multiplicity of the eigen-
values of R increases with m at a fixed ratio. On the other hand,
since our problem consists in a LR Gaussian noise and a white Gaus-
sian noise, the spiked model better fits with our data as it considers
the signal of interest as a sum of r fixed rank perturbations, e.g. there
are r eigenvalues of fixed multiplicity as m increases. To prove the
convergences, we assume the following standard hypotheses.

(As1) R has uniformly bounded spectral norm ∀m ∈ N∗, i.e.
∀i ∈ [[1,m]], λi <∞.

(As2) The vectors s1, s2 ∈ Cm×1 used in the quadratic forms
(here a(Θ) and x) have uniformly bounded Euclidean norm
∀m ∈ N∗. In practice, they will be fixed to 1.

(As3) Let Y ∈ Cm×K having iid entries yij ∼ CN (0, 1), abso-
lutely continuous and with E[|yij |8] <∞.

(As4) Let Y ∈ Cm×K defined as in (As3). Then, its distribu-
tion is invariant by left multiplication by a deterministic
unitary matrix. Moreover, the eigenvalues empirical dis-
tribution function of 1

K
YYH almost surely (a.s.) con-

verges to the Marc̆enko-Pastur distribution [12] with support
[(1−

√
c)2, (1 +

√
c)2].

(As5) The maximum (resp. minimum) eigenvalue of 1
K

YYH tends
a.s. to (1 +

√
c)2 (resp. to (1−

√
c)2).

As a comment, Y can be related to R̂SCM with the relation
R̂SCM = R1/2

(
1
K

YYH
)
R1/2. Finally, the last assumption,

namely the separation condition depends on the model of the SCM:

(As6-GMUSIC) 1/c is lower bounded (see [6]).

(As6-SPIKED) The eigenvalues of R satisfy |λi − 1| >
√
c,

∀i ∈ [[1, r]].

Under (As1-As5, As6-GMUSIC), [6] proved that:

sH1 Π̂⊥c,SCMs2
a.s.−→

m,K→∞
m/K→c<∞

sH1 Π̄⊥c,Gs2 (7)

with Π̄⊥c,G =
∑m
i=1 w

G
i uiu

H
i and

wG
i =

1− 1
m−r−1

r∑
n=1

(
σ2

λn−σ2 − µm
λn−µm

)
if i > r

σ2

λi−σ2 − µm
λi−µm

else
(8)

where µ1 > · · · > µm are the eigenvalues of diag(λ)− c
m

√
λ
√
λ
T

,
λ = [λ1, · · · , λm]T and σ2 is the white noise power.



Under (As1-As5, As6-SPIKED), [9] proved that

sH1 Π̂⊥c,SCMs2
a.s.−→

m,K→∞
m/K→c<∞

sH1 Π̄⊥c,Ss2 (9)

with Π̄⊥c,S =
∑m
i=1 w

S
i uiu

H
i and

wS
i =

1 if i > r

1− 1− c(λi − 1)−2

1 + c(λi − 1)−1
else

(10)

Thus, using the Slutsky’s theorem and Eqs.(7) and (9), one obtains
the limits of the LR-ANMF when m,K →∞ with m/K → c:

GMUSIC model

Λ̂(Θ)
P−→

m,K→∞
m/K→c<∞

Λ̄G(Θ) =
|a(Θ)HΠ̄⊥c,Gx|2

(a(Θ)HΠ̄⊥c,Ga(Θ))(xHΠ̄⊥c,Gx) (11)

Spiked model

Λ̂(Θ)
P−→

m,K→∞
m/K→c<∞

Λ̄S(Θ) =
|a(Θ)HΠ̄⊥c,Sx|2

(a(Θ)HΠ̄⊥c,Sa(Θ))(xHΠ̄⊥c,Sx) (12)

Notice that, since the convergence occurs for a given model and
whenm→∞, these limits are expected to be better approximations
of the LR-ANMF than the LR-NMF. This will be highlighted in the
simulations section.

