H. Sies, Strategies of antioxidant defense, European Journal of Biochemistry, vol.312, issue.2, pp.213-219, 1993.
DOI : 10.1146/annurev.physiol.48.1.657

B. Halliwell and J. Gutteridge, Free radicals in biology and medecine, 1999.

D. Touati, Iron and Oxidative Stress in Bacteria, Archives of Biochemistry and Biophysics, vol.373, issue.1, pp.1-6, 2000.
DOI : 10.1006/abbi.1999.1518

J. Schulz, J. Lindenau, J. Seyfried, and J. Dichgans, Glutathione, oxidative stress and neurodegeneration, European Journal of Biochemistry, vol.344, issue.16, pp.4904-4911, 2000.
DOI : 10.1046/j.1432-1327.2000.01595.x

F. Archibald, Oxygen toxicity and the health and survival of eukaryote cells: A new piece is added to the puzzle, Proceedings of the National Academy of Sciences, vol.100, issue.18, pp.10141-10143, 2003.
DOI : 10.1073/pnas.1934513100

D. Grey and A. , The reductive hotspot hypothesis of mammalian aging, European Journal of Biochemistry, vol.275, issue.Suppl. 1, pp.2003-2009, 2002.
DOI : 10.1046/j.1432-1033.2002.02868.x

I. Fridovich, Superoxide Radical and Superoxide Dismutases, Annual Review of Biochemistry, vol.64, issue.1, pp.97-112, 1995.
DOI : 10.1146/annurev.bi.64.070195.000525

D. Cabelli, D. Riley, J. Rodriguez, J. Valentine, and H. Zhu, Biomimetic Oxidations catalyzed by Transition Metal Complexes, pp.461-508, 1999.

Y. Li, T. Huang, E. Carlson, S. Melow, P. Ursell et al., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase, Nature Genetics, vol.37, issue.4, pp.376-381, 1995.
DOI : 10.1016/0092-8674(92)90270-M

D. Riley, Functional Mimics of Superoxide Dismutase Enzymes as Therapeutic Agents, Chemical Reviews, vol.99, issue.9, pp.2573-2587, 1999.
DOI : 10.1021/cr980432g

E. Hatchikian and Y. Henry, An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4), Biochimie, vol.59, issue.2, pp.153-161, 1977.
DOI : 10.1016/S0300-9084(77)80286-1

D. Santos, W. Pacheco, I. Liu, M. Teixeira, M. Xavier et al., Purification and Characterization of an Iron Superoxide Dismutase and a Catalase from the Sulfate-Reducing Bacterium Desulfovibrio gigas, Journal of Bacteriology, vol.182, issue.3, pp.796-804, 2000.
DOI : 10.1128/JB.182.3.796-804.2000

H. Cypionka, Species, Annual Review of Microbiology, vol.54, issue.1, pp.827-848, 2000.
DOI : 10.1146/annurev.micro.54.1.827

F. Jenney, M. Verhagen, and X. Cui, Anaerobic Microbes: Oxygen Detoxification Without Superoxide Dismutase, Science, vol.286, issue.5438, pp.306-309, 1999.
DOI : 10.1126/science.286.5438.306

M. Lombard, M. Fontecave, D. Touati, and V. Nivière, Reaction of the Desulfoferrodoxin from Desulfoarculus baarsii with Superoxide Anion: EVIDENCE FOR A SUPEROXIDE REDUCTASE ACTIVITY, Journal of Biological Chemistry, vol.275, issue.1, pp.115-121, 2000.
DOI : 10.1074/jbc.275.1.115

URL : https://hal.archives-ouvertes.fr/hal-01075803

M. Adams, F. Jenney, M. Clay, and M. Johnson, Superoxide reductase: fact or fiction?, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.6, pp.647-652, 2002.
DOI : 10.1007/s00775-002-0359-x

D. Kurtz, . Jr, and E. Coulter, The mechanism(s) of superoxide reduction by superoxide reductases in vitro and in vivo, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.6, pp.653-658, 2002.
DOI : 10.1007/s00775-002-0360-4

J. Imlay, What biological purpose is served by superoxide reductase?, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.6, pp.659-663, 2002.
DOI : 10.1007/s00775-002-0361-3

F. Auchère and F. Rusnak, What is the ultimate fate of superoxide anion in vivo?, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.6, pp.664-667, 2002.
DOI : 10.1007/s00775-002-0362-2

I. Abreu, A. Xavier, J. Legall, D. Cabelli, and M. Teixeira, Superoxide scavenging by neelaredoxin: dismutation and reduction activities in anaerobes, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.6, pp.668-674, 2002.
DOI : 10.1007/s00775-002-0363-1

