F. Turner and A. Mahowald, Scanning electron microscopy of Drosophila melanogaster embryogenesis, Developmental Biology, vol.57, issue.2, pp.403-416, 1977.
DOI : 10.1016/0012-1606(77)90225-1

A. Engler, Substrate Compliance versus Ligand Density in Cell on Gel Responses, Biophysical Journal, vol.86, issue.1, pp.617-628, 2004.
DOI : 10.1016/S0006-3495(04)74140-5

T. Yeung, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motility and the Cytoskeleton, vol.100, issue.1, pp.24-34, 2005.
DOI : 10.1002/cm.20041

A. Saez, M. Ghibaudo, A. Buguin, P. Silberzan, and B. Ladoux, Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates, Proceedings of the National Academy of Sciences, vol.104, issue.20, pp.8281-8286, 2007.
DOI : 10.1073/pnas.0702259104

J. Zhong, NEDD9 Stabilizes Focal Adhesions, Increases Binding to the Extra-Cellular Matrix and Differentially Effects 2D versus 3D Cell Migration, PLoS ONE, vol.112, issue.Pt 11, p.35058, 2012.
DOI : 10.1371/journal.pone.0035058.s001

P. Young, A. Richman, A. Ketchum, and D. Kiehart, Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function., Genes & Development, vol.7, issue.1, pp.29-41, 1993.
DOI : 10.1101/gad.7.1.29

P. Jr, R. Wang, and Y. , Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc Natl Acad Sci, vol.94, pp.13661-13665, 1997.

M. Chicurel, C. Chen, and D. Ingber, Cellular control lies in the balance of forces, Current Opinion in Cell Biology, vol.10, issue.2, pp.232-239, 1998.
DOI : 10.1016/S0955-0674(98)80145-2

A. Zajac and D. Discher, Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling, Current Opinion in Cell Biology, vol.20, issue.6, pp.609-615, 2008.
DOI : 10.1016/j.ceb.2008.09.006

Y. Cai, Cytoskeletal coherence requires myosin-IIA contractility, Journal of Cell Science, vol.123, issue.3, pp.401-423, 2010.
DOI : 10.1242/jcs.058297

D. Discher, P. Janmey, and Y. Wang, Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, vol.310, issue.5751, pp.1139-1143, 2005.
DOI : 10.1126/science.1116995

V. Vogel and M. Sheetz, Local force and geometry sensing regulate cell functions, Nature Reviews Molecular Cell Biology, vol.31, issue.4, pp.265-275, 2006.
DOI : 10.1016/S0022-2836(02)01001-X

D. Mitrossilis, Single-cell response to stiffness exhibits muscle-like behavior, Proceedings of the National Academy of Sciences, vol.106, issue.43, pp.18243-18248, 2009.
DOI : 10.1073/pnas.0903994106

D. Mitrossilis, Real-time single-cell response to stiffness, Proceedings of the National Academy of Sciences, vol.107, issue.38, pp.16518-16523, 2010.
DOI : 10.1073/pnas.1007940107

K. Webster, A. Crow, and D. Fletcher, An AFM-Based Stiffness Clamp for Dynamic Control of Rigidity, PLoS ONE, vol.64, issue.3, p.17807, 2011.
DOI : 10.1371/journal.pone.0017807.g004

A. Crow, Contractile Equilibration of Single Cells to Step Changes in Extracellular Stiffness, Biophysical Journal, vol.102, issue.3, pp.443-451, 2012.
DOI : 10.1016/j.bpj.2011.11.4020

L. Trichet, Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proceedings of the National Academy of Sciences, vol.109, issue.18, pp.6933-6938, 2012.
DOI : 10.1073/pnas.1117810109

O. Rossier, Force generated by actomyosin contraction builds bridges between adhesive contacts, The EMBO Journal, vol.151, issue.6, pp.1033-1044, 2010.
DOI : 10.1038/emboj.2010.2

A. Zemel, F. Rehfeldt, A. Brown, D. Discher, and S. Safran, Optimal matrix rigidity for stress-fibre polarization in stem cells, Nature Physics, vol.9, issue.6, pp.468-473, 2010.
DOI : 10.1038/nphys1613

P. Marcq, N. Yoshinaga, and J. Prost, Rigidity Sensing Explained by Active Matter Theory, Biophysical Journal, vol.101, issue.6, pp.33-35, 2011.
DOI : 10.1016/j.bpj.2011.08.023

URL : https://hal.archives-ouvertes.fr/hal-01319458

M. Yamamoto, The Visco-elastic Properties of Network Structure I. General Formalism, Journal of the Physical Society of Japan, vol.11, issue.4, pp.413-421, 1956.
DOI : 10.1143/JPSJ.11.413

