C. Winterbourn, Reconciling the chemistry and biology of reactive oxygen species, Nature Chemical Biology, vol.3, issue.5, pp.278-286, 2008.
DOI : 10.1038/nchembio.85

J. A. Imlay, Cellular Defenses against Superoxide and Hydrogen Peroxide, Annual Review of Biochemistry, vol.77, issue.1, pp.755-776, 2008.
DOI : 10.1146/annurev.biochem.77.061606.161055

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057177

I. Fridovich, Superoxide Radical and Superoxide Dismutases, Annual Review of Biochemistry, vol.64, issue.1, pp.97-112, 1995.
DOI : 10.1146/annurev.bi.64.070195.000525

F. Jenney, . Jr, M. F. Verhagen, X. Cui, and M. Adams, Anaerobic Microbes: Oxygen Detoxification Without Superoxide Dismutase, Science, vol.286, issue.5438, pp.306-309, 1999.
DOI : 10.1126/science.286.5438.306

M. Lombard, M. Fontecave, D. Touati, and V. Nivière, Reaction of the Desulfoferrodoxin from Desulfoarculus baarsii with Superoxide Anion: EVIDENCE FOR A SUPEROXIDE REDUCTASE ACTIVITY, Journal of Biological Chemistry, vol.275, issue.1, pp.115-121, 2000.
DOI : 10.1074/jbc.275.1.115

URL : https://hal.archives-ouvertes.fr/hal-01075803

D. Kurtz and . Jr, Microbial Detoxification of Superoxide:?? The Non-Heme Iron Reductive Paradigm for Combating Oxidative Stress, Accounts of Chemical Research, vol.37, issue.11, pp.902-908, 2004.
DOI : 10.1021/ar0200091

A. F. Pinto, J. V. Rodrigues, and M. Teixeira, Reductive elimination of superoxide: Structure and mechanism of superoxide reductases, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.2, pp.285-297, 2010.
DOI : 10.1016/j.bbapap.2009.10.011

V. Nivière, F. Bonnot, and D. Bourgeois, Superoxide reductase, in Handbook of Metalloproteins, Volumes 4 and 5, pp.246-258, 2011.

A. Coelho, P. Matias, V. Fülöp, A. Thompson, A. Gonzalez et al., Desulfoferrodoxin structure determined by MAD phasing and refinement to 1.9-?? resolution reveals a unique combination of a tetrahedral FeS 4 centre with a square pyramidal FeSN 4 centre, Journal of Biological Inorganic Chemistry, vol.2, issue.6, pp.680-689, 1997.
DOI : 10.1007/s007750050184

T. Santos-silva, J. Trincao, A. L. Carvalho, C. Bonifacio, F. Auchère et al., The first crystal structure of class III superoxide reductase from Treponema pallidum, JBIC Journal of Biological Inorganic Chemistry, vol.1, issue.Pt A, pp.548-558, 2006.
DOI : 10.1007/s00775-006-0104-y

G. Katona, P. Carpentier, V. Nivière, A. P. Adam, V. Ohana et al., Raman-Assisted Crystallography Reveals End-On Peroxide Intermediates in a Nonheme Iron Enzyme, Science, vol.316, issue.5823, pp.449-453, 2007.
DOI : 10.1126/science.1138885

URL : https://hal.archives-ouvertes.fr/hal-01075775

F. Bonnot, C. Houée-levin, V. Favaudon, and V. Nivière, Photochemical processes observed during the reaction of superoxide reductase from Desulfoarculus baarsii with superoxide, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.4, pp.762-767, 2010.
DOI : 10.1016/j.bbapap.2009.11.019

URL : https://hal.archives-ouvertes.fr/hal-01075296

F. Bonnot, T. Molle, S. Ménage, Y. Moreau, S. Duval et al., Control of the Evolution of Iron Peroxide Intermediate in Superoxide Reductase from Desulfoarculus baarsii. Involvement of Lysine 48 in Protonation, Journal of the American Chemical Society, vol.134, issue.11, pp.5120-5130, 2012.
DOI : 10.1021/ja209297n

URL : https://hal.archives-ouvertes.fr/hal-01075283

P. Sit, M. A. Ho, M. Klein, and M. , Quantum Mechanical and Quantum Mechanical/Molecular Mechanical Studies of the Iron???Dioxygen Intermediates and Proton Transfer in Superoxide Reductase, Journal of Chemical Theory and Computation, vol.6, issue.9, pp.2896-2909, 2010.
DOI : 10.1021/ct900599q

C. Mathé, C. O. Weill, T. A. Mattioli, C. Berthomieu, C. Houée-levin et al., Assessing the Role of the Active-site Cysteine Ligand in the Superoxide Reductase from Desulfoarculus baarsii, Journal of Biological Chemistry, vol.282, issue.30, pp.22207-22216, 2007.
DOI : 10.1074/jbc.M700279200

T. Poulos, The role of the proximal ligand in heme enzymes, Journal of Biological Inorganic Chemistry, vol.1, issue.4, pp.356-359, 1996.
DOI : 10.1007/s007750050064

A. Dey, T. Okamura, N. Ueyama, B. Hedman, K. O. Hodgson et al., Sulfur K-Edge XAS and DFT Calculations on P450 Model Complexes:?? Effects of Hydrogen Bonding on Electronic Structure and Redox Potentials, Journal of the American Chemical Society, vol.127, issue.34, pp.12046-12053, 2005.
DOI : 10.1021/ja0519031

I. Lin, E. B. Gebel, T. E. Machonkin, W. M. Westler, and J. Markley, Changes in hydrogen-bond strengths explain reduction potentials in 10 rubredoxin variants, Proceedings of the National Academy of Sciences, vol.102, issue.41, pp.14581-14586, 2005.
DOI : 10.1073/pnas.0505521102