3.2. Asymptotic distributions

This section is devoted to the derivation of the theoretical distribu-
tions of the LR-ANMF limits, under H0, permitting to obtain the
threshold for a fixed false alarm probability. These distributions will
allow to have a better approximation of the LR-ANMF distribution
than the classical one given by the LR-NMF distribution [1]. This is
of utmost interest for instance, to obtain a better false alarm regula-
tion. This is the purpose of the following theorem.

Theorem 1. Letw (resp. Λ̄(Θ)) stands forwG orwS (resp. Λ̄G(Θ)
or Λ̄S(Θ)) according to the underlying model (GMUSIC or spiked).
Then, under H0, (As1-As5) and the separation condition (As6),
Λ̄(Θ) shares the distribution of the following quantity:∑m

i=1 αiXi + 2
∑m
i,j=1
i<j

βij (<(zij)Yij + =(zij)Zij)

C
∑m
i=1 γiXi

(13)

where 
Xi

iid∼ χ2
i (2)

Yij ∼ LaplaceYij(0, 1/2)

Zij ∼ LaplaceZij(0, 1/2)

(14)

and, if we define U = [u1, · · · ,um],

αi = 1
2
w2
i λi|a(Θ)Hui|2

βij = wiwj
√
λiλj

zij = uHi a(Θ)a(Θ)Huj

γi = wiλi

C = 1
2
||diag([w1, · · · , wm])UHa(Θ)||22

(15)

Moreover, Yij (resp. Zij) is independent of Yi′j′ (resp. Zi′j′ ) for
{i, j} 6= {i′, j′} and Yij and Xi, Zij and Xi, and Yij and Zij are
uncorrelated (but not independent) for all i, j.

Proof. Due to the lack of space, the detailed proof is omitted and
will appear in a forthcoming paper. However, the proof outline is as
follows. First, some rotations are applied on the different quadratic
forms appearing in Λ̄(Θ) in order to obtain functions of standard
complex Gaussian random variables. Then, after some algebraic ma-
nipulations, Λ̄(Θ) can be reduced to the form given by Eq.(13).

Observe that the distribution of Eq.(13) provides a distribution
completely independent of the observation vectors x and xk’s. Al-
though this relationship is exploited in the paper in order to better
approximate the distribution of the LR-ANMF, this result can be in-
terpreted as follows. An immediate consequence of Theorem 1 is
to automatically and theoretically regulate the false alarm probabil-
ity or equivalently the threshold ξ (Eq.(6)) as a function of Θ and
the ratio c (abusively equal to m/K) which is not the case with the
LR-NMF distribution.

4. SIMULATIONS

In this section, the limits of the LR-ANMF and the corresponding
distributions under H0 are analysed through Monte-Carlo simula-
tions.

4.1. Parameters
To illustrate the interest of these convergences, the jamming appli-
cation is chosen. The main purpose of this application is to detect
a target thanks to a uniform linear antenna composed of m sensors
despite the presence of jamming. The response of the jamming, c is
composed of signals similar to the target response. In this section,
except for the convergences whenm,K →∞ at the same rate c, we
choosem = 100 in order to have a large number for the data dimen-
sion. Even if, in practice, this number could not be always realistic,
it allows to highlight the interest of RMT where matrices are built
from high dimensional observations. Moreover, such a value can be
realistic in some applications as STAP [13].

Let us denote Θ = θ where θ is the AoA (Angle of Arrival).
As the limits are studied under the H0 hypothesis, d = 0m×1. The
jamming is composed of three synthetic targets with AoA −20◦,
0◦ and 20◦. Thus, the jamming (low rank Gaussian noise) has a
rank equal to r = 3. Then, the signal wavelength is l0 = 0.667m,
the AWGN n power is σ2 = 1 and the Jamming to Noise Ratio is
JNRdB = 10dB. Finally, the theoretical covariance matrix of the
total noise (jamming plus AWGN) is settled to

R = JNR×Ucdiag([6, 2, 1])UH
c + σ2Im (16)

with Uc = [u1 · · ·ur]