A. Huxley, Muscle structure and theories of contraction, Prog Biophys Biophys Chem, vol.7, pp.255-318, 1957.

M. Kovács, K. Thirumurugan, P. Knight, and J. Sellers, Load-dependent mechanism of nonmuscle myosin 2, Proceedings of the National Academy of Sciences, vol.104, issue.24, pp.9994-9999, 2007.
DOI : 10.1073/pnas.0701181104

N. Yao, Stress-Enhanced Gelation: A Dynamic Nonlinearity of Elasticity, Physical Review Letters, vol.110, issue.1, p.18103, 2013.
DOI : 10.1103/PhysRevLett.110.018103

C. Borau, T. Kim, T. Bidone, J. García-aznar, and R. Kamm, Dynamic Mechanisms of Cell Rigidity Sensing: Insights from a Computational Model of Actomyosin Networks, PLoS ONE, vol.60, issue.11, p.49174, 2012.
DOI : 10.1371/journal.pone.0049174.s007

H. Parameswaran, K. Lutchen, and S. B. , A computational model of the response of adherent cells to stretch and changes in substrate stiffness, Journal of Applied Physiology, vol.116, issue.7, pp.825-834, 2014.
DOI : 10.1152/japplphysiol.00962.2013

S. Mukhina, Y. Wang, and M. Murata-hori, ??-Actinin Is Required for Tightly Regulated Remodeling of the Actin Cortical Network during Cytokinesis, Developmental Cell, vol.13, issue.4, pp.554-565, 2007.
DOI : 10.1016/j.devcel.2007.08.003

M. Fritzsche, A. Lewalle, T. Duke, K. Kruse, and G. Charras, Analysis of turnover dynamics of the submembranous actin cortex, Molecular Biology of the Cell, vol.24, issue.6, pp.757-767, 2013.
DOI : 10.1091/mbc.E12-06-0485

A. Vaziri and A. Gopinath, Cell and biomolecular mechanics in silico, Nature Materials, vol.1, issue.1, pp.15-23, 2008.
DOI : 10.1115/1.429654

A. Harris, P. Wild, and D. Stopak, Silicone rubber substrata: a new wrinkle in the study of cell locomotion, Science, vol.208, issue.4440, pp.177-179, 1980.
DOI : 10.1126/science.6987736

X. He and M. Dembo, On the Mechanics of the First Cleavage Division of the Sea Urchin Egg, Experimental Cell Research, vol.233, issue.2, pp.252-273, 1997.
DOI : 10.1006/excr.1997.3585

K. Kruse, J. Joanny, F. Jülicher, J. Prost, and K. Sekimoto, Generic theory of active polar gels: a paradigm for cytoskeletal dynamics, The European Physical Journal E, vol.9, issue.1, pp.5-16, 2005.
DOI : 10.1140/epje/e2005-00002-5

M. Soares-e-silva, Active multistage coarsening of actin networks driven by myosin motors, Proceedings of the National Academy of Sciences, vol.108, issue.23, pp.9408-9413, 2012.
DOI : 10.1073/pnas.1016616108

J. Fouchard, Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions, Proceedings of the National Academy of Sciences, vol.111, issue.36, pp.13075-13080, 2014.
DOI : 10.1073/pnas.1411785111

A. Saez, A. Buguin, P. Silberzan, and B. Ladoux, Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?, Biophysical Journal, vol.89, issue.6, pp.52-54, 2005.
DOI : 10.1529/biophysj.105.071217

URL : https://hal.archives-ouvertes.fr/hal-00016455

T. Mitchison and L. Cramer, Actin-Based Cell Motility and Cell Locomotion, Cell, vol.84, issue.3, pp.371-379, 1996.
DOI : 10.1016/S0092-8674(00)81281-7

M. Fournier, R. Sauser, D. Ambrosi, J. Meister, and A. Verkhovsky, Force transmission in migrating cells, The Journal of Cell Biology, vol.65, issue.2, pp.287-297, 2010.
DOI : 10.1083/jcb.200706012

T. Pollard, L. Blanchoin, and R. Mullins, Molecular Mechanisms Controlling Actin Filament Dynamics in Nonmuscle Cells, Annual Review of Biophysics and Biomolecular Structure, vol.29, issue.1, pp.545-576, 2000.
DOI : 10.1146/annurev.biophys.29.1.545

A. Ponti, M. Machacek, S. Gupton, C. Waterman-storer, and G. Danuser, Two Distinct Actin Networks Drive the Protrusion of Migrating Cells, Science, vol.305, issue.5691, pp.1782-1786, 2004.
DOI : 10.1126/science.1100533

J. Small and G. Resch, The comings and goings of actin: coupling protrusion and retraction in cell motility, Current Opinion in Cell Biology, vol.17, issue.5, pp.517-523, 2005.
DOI : 10.1016/j.ceb.2005.08.004

