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Precession electron diffraction is an efÞcient technique to measure strain in nanostructures by
precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that
an advanced diffraction pattern treatment allows reproducible and precise strain measurements to
be obtained using a default 512� 512 DigiSTAR off-axis camera both in advanced or non-
corrected transmission electron microscopes. This treatment consists in both projective geometry
correction of diffraction pattern distortions and strain Delaunay triangulation based analysis.
Precision in the strain measurement is improved and reached 2.7� 10� 4 with a probe size
approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs
quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch
does not induce in-plane strain ßuctuations in the InGaAs QW region.VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4901435]

Precession Electron Diffraction (PED)1,2 is an innova-
tive method for the crystallographic study of materials. The
advantage of PED is to minimize the diffraction dynamical
effects to such an extent that diffraction images can be ana-
lysed using a kinematical approach with minimal user inter-
vention. Widely used to obtain precise orientation and phase
mappings3 or solving crystal structures,4 PED can also be
used to improve measurement of strain in nanostructures.5

In practice, one usual way of precessing the incident
beam is performed with the widely used NanoMEGASÕs
ÒDigiSTARÓ add-on device.7 Instead of working with the
high-resolution on-axis CCD camera, this system is equipped
with the high frame rate and high sensitivity Stingrey detec-
tion system that allows for fast mapping experiments.
However, this camera is focused on the ßuorescent screen,
and it is therefore deported from the microscope optical axis.
This off-axis camera induces signiÞcant perspective distor-
tions in the measured diffraction patterns. As a consequence,
the use of standard diffraction pattern treatment, e.g., a noise
reduction Þlter and a two-dimensional Gaussian Þtting of
diffracted spots,8 may be inappropriate due to the loss of
periodicity in the acquired patterns.

In this letter, we demonstrate that PED can be advanta-
geously used in a TEM to map strain at nanoscale in an
unexplored situation where the use of an off-axis camera
requires an advanced diffraction pattern treatment. We pro-
pose here an alternative strain analysis able to Þnd a Òquasi-
kinematicÓ disc shaped region containing strongly correlated
spots, and a way to correct off-axis cameraÕs distortions. We
have performed PED strain measurements on a simple refer-
ence sample and in a more complex InGaAs structure for
microelectronic applications.

PED measurements were made using a JEOL-
JEM2010FEF non-corrected TEM operating at 200 kV.

Precession beam scan alignment6 was performed employing
NanoMEGASÕs ÒDigiSTARÓ add-on device.7 Precession
semi-angle was set to 1.44� to take full advantage of PED kin-
ematical behaviour. With 10l m condenser aperture, a probe
size as small as 4.2 nm full width at half maximum is obtained
on the sample with a convergence semi-angle of 0.5 mrad.

PED biaxial strain measurements were made on the
h110i zone axis of samples. Each PED pattern is recorded
every 2.7 nm in a 200 nm� 240 nm area indicated in Fig.
2(a) using a 512� 512 pixel Stingrey camera deported from
the microscope optical. As mentioned above, the perspective
effect induces a periodicity loss in the acquired images. In
the present work, the periodicity of the diffraction pattern is
retrieved using classical projective geometry.9

To this end, we maximizeÑusing a simplex algo-
rithmÑthe diffraction pattern power spectral density root
mean square (rms) contrast10 by adjusting three parameters:
the camera distance, the roll angle, and the off axis angle
(the total spectral energy is set to unity all along this treat-
ment). The three parameters are used to correct the whole
PED data set. Figures1(a) and1(b) show raw and corrected
silicon h110i zone axis diffraction patterns, respectively.
After projective geometry correction, the diffraction pattern
of an amorphous phase (Figure1(c)) only shows the residual
astigmatism minimized by the user during the microscope
alignment.

The two-dimensional Þtting of the complete set of dif-
fracted spots is the most widespread means to retrieve strain
from diffraction patterns, as applied to nanobeam diffraction
(NBD)8,11 precession5 or convergent beam electron diffrac-
tion (CBED)8 experiments. In this paper, we propose an al-
ternative method that results in an increase of the strain
sensitivity (as shown in TableI). In contrast to standard
methods that use the whole image (in real or Fourier space),
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this method is able to Þnd a Òquasi-kinematicÓ disc shaped
region containing strongly correlated spots and rejecting
variable spurious ones.

First, both high and low frequencies are Þltered to ßatten
the image and suppress spurious noise. Then, all the pixel in-
tensity below a threshold value are set to zero; this threshold
is set to Imeanþ 3.Istd where the mean intensity Imean and
standard deviation Istd are calculated in a diffraction free
area of the Þltered image. Each spot is indexed by the posi-
tion ~r i of its intensity centre of mass using ImageJ.13,14 A
Delaunay triangulation15 is applied to the ensemble~r i result-
ing in a set of Delaunay segments,~L

Del
ij ¼~r i � ~r j , indexed

by their polar coordinates (hij , lij ). The histogram of the
angleshij modulop, build with a binning of 0.5� , shows dif-
ferent classes of direction (indexed by k) characterized by
their mean anglehk and angle standard deviationr k. The his-
togram of the lij edges associated to each class is built with a
binning of 0.5 pixels. The mean lengthLð1Þ

k and the standard
deviationl k of the main class are deduced as well as the lat-
tice vectors~gij ¼ ðLð1Þ

k ; hkÞ. The method sensitivity is limited
by both a systematic error induced by the camera resolution
and a statistical error. The former decreases as the measured
length increase, and the latter decrease as the measure sam-
ple population increases. A trade-off between the segments
respective lengths and the total number of segment can be
found to enhance the sensitivity of the strain analysis.