M. Pianzzola, M. Soubes, and D. Touati, Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli., Journal of Bacteriology, vol.178, issue.23, pp.6736-6742, 1996.
DOI : 10.1128/jb.178.23.6736-6742.1996

M. Brumlik and G. Voordouw, Analysis of the transcriptional unit encoding the genes for rubredoxin (rub) and a putative rubredoxin oxidoreductase (rbo) in Desulfovibrio vulgaris Hildenborough., Journal of Bacteriology, vol.171, issue.9, pp.4996-5004, 1989.
DOI : 10.1128/jb.171.9.4996-5004.1989

E. Coulter, D. Kurtz, and . Jr, A Role for Rubredoxin in Oxidative Stress Protection in Desulfovibrio vulgaris: Catalytic Electron Transfer to Rubrerythrin and Two-Iron Superoxide Reductase, Archives of Biochemistry and Biophysics, vol.394, issue.1, pp.76-86, 2001.
DOI : 10.1006/abbi.2001.2531

A. Coelho, P. Matias, V. Fülöp, A. Thompson, A. Gonzalez et al., Desulfoferrodoxin structure determined by MAD phasing and refinement to 1.9-?? resolution reveals a unique combination of a tetrahedral FeS 4 centre with a square pyramidal FeSN 4 centre, Journal of Biological Inorganic Chemistry, vol.2, issue.6, pp.680-689, 1997.
DOI : 10.1007/s007750050184

M. Archer, R. Huber, P. Tavares, I. Moura, J. Moura et al., Crystal Structure of Desulforedoxin fromDesulfovibrio gigasDetermined at 1.8 ?? Resolution: A Novel Non-heme Iron Protein Structure, Journal of Molecular Biology, vol.251, issue.5, pp.690-702, 1995.
DOI : 10.1006/jmbi.1995.0465

C. Romao, M. Liu, L. Gall, J. Gomes, C. Braga et al., The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, European Journal of Biochemistry, vol.265, issue.2, pp.438-443, 1999.
DOI : 10.1126/science.281.5375.375

G. Silva, S. Oliveira, C. Gomes, I. Pacheco, M. Liu et al., neelaredoxin, European Journal of Biochemistry, vol.388, issue.1-2, pp.235-243, 1999.
DOI : 10.1046/j.1432-1327.1999.00025.x

S. Liochev and I. Fridovich, A Mechanism for Complementation of the sodA sodBDefect in Escherichia coli by Overproduction of therbo Gene Product (Desulfoferrodoxin) fromDesulfoarculus baarsii, Journal of Biological Chemistry, vol.272, issue.41, pp.25573-25575, 1997.
DOI : 10.1074/jbc.272.41.25573

E. Coulter, J. Emerson, D. Kurtz, . Jr, and D. Cabelli, :?? A Pulse Radiolysis Study, Journal of the American Chemical Society, vol.122, issue.46, pp.11555-11556, 2000.
DOI : 10.1021/ja005583r

I. Abreu, L. Saraiva, C. Soares, M. Teixeira, and D. Cabelli, The Mechanism of Superoxide Scavenging byArchaeoglobus fulgidus Neelaredoxin, Journal of Biological Chemistry, vol.276, issue.42, pp.38995-39001, 2001.
DOI : 10.1074/jbc.M103232200

R. Silaghi-dumitrescu, I. Silaghi-dumitrescu, E. Coulter, D. Kurtz, and . Jr, Computational Study of the Non-Heme Iron Active Site in Superoxide Reductase and Its Reaction with Superoxide, Inorganic Chemistry, vol.42, issue.2, pp.446-456, 2003.
DOI : 10.1021/ic025684l

K. Keyer and J. Imlay, Superoxide accelerates DNA damage by elevating free-iron levels, Proceedings of the National Academy of Sciences, vol.93, issue.24, pp.13635-13640, 1996.
DOI : 10.1073/pnas.93.24.13635

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC19375

J. Emerson, E. Coulter, R. Phillips, D. Kurtz, and . Jr, Kinetics of the Superoxide Reductase Catalytic Cycle, Journal of Biological Chemistry, vol.278, issue.41, pp.39662-39668, 2003.
DOI : 10.1074/jbc.M306488200

J. Shearer, J. Nehring, S. Lovell, W. Kaminsky, and J. Kovacs, Modeling the Reactivity of Superoxide Reducing Metalloenzymes with a Nitrogen and Sulfur Coordinated Iron Complex, Inorganic Chemistry, vol.40, issue.22, pp.5483-5484, 2001.
DOI : 10.1021/ic010221l

T. Hansen, Metabolism of sulfate-reducing prokaryotes, Antonie van Leeuwenhoek, vol.11, issue.29, pp.165-185, 1994.
DOI : 10.1007/BF00871638