M. D. Clay, J. P. Emerson, E. D. Coulter, D. Kurtz, . Jr et al., Spectroscopic characterization of the [Fe(His)4(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris, Journal of Biological Inorganic Chemistry, vol.8, issue.6, pp.671-682, 2003.
DOI : 10.1007/s00775-003-0465-4

V. Sonntag and C. , The classical basis of radiation biology, 1987.

T. Picaud, L. Moigne, C. Loock, B. Momenteau, M. Desbois et al., -Linked Iron(II)???Basket-Handle Porphyrin Complexes, Journal of the American Chemical Society, vol.125, issue.38, pp.11616-11625, 2003.
DOI : 10.1021/ja034710r

URL : https://hal.archives-ouvertes.fr/hal-00760107

A. Dey, F. Jenney, . Jr, M. W. Adams, M. K. Johnson et al., Sulfur K-Edge X-ray Absorption Spectroscopy and Density Functional Theory Calculations on Superoxide Reductase:?? Role of the Axial Thiolate in Reactivity, Journal of the American Chemical Society, vol.129, issue.41, pp.12418-12431, 2007.
DOI : 10.1021/ja064167p

J. A. Pople, Gaussian 03, revision C.02, J Chem Phys, vol.98, pp.5648-5652, 1993.

C. Lee, Y. W. Parr, and R. , Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, pp.785-789, 1988.
DOI : 10.1103/PhysRevB.37.785

P. J. Hay and W. Wadt, effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, The Journal of Chemical Physics, vol.82, issue.1, pp.270-283, 1985.
DOI : 10.1063/1.448799

L. E. Roy, P. J. Hay, and R. Martin, Revised Basis Sets for the LANL Effective Core Potentials, Journal of Chemical Theory and Computation, vol.4, issue.7, pp.1029-1031, 2008.
DOI : 10.1021/ct8000409

M. Freccero, R. Gandolfi, M. Sarzi-amade, and A. Rastelli, Facial Selectivity in Epoxidation of 2-Cyclohexen-1-ol with Peroxy Acids. A Computational DFT Study, The Journal of Organic Chemistry, vol.65, issue.26, pp.8948-8959, 2000.
DOI : 10.1021/jo000900y

C. Mathé, V. Nivière, and T. A. Mattioli, Is Associated with pH Dependent Spectral Changes, Journal of the American Chemical Society, vol.127, issue.47, pp.16436-14441, 2005.
DOI : 10.1021/ja053808y

C. Berthomieu, A. Boussac, W. Mäntele, J. Breton, and E. Nabedryk, Molecular changes following oxidoreduction of cytochrome b559 characterized by Fourier transform infrared difference spectroscopy and electron paramagnetic resonance: photooxidation in photosystem II and electrochemistry of isolated cytochrome b559 and iron protoporphyrin IX-bisimidazole model compounds, Biochemistry, vol.31, issue.46, pp.11460-11471, 1992.
DOI : 10.1021/bi00161a026

S. Han, R. S. Czernuszewicz, and T. Spiro, Vibrational spectra and normal mode analysis for [2Fe-2S] protein analogs using sulfur-34, iron-54 and deuterium substitution: coupling of iron-sulfur stretching and sulfur-carbon-carbon bending modes, Journal of the American Chemical Society, vol.111, issue.10, pp.3496-3504, 1989.
DOI : 10.1021/ja00192a002

D. Qiu, L. K. Kilpatrick, N. Kitajima, and T. Spiro, Modeling blue copper protein resonance Raman spectra with thiolate-CuII complexes of a sterically hindered tris(pyrazolyl)borate, Journal of the American Chemical Society, vol.116, issue.6, pp.2585-2590, 1994.
DOI : 10.1021/ja00085a044

R. S. Czernuszewicz, L. K. Kilpatrick, S. A. Koch, and T. Spiro, Resonance Raman Spectroscopy of Iron(III) Tetrathiolate Complexes: Implications for the Conformation and Force Field of Rubredoxin, Journal of the American Chemical Society, vol.116, issue.16, pp.7134-7141, 1994.
DOI : 10.1021/ja00095a017

C. R. Andrew, H. Yeom, J. S. Valentine, B. G. Karlsson, N. Bonander et al., Raman Spectroscopy as an Indicator of Cu-S Bond Length in Type 1 and Type 2 Copper Cysteinate Proteins, Journal of the American Chemical Society, vol.116, issue.25, pp.11489-11498, 1994.
DOI : 10.1021/ja00104a032

B. C. Dave, R. S. Czernuszewicz, B. C. Prickril, D. M. Kurtz, and J. , Resonance Raman Spectroscopic Evidence for the FeS4 and Fe-O-Fe Sites in Rubrerythrin from Desulfovibrio vulgaris, Biochemistry, vol.33, issue.12, pp.3572-3576, 1994.
DOI : 10.1021/bi00178a013

M. D. Clay, F. Jenney, . Jr, P. L. Hagedoorn, G. N. George et al., Superoxide Reductase:?? Implications for Active-Site Structures and the Catalytic Mechanism, Journal of the American Chemical Society, vol.124, issue.5, pp.788-805, 2002.
DOI : 10.1021/ja016889g

C. Mathé, V. Nivière, C. Houée-levin, and T. A. Mattioli, Fe3+?????2???peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii, Biophysical Chemistry, vol.119, issue.1, pp.38-48, 2006.
DOI : 10.1016/j.bpc.2005.06.013

R. Bell, The Theory of Reactions Involving Proton Transfers, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.154, issue.882, pp.414-429, 1936.
DOI : 10.1098/rspa.1936.0060