E. Fällman, S. Schedin, J. Jass, B. Uhlin, and O. Axner, The unfolding of the P pili quaternary structure by stretching is reversible, not plastic, EMBO reports, vol.83, issue.1, pp.52-56, 2005.
DOI : 10.1016/S0092-8674(03)00351-9

W. Federle, E. Brainerd, T. Mcmahon, and B. Hölldobler, Biomechanics of the movable pretarsal adhesive organ in ants and bees, Proceedings of the National Academy of Sciences, vol.98, issue.11, p.6215, 2001.
DOI : 10.1073/pnas.111139298

A. Hill, The Heat of Shortening and the Dynamic Constants of Muscle, Proceedings of the Royal Society B: Biological Sciences, vol.126, issue.843, pp.136-195, 1938.
DOI : 10.1098/rspb.1938.0050

N. Desprats, A. Guiroy, and A. Asnacios, Microplates-based rheometer for a single living cell, Review of Scientific Instruments, vol.77, issue.5, p.55111, 2006.
DOI : 10.1063/1.2202921

D. Stamenovi´cstamenovi´c, S. Mijailovich, I. Toli´ctoli´c-nørrelykke, and N. Wang, Cell prestress. II. Contribution of microtubules, AJP: Cell Physiology, vol.282, issue.3, pp.617-624, 2002.
DOI : 10.1152/ajpcell.00271.2001

F. Wottawah, Optical Rheology of Biological Cells, Physical Review Letters, vol.94, issue.9, p.98103, 2005.
DOI : 10.1103/PhysRevLett.94.098103

M. Soares-e-silva, Active multistage coarsening of actin networks driven by myosin motors, Proceedings of the National Academy of Sciences, vol.108, issue.23, pp.9408-9413, 2012.
DOI : 10.1073/pnas.1016616108

M. Fritzsche, A. Lewalle, T. Duke, K. Kruse, and G. Charras, Analysis of turnover dynamics of the submembranous actin cortex, Molecular Biology of the Cell, vol.24, issue.6, pp.757-767, 2013.
DOI : 10.1091/mbc.E12-06-0485

M. Green and A. Tobolsky, A New Approach to the Theory of Relaxing Polymeric Media, The Journal of Chemical Physics, vol.14, issue.2, pp.80-92, 1946.
DOI : 10.1063/1.1724109

M. Yamamoto, The Visco-elastic Properties of Network Structure I. General Formalism, Journal of the Physical Society of Japan, vol.11, issue.4, pp.413-421, 1956.
DOI : 10.1143/JPSJ.11.413

A. Vaccaro and G. Marrucci, A model for the nonlinear rheology of associating polymers, Journal of Non-Newtonian Fluid Mechanics, vol.92, issue.2-3, pp.261-273, 2000.
DOI : 10.1016/S0377-0257(00)00095-1

R. Larson, The structure and rheology of complex fluids, Topics Chem. Engng, 1999.

M. Gardel, Elastic Behavior of Cross-Linked and Bundled Actin Networks, Science, vol.304, issue.5675, pp.1301-1305, 2004.
DOI : 10.1126/science.1095087

C. Broedersz, Cross-Link-Governed Dynamics of Biopolymer Networks, Physical Review Letters, vol.105, issue.23, p.238101, 2010.
DOI : 10.1103/PhysRevLett.105.238101

M. Kovács, K. Thirumurugan, P. Knight, and J. Sellers, Load-dependent mechanism of nonmuscle myosin 2, Proceedings of the National Academy of Sciences, vol.104, issue.24, pp.9994-9999, 2007.
DOI : 10.1073/pnas.0701181104

N. Yao, Stress-Enhanced Gelation: A Dynamic Nonlinearity of Elasticity, Physical Review Letters, vol.110, issue.1, p.18103, 2013.
DOI : 10.1103/PhysRevLett.110.018103

E. Debold, J. Patlak, and D. Warshaw, Slip Sliding Away: Load-Dependence of Velocity Generated by Skeletal Muscle Myosin Molecules in the Laser Trap, Biophysical Journal, vol.89, issue.5, pp.34-36, 2005.
DOI : 10.1529/biophysj.105.072967

A. Huxley, Muscle structure and theories of contraction, Prog Biophys Biophys Chem, vol.7, pp.255-318, 1957.

X. He and M. Dembo, On the Mechanics of the First Cleavage Division of the Sea Urchin Egg, Experimental Cell Research, vol.233, issue.2, pp.252-273, 1997.
DOI : 10.1006/excr.1997.3585

B. Rubinstein, Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod, Biophysical Journal, vol.97, issue.7, pp.1853-1863, 2009.
DOI : 10.1016/j.bpj.2009.07.020

T. Mitchison and L. Cramer, Actin-Based Cell Motility and Cell Locomotion, Cell, vol.84, issue.3, p.371, 1996.
DOI : 10.1016/S0092-8674(00)81281-7

