, ANR-10- BLAN-1907) grant, by the 264207 ERRIC?Empowering Romanian Research on Intelligent Information Technologies/FP7-REGPOT-2010-1 and the POSDRU/107/1.5/S/76909 Harnessing human capital in research through doctoral scholarships (ValueDoc) projects. We also wish to thank Sonia Mandin, who kindly provided experimental data used for the validation of sentence importance, research was supported by an Agence Nationale de la Recherche

R. Agrawal and M. Batra, A detailed study on text mining techniques, International Journal of Soft Computing and Engineering, vol.12, issue.26, pp.118-121, 2013.

S. Trausan-matu, M. Dascalu, and P. Dessus, Textual Complexity and Discourse Structure in Computer-Supported Collaborative Learning, 11th Int. Conf. on Intelligent Tutoring Systems, pp.352-357, 2012.
DOI : 10.1007/978-3-642-30950-2_46

URL : https://hal.archives-ouvertes.fr/hal-01492479

K. R. Koedinger, R. S. Baker, K. Cunningham, A. Skogsholm, B. Leber et al., A Data Repository for the EDM Community, pp.43-55, 2011.
DOI : 10.1201/b10274-6

M. Zou, Y. Xu, J. C. Nesbit, and P. H. Winne, Sequential pattern analysis of learning logs: Methodology and applications, Handbook of Educational Data Mining, pp.107-121, 2011.

J. Sheard, A data repository for the EDM community: The PSLC datashop, Handbook of Educational Data Mining, pp.27-42, 2011.

I. Tapiero, Situation models and levels of coherence, 2007.

W. Schnotz, Comparative Instructional text organization Learning and comprehension of text pp, pp.53-81, 1984.

D. Mcnamara, E. Kintsch, N. B. Songer, and W. Kintsch, Are Good Texts Always Better? Interactions of Text Coherence, Background Knowledge, and Levels of Understanding in Learning From Text, Cognition and Instruction, vol.3, issue.1, pp.1-43, 1996.
DOI : 10.1037//0278-7393.4.6.592

J. Oakhill and A. Garnham, On theories of belief bias in syllogistic reasoning, Cognition, vol.46, issue.1, pp.87-92, 1993.
DOI : 10.1016/0010-0277(93)90023-O

O. Reilly, T. Mcnamara, and D. S. , Reversing the reverse cohesion effect: good texts can be better for strategic, high-knowledge readers, Disourse Processes, pp.121-152, 2007.

K. Cain and J. Oakhill, Reading comprehension development from 8 to 14 years, the contribution of component skills and processes, Beyond decoding, the behavioral and biological foundations of reading comprehension, pp.143-175, 2009.

W. Kintsch, Comprehension, a paradigm for cognition, 1998.

D. S. Mcnamara and T. O-'reilly, Theories of comprehension skill: knowledge and strategies versus capacity and suppression, Progress in experimental psychology research, pp.113-136, 2009.

S. H. Eason, L. Goldberg, and L. Cutting, Reader???text interactions: How differential text and question types influence cognitive skills needed for reading comprehension., Journal of Educational Psychology, vol.104, issue.3, pp.515-528, 2012.
DOI : 10.1037/a0027182

URL : http://europepmc.org/articles/pmc4640191?pdf=render

D. S. Mcnamara, A. C. Graesser, and M. M. Louwerse, Sources of text difficulty: Across the ages and genres, Assessing reading in the 21st century. R&L Education

J. Nelson, C. Perfetti, D. Liben, and M. Liben, Measures of text difficulty, to the Gates Foundation, 2011.

D. S. Mcnamara, M. M. Louwerse, P. M. Mccarthy, and A. C. Graesser, Coh-Metrix: Capturing Linguistic Features of Cohesion, Discourse Proc, pp.292-330, 2010.
DOI : 10.1037/0033-2909.123.2.162

D. S. Mcnamara and J. P. Magliano, Self-explanation and metacognition Handbook of metacognition in education, Erlbaum, pp.60-81, 2009.

K. Millis and J. Magliano, Assessing comprehension processes during reading, pp.35-54

&. Rowman, . Littlefield, and . Lanham, , 2012.

D. S. Mcnamara, SERT: Self-Explanation Reading Training, Discourse Processes, pp.1-30, 2004.
DOI : 10.1111/j.2044-8295.1989.tb02325.x

A. Nardy, M. Bianco, F. Toffa, M. Rémond, and P. Dessus, Contrôle et régulation de la compréhension : L'acquisition de stratégies de 8 à 11 anseds.) L'apprentissage de la lecture : convergences, innovations, perspectives

A. F. Hayes, Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach The Guilford Press, 2013.

A. Budanitsky and G. Hirst, Evaluating WordNet-based Measures of Lexical Semantic Relatedness, Computational Linguistics, vol.17, issue.1, pp.13-47, 2006.
DOI : 10.1016/S0022-5371(79)90604-2

URL : https://doi.org/10.1162/089120106776173093

T. K. Landauer and S. T. Dumais, A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge., Psychological Review, vol.104, issue.2, pp.211-240, 1997.
DOI : 10.1037/0033-295X.104.2.211

D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet Allocation, Journal of Machine Learning Research, vol.3, pp.4-5, 2003.