4.2. Empirical cumulative density functions

We will first observe the empirical cumulative density function
(ECDF) of Λ̂ and its different limits: Λ (Eq.(4)), Λ̄G (Eq.(11)) and
Λ̄S (Eq.(12)) under the hypothesis H0. Then, the distributions of
Λ̄G and Λ̄S (Eq.(13)) will be plotted and compared to the ECDFs
to validate the results provided in Theorem 1 as well as to illustrate
the interest of using the proposed limits instead of the classical LR-
NMF. In order to observe the pertinence of the convergences and the
distributions, the quantities are plotted for two different values of K
(K = 2r and K = 2m) and two different values of θ (θ = 20◦

i.e. exactly on the jamming angle and θ = 25◦ i.e. far from the
jamming). On all the figures, the red color (resp. the blue color)
corresponds to the case where K = 2r (resp. K = 2m) for the
different studied scenarios while the thick black curves correspond
to the LR-NMF case (which does not depend on K).



We are first interested in Fig.1 where the ECDFs of Λ̂ (triangles),
Λ, Λ̄G (stars) and Λ̄S (circles) are plotted for θ = 20◦ at the top and
θ = 25◦ at the bottom. Thus we observe that, despite the ECDF of
the LR-NMF (Λ), the other ECDFs vary as a function of K, espe-
cially for θ = 20◦. We also note that Λ̄S (circles) is always close to
Λ̂ (triangles) contrary to Λ̄G (stars) for K small and θ = 20◦, and
Λ (thick black line) for θ = 20◦. As a consequence, the LR-NMF
detector is not a good approximation of the LR-ANMF detector and
the spiked model seems to be the right model to use, i.e. Λ̄S is robust
to the number K and the value θ. Finally, one could remark that
when we are far from the jamming, all the curves are almost super-
imposed. The interest of our study is consequently mainly located
when we are on or close to the jamming. However, the limits still
remain useful far from the jamming.

Fig. 1. Empirical cumulative density function of the limits of the
LR-ANMF: (up) θ = 20◦, (down) θ = 25◦ with JNRdB = 10dB
over 104 realisations.

Fig. 2. Comparison between the ECDFs of the LR-ANMF RMT
limits and their theoretical distribution for θ = 20◦ and K = 2r
over 104 realisations.

Fig. 3. CDF of the distributions of the limits of the LR-ANMF: Λ̄S

(up) and Λ̄G (down) with JNRdB = 10dB over 104 realisations.

We then observe Fig.2 where we compare the ECDFs of the LR-
ANMF limits Λ̄G (triangles) and Λ̄S (circles) to their distributions
(resp. stars and squares) from theorem 1 for θ = 20◦ and K = 2r.
One could note that the ECDFs and their associated distributions are
in perfect agreement which validate our theorem. Henceforth, the
visualization of the ECDFs, dependent of the observation vector, is
useless.

Thus, we finally observe Fig.3 where the distributions of the
RMT limits of Λ̂, Λ̄G and Λ̄S, are plotted at the top and at the bottom
respectively. For visual readability reasons, the Λ̄G distribution for
θ = 20◦ and K = 2r is not plotted in Fig.3 but can be observed in
Fig.2. Then, the observations concerning the dependence of Λ̄G and
Λ̄S on the ratio c (abusively equal to m/K) are the same as those
previously exposed with the ECDFs in Fig.1.

5. CONCLUSION

In this paper, we proposed to study the asymptotic performances of
the LR-ANMF detector. That is why, using RMT tools, we per-
formed its convergences and their theoretical distributions when both
the number of secondary data K and the data dimension m tend to
infinity at the same rate with 2 models of covariance matrix: the
GMUSIC model and the spiked model. The obtained distributions
allow to approximate the LR-ANMF distribution. Thus, we observed
that the spiked model better describes the performances of the LR-
ANMF detector as a function of K than the LR-NMF detector and
the GMUSIC model and is robust to the variations of the AoA and
K. Finally, this paper allowed to conclude that the spiked model has
to be used in a such application and that RMT tools are highly useful
to obtain detector performance as a function of K or c.

In the next future, we would like to determine the theoretical dis-
tribution of the limit of the LR-ANMF detector without contribution
of several random variables when both m,K →∞ at the same rate
c for the different models of covariance matrix exposed in this paper.
It would allows us to theoretically determine the distribution of the
false alarm probability as a function of the threshold. We will also
be interested in the derivation of the detection probability.
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