O. Rossier, Force generated by actomyosin contraction builds bridges between adhesive contacts, The EMBO Journal, vol.151, issue.6, pp.1033-1044, 2010.
DOI : 10.1038/emboj.2010.2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845274

D. Mitrossilis, Single-cell response to stiffness exhibits muscle-like behavior, Proceedings of the National Academy of Sciences, vol.106, issue.43, pp.18243-18248, 2009.
DOI : 10.1073/pnas.0903994106

D. Mitrossilis, Real-time single-cell response to stiffness, Proceedings of the National Academy of Sciences, vol.107, issue.38, pp.16518-16523, 2010.
DOI : 10.1073/pnas.1007940107

A. Crow, Contractile Equilibration of Single Cells to Step Changes in Extracellular Stiffness, Biophysical Journal, vol.102, issue.3, pp.443-451, 2012.
DOI : 10.1016/j.bpj.2011.11.4020

A. Hill, The Heat of Shortening and the Dynamic Constants of Muscle, Proceedings of the Royal Society B: Biological Sciences, vol.126, issue.843, pp.136-195, 1938.
DOI : 10.1098/rspb.1938.0050

W. Williams, Huxley???s Model of Muscle Contraction with Compliance, Journal of Elasticity, vol.17, issue.1-2, pp.365-380, 2011.
DOI : 10.1007/s10659-011-9304-y

Y. Dou, P. Arlock, and A. Arner, Blebbistatin specifically inhibits actin-myosin interaction in mouse cardiac muscle, AJP: Cell Physiology, vol.293, issue.3, pp.1148-1153, 2007.
DOI : 10.1152/ajpcell.00551.2006

G. West, W. Woodruff, and J. Brown, Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals, Proceedings of the National Academy of Sciences, vol.99, issue.Supplement 1, pp.2473-2478, 2002.
DOI : 10.1073/pnas.012579799

F. Buttgereit and M. Brand, A hierarchy of ATP-consuming processes in mammalian cells, Biochemical Journal, vol.312, issue.1, pp.163-167, 1995.
DOI : 10.1042/bj3120163

H. Parameswaran, K. Lutchen, and S. B. , A computational model of the response of adherent cells to stretch and changes in substrate stiffness, Journal of Applied Physiology, vol.116, issue.7, pp.825-834, 2014.
DOI : 10.1152/japplphysiol.00962.2013

C. Borau, T. Kim, T. Bidone, J. García-aznar, and R. Kamm, Dynamic Mechanisms of Cell Rigidity Sensing: Insights from a Computational Model of Actomyosin Networks, PLoS ONE, vol.60, issue.11, p.49174, 2012.
DOI : 10.1371/journal.pone.0049174.s007

A. Zemel, F. Rehfeldt, A. Brown, D. Discher, and S. Safran, Optimal matrix rigidity for stress-fibre polarization in stem cells, Nature Physics, vol.9, issue.6, pp.468-473, 2010.
DOI : 10.1038/nphys1613

A. Zemel, F. Rehfeldt, A. Brown, D. Discher, and S. Safran, Cell shape, spreading symmetry, and the polarization of stress-fibers in cells, Journal of Physics: Condensed Matter, vol.22, issue.19, 2010.
DOI : 10.1088/0953-8984/22/19/194110

A. Curtis, G. Aitchison, and T. Tsapikouni, Orthogonal (transverse) arrangements of actin in endothelia and fibroblasts, Journal of The Royal Society Interface, vol.223, issue.2, pp.753-756, 2006.
DOI : 10.1006/excr.1996.0098

L. Trichet, Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proceedings of the National Academy of Sciences, vol.109, issue.18, pp.6933-6938, 2012.
DOI : 10.1073/pnas.1117810109

P. Marcq, N. Yoshinaga, and J. Prost, Rigidity Sensing Explained by Active Matter Theory, Biophysical Journal, vol.101, issue.6, pp.33-35, 2011.
DOI : 10.1016/j.bpj.2011.08.023

URL : https://hal.archives-ouvertes.fr/hal-01319458

I. Bischofs, F. Klein, D. Lehnert, M. Bastmeyer, and U. Schwarz, Filamentous Network Mechanics and Active Contractility Determine Cell and Tissue Shape, Biophysical Journal, vol.95, issue.7, pp.3488-3496, 2008.
DOI : 10.1529/biophysj.108.134296

H. Jiang and S. Sun, Cellular Pressure and Volume Regulation and Implications for Cell Mechanics, Biophysical Journal, vol.105, issue.3, pp.609-619, 2013.
DOI : 10.1016/j.bpj.2013.06.021

J. Fouchard, Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions, Proceedings of the National Academy of Sciences, vol.111, issue.36, pp.13075-13080, 2014.
DOI : 10.1073/pnas.1411785111