C. D. Manning and H. Schütze, Foundations of statistical Natural Language Processing, 1999.

, Alias-i: LingPipe, http://alias-i.com/lingpipe, 2008.

M. Mccandless, E. Hatcher, and O. Gospodnetic, Lucene in Action, Second Edition: Covers Apache Lucene 3.0, 2010.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, Feature-rich part-of-speech tagging with a cyclic dependency network, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology , NAACL '03, pp.252-259, 2003.
DOI : 10.3115/1073445.1073478

, ACL, 2003.

K. Toutanova and C. D. Manning, Enriching the knowledge sources used in a maximum entropy part-of-speech tagger, Proceedings of the 2000 Joint SIGDAT conference on Empirical methods in natural language processing and very large corpora held in conjunction with the 38th Annual Meeting of the Association for Computational Linguistics -, pp.63-70, 2000.
DOI : 10.3115/1117794.1117802

D. Klein and C. D. Manning, Accurate unlexicalized parsing, Proceedings of the 41st Annual Meeting on Association for Computational Linguistics , ACL '03, pp.423-430, 2003.
DOI : 10.3115/1075096.1075150

S. Green, M. De-marneffe, J. Bauer, and C. D. Manning, Multiword Expression Identification with Tree Substitution Grammars: A Parsing tour de force with French, Conference on Empirical Methods on Natural Language Processing, pp.725-735, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01111383

M. Porter and R. Boulton, , 2002.

C. Jadelot, M. Mangeot, E. Petitjean, and S. Salmon-alt, , 2006.

J. R. Finkel, T. Grenager, and C. D. Manning, Incorporating non-local information into information extraction systems by Gibbs sampling, Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics , ACL '05, pp.363-370, 2005.
DOI : 10.3115/1219840.1219885

H. Lee, A. Chang, Y. Peirsman, N. Chambers, M. Surdeanu et al., Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules, Computational Linguistics, vol.20, issue.4, 2013.
DOI : 10.3115/1220355.1220388

K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers, M. Surdeanu et al., A Multi-Pass Sieve for Coreference Resolution, Conference on Empirical Methods in Natural Language Processing (EMNLP '10), pp.492-501, 2010.

G. A. Miller, WordNet: a lexical database for English, Communications of the ACM, vol.38, issue.11, pp.39-41, 1995.
DOI : 10.1145/219717.219748

B. Sagot and F. Darja, Building a free French wordnet from multilingual resources, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00614708

Z. Wu and M. Palmer, Verbs semantics and lexical selection, Proceedings of the 32nd annual meeting on Association for Computational Linguistics -, pp.133-138, 1994.
DOI : 10.3115/981732.981751

C. Leacock and M. Chodorow, Combining local context and WordNet similarity for wordsense identification WordNet: An electronic lexical database, pp.265-283, 1998.

G. Denhière, B. Lemaire, C. Bellissens, and S. Jhean-larose, A Semantic Space for Modeling Children???s Semantic Memory, Handbook of Latent Semantic Analysis, pp.143-165, 2007.
DOI : 10.4324/9780203936399.ch8

M. Dascalu, S. Trausan-matu, and P. Dessus, Utterances assessment in chat conversations, Research in Computing Science, vol.46, pp.323-334, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01081484

B. Lemaire, Limites de la lemmatisation pour l'extraction de significations, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00385750

P. Wiemer-hastings and I. Zipitria, Rules for syntax, vectors for semantics, 22nd Annual Conference of the Cognitive Science Society, 2000.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola et al., Distributed GraphLab, Proceedings of the VLDB Endowment, pp.716-727, 2012.
DOI : 10.14778/2212351.2212354

A. K. Mccallum, MALLET: A Machine Learning for Language Toolkit, 2002.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin et al., GraphLab: A New Parallel Framework for Machine Learning, Conference on Uncertainty in Artificial Intelligence (UAI), pp.340-349, 2010.

M. Dascalu, S. Trausan-matu, and P. Dessus, Cohesion-based Analysis of CSCL Conversations: Holistic and Individual Perspectives, 10th Int. Conf. on Computer- Supported Collaborative Learning, pp.145-152, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01470952

S. Trausan-matu, G. Stahl, and J. Sarmiento, Supporting Polyphonic Collaborative Learning, e-Service Journal, vol.6, issue.1, pp.58-74, 2007.
DOI : 10.1207/S15327833MTL0203_1

T. Rebedea, M. Dascalu, S. Trausan-matu, and C. G. Chiru, Automatic Feedback and Support for Students and Tutors Using CSCL Chat Conversations, First International K-Teams Workshop on Semantic and Collaborative Technologies for the Web, pp.20-33, 2011.