Therefore, more reliable~gij ¼ ðLðnÞ
k ; hkÞ lattice vectors are

obtained using lengths satisfyingLðnÞ
k ¼ nLð1Þ

k .
Both the strain tensor,eij , and the rotation tensor,Xij , of

the crystal are obtained using the method exposed in the
Ref.16. The reciprocal matrix

G ¼
g1x g1y

g2x g2y

� �

is built by selecting two lattice vectors among the previously
obtained~gk (Fig. 1(d)). The componentsgkx;ky stand for the
Cartesian coordinate of~gk. If G0 is deÞned as the reciprocal
matrix of an unstrained area, the strain and rotation tensor are,
respectively, the symmetric componenteij ¼ ðDij þ Dji Þ=2
and the antisymmetric component,Xij ¼ ðDij � Dji Þ=2, of the
displacement tensorD ¼ G� 1G0 � 1:

The reference sample we have used to benchmark the
method has been prepared by Reduced Pressure Chemical
Vapour Deposition (RPCVD) on a [001] Si Substrate. It is
composed by four 106 1 nm SiGe layers with different con-
tents in germanium (respectively, 20%, 31%, 38%, and 45%)
separated by 30 nm of Si and covered with a 150 nm Si cap-
ping layer. A Focused Ion Beam (FIB) tool (operating at
30 kV and 5 kV) has been used to provide a 50 nm thick
parallel-sided lamella with reduced surface damage. This
sample was speciÞcally designed to benchmark strain stud-
ies17 as it is possible to simulate the strain expected in TEM
using the COMSOLVR software. A three-dimensional Þnite
element simulation is performed to take into account the
stress relaxation phenomena of the thin foil. The simulated
strains are averaged along the [1Ð10] and [� 110] directions.
Finally, the strain proÞle along the [00Ð1] direction is convo-
luted with a 4.2 nm wide electron probe. The simulatedexx

strain proÞle is given in Figure2(b) (solid black curve).

FIG. 1. [110] PED diffraction pattern obtained in silicon (a) without and (b)
with projective geometry correction. (c) Electron Nano Beam Diffraction
(NBD) amorphous diffraction pattern obtained with projective geometry cor-
rection. (d) Delaunay triangulation based strain analysis on Si [110] PED
pattern. Distances between direct neighbours (yellow lines) are used (n¼1)
in a disc shaped transmit centred region with diameter d¼48 mrad illus-
trated with the red circle.

FIG. 2. (a) SiGe Strain mapping with Precession (semi-angle set to 1.44� );
(b) comparison between theexx SiGe strain proÞle obtained by Þnite element
simulation (solid black curve) and the experimental proÞles after different
diffraction pattern treatments.
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The proposed method, i.e., perspective correction com-
bined with a Delaunay based treatment, is applied to the
PED patterns measured on the reference sample. Results
show that the strain sensitivity measured with Þrst-neighbour
segments increase until spots outside a transmit beam cen-
tred disc-shaped area, with diameter d¼48 mrad, is used
(Fig. 1(d)). In addition, the best strain sensibility is reached
with second-neighbour segments measurements (n¼2). The
experimental strain mapping after this data treatment is
shown in Figure2(a). The obtained strain precision is equal
to 2.7.10� 4, as estimated by measuring the rms in 800 silicon
contiguousexx values in an unstrained area. This precision is
(i) close to the one obtained by PED measured on high-
resolution on-axis camera,5 (ii) approximately one order of
magnitude lower than that achieved by Geometric Phase
Analysis (GPA) on non-corrected microscopes.18 In the fol-
lowing, our model efÞciency is tested by comparing the pre-
cision and accuracy obtained on the same PED patterns
treated by standard treatments.

For this purpose, the maxima positions are determined
using a two-dimensional Gaussian Þtting of the diffracted
spots, as typically done in the literature.5,8,11,12 An autocorre-
lation of the PED pattern is often implemented11,12 to signiÞ-
cantly reduce the noise. Therefore, the autocorrelation of
each noise Þltered diffraction pattern is Þrst calculated.
Second, three to four spots positions are Þtted with a 2D
Gaussian function to construct the reciprocal matrix. Finally,
the strain is obtained with respect to an unstrained area recip-
rocal matrix of reference.

Results shown in TableI prove that the use of a standard
data treatment, referred to as ÒAutocorrelationÓ in TableI,
leads to a drop in strain precision, either with or without
prior perspective correction.

The accuracy is here deÞned as the mean squared error
calculated between the simulated (using 3D Þnite element
modelling) and experimentalexx strain proÞles after different
data treatments (shown in Figure2(b)). As seen from Table
I, the accuracy is also substantially improved using the pro-
posed method. Interestingly, as seen from Figure2(b), the
standard methods fail to predict the slightly compressive
strain values in-between the SiGe layers.

Note that an improvement of the PED spatial mapping
resolution can be obtained by increasing the beam conver-
gence semi-angle in a TEM equipped with a three condenser
lenses system. This leads however to disk-shaped diffraction
spots with residual dynamical contrast. In that case, the

positions detection of diffraction disks can be obtained more
accurately using the centroid approach available in ImageJ13,14

(as it averages the x and y coordinates of the pixels within each
disk) instead of using the centre of mass method.

The method is also applied to an actual material investi-
gation on InGaAs quantum-well (QW) device19 using a non-
common GaAs reference. This high injection velocity mate-
rial is a promising candidate20,21 for Metal Oxide
Semiconductor Field Effect Transistor (MOSFET) channels.
The device is made of a 10-nm-thick InGaAs QW layer com-
posed of 10% indium. Special attention was paid to the QW
elaboration since misÞt dislocations located at the GaAs/Si
interface are often observed due to the high lattice mis-
match.22 For this purpose, local GaAs/AlAs/InGaAs/AlAs/
GaAs multi-layers growth has been performed15 in an
Applied Materials metalorganic chemical vapor deposition
(MOCVD) reactor on 300 mm Si (100) substrates, as sche-
matically illustrated in Fig.3(a).

A 80-nm-thick lamella was prepared using FIB tool.
The Þnal thinning was performed at 1 keV to reduce implan-
tation and amorphisation. The PED analysis has been carried
out on a 160� 85 nm2 area using the same experimental con-
ditions as those used for the reference sample (e.g., preces-
sion semi-angle of 1.44� ). The perspective correction and
Delaunay based treatment (with d¼48 mrad and n¼2) were
then applied to the acquired patterns.

As seen from Figure3(b), results indicate a variation of
theexx strain component in GaAs close to the GaAs/Si inter-
face. Above 100 nm of GaAs, no signiÞcant variation is
observed in theexx strain map. Theexx andeyy strain compo-
nents ßuctuations in the InGaAs QW, and its near environ-
ment (6 20 nm), are lower than 0.3% along the [110]x
direction. These results give evidence of a homogenous
strain state of the QW. Theeyy strain map exhibits a constant
� 1% tensile strain within the InGaAs QW. This is mostly
due to the chemical composition variations and will be
addressed in following works, including chemical analysis.

FIG. 3. (a) GaAs/AlAs/InGaAs/AlAs/GaAs multi-layers grown on 300 mm
Si (100) substrates; (b) multi-layers deviceexx, eyy strain mapping compo-
nents obtained with precession (semi-angle set to 1.44� ).

TABLE I. Comparison between different data treatments applied to the
same set of PED patterns measured on the reference sample.

PED analysis Precision Accuracy

Delaunay based method
with perspective
correction

2.7� 10� 4 1.4� 10� 2

Autocorrelation based
method without
perspective correction

3.7� 10� 4 3.6� 10� 2

Autocorrelation based
method with perspective
correction

4.0� 10� 4 2.0� 10� 2
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This PED analysis is therefore able control that the QW
device design efÞciently avoids InGaAs layer from being
affected negatively by the silicon substrate proximity, which
may, e.g., introduce a heterogeneous strain distribution
within the QWs. It is also able to distinguish the AlAs, GaAs
0.5% lattice parameter difference. This was made possible
by the combination of a high strain precision (< 0.03%) and
acceptable spatial resolution (� 4 nm) of PED performed in a
non-corrected TEM with an off-axis camera. In contrast,
other strain techniques performed in the same conventional
microscope could nota priori provide such information on
the InGaAs QW, e.g., the same level of strain precision
(� 0.04%) with GPA is obtained for a 9 nm spatial resolu-
tion.18 Theexy strain component has also been obtained from
the strain analysis. It is not shown here as no relevant ßuctu-
ation appears due to the quadratic lattice deformation.

In conclusion, the introduction of precession in nano-
beam electron diffraction can be used in strain measurements
while working with an off axis camera, either on corrected
or non-corrected TEMs. Perspective corrected PED patterns
associated with a Delaunay based method improve the qual-
ity and robustness of strain analysis. This local approach is
able to Þnd a Òquasi-kinematicÓ transmitted beam centred
disc shaped region containing strongly correlated spots and
rejecting variable spurious ones. In the present work, a preci-
sion of 2.7� 10� 4 with a probe size as small as 4.2 nm
(FWHM) is obtained on a conventional TEM. InGaAs QW
deviceÕs results show that the GaAs/Si mismatch does not
induce in-plane strain ßuctuations in the active QW region.
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MINATEC Campus.
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