S. Trausan-matu and T. Rebedea, A Polyphonic Model and System for Inter-animation Analysis in Chat Conversations with Multiple Participants, 11th Int. Conf. Computational Linguistics and Intelligent Text Processing, pp.354-363, 2010.
DOI : 10.1007/978-3-642-12116-6_29

M. Dascalu, P. Dessus, S. Trausan-matu, M. Bianco, and A. Nardy, ReaderBench, an environment for analyzing text complexity and reading strategies. 16th Int, Conf. on Artificial Intelligence in Education, 2013.
DOI : 10.1007/978-3-642-39112-5_39

URL : https://hal.archives-ouvertes.fr/hal-00871568

E. Abrams, Topic Sentences and Signposting, 2000.

C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval, vol.1, 2008.

M. Galley and K. Mckeown, Improving Word Sense Disambiguation in Lexical Chaining, 18th International Joint Conference on Artificial Intelligence (IJCAI'03), pp.1486-1488, 2003.

M. Williams, Wittgenstein, Mind and Meaning: Towards a Social Conception of Mind, 2002.
DOI : 10.4324/9780203217047

M. Bastian, S. Heymann, and M. Jacomy, Gephi: an open source software for exploring and manipulating networks, International AAAI Conference on Weblogs and Social Media, pp.361-362, 2009.

U. Brandes, A faster algorithm for betweenness centrality*, The Journal of Mathematical Sociology, vol.113, issue.2, pp.163-177, 2001.
DOI : 10.1017/CBO9780511815478

M. Dascalu, P. Dessus, S. Trausan-matu, M. Bianco, and A. Nardy, ReaderBench, an Environment for Analyzing Text Complexity and Reading Strategies, 16th Int, 2013.
DOI : 10.1007/978-3-642-39112-5_39

URL : https://hal.archives-ouvertes.fr/hal-00871568

R. Mihalcea and P. Tarau, TextRank: Bringing Order into Texts, Conference on Empirical Methods in Natural Language Processing, pp.404-411, 2004.

A. Barcelona and . Spain, , 2004.

N. Vidal, Miguel de la faim, Rageot, 1984.

P. Pfeffer, Les pharmacies des éléphants Vie et mort d'un géant : l'éléphant d'Afrique, p.135, 1989.

S. Mandin, Modèles cognitifs computationnels de l'activité de résumer : expérimentation d'un eiah auprès d'élèves de lycée, Laboratoire des Sciences de l'Éducation Doctoral dissertation. Université Grenoble-2 -Pierre-Mendès- France, 2009.

R. L. Donaway, K. W. Drummey, and L. A. Mather, A comparison of rankings produced by summarization evaluation measures, Workshop on Automatic summarization (NAACL-ANLP-AutoSum '00), pp.69-78, 2000.

D. S. Mcnamara, T. P. O-'reilly, M. Rowe, C. Boonthum, and I. B. Levinstein, iSTART: A web-based tutor that teaches self-explanation and metacognitive reading strategies, Reading comprehension strategies: Theories, interventions, and technologies, pp.397-420, 2007.

R. Dahl, , 2007.

A. C. Graesser, M. Singer, and T. Trabasso, Constructing inferences during narrative text comprehension., Psychological Review, vol.101, issue.3, pp.371-395, 1994.
DOI : 10.1037/0033-295X.101.3.371

M. Dascalu, S. Trausan-matu, and P. Dessus, Towards an Integrated Approach for Evaluating Textual Complexity for Learning Purposes, 11th Int. Conf. in Advances in Web-Based Learning, pp.268-278, 2012.
DOI : 10.1007/978-3-642-33642-3_29

URL : https://hal.archives-ouvertes.fr/hal-01491123

C. Cortes and V. N. Vapnik, Support-vector networks, Machine Learning, pp.273-297, 1995.
DOI : 10.1007/BF00994018

T. François and E. Miltsakaki, Do NLP and machine learning improve traditional readability formulas? In: First Workshop on Predicting and improving text readability for target reader populations (PITR2012), ACL, pp.49-57, 2012.

S. E. Petersen and M. Ostendorf, A machine learning approach to reading level assessment, Computer Speech & Language, vol.23, issue.1, pp.89-106, 2009.
DOI : 10.1016/j.csl.2008.04.003

T. A. Van-dijk and W. Kintsch, Strategies of discourse comprehension, 1983.

L. Feng, M. Jansche, M. Huenerfauth, and N. Elhadad, A Comparison of Features for Automatic Readability Assessment, 23rd Int. Conf. on Computational Linguistics, pp.276-284, 2010.

H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu et al., Stanford's Multi-Pass Sieve Coreference Resolution System at the CoNLL, 2011.

, Shared Task. In: CONLL Shared Task '11 Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task, pp.28-34, 2011.

S. Geisser, Predictive inference: an introduction. Chapman and Hall, 1993.

P. H. Winne and R. S. Baker, The potentials of educational data mining for researching metacognition, motivation and Self-Regulated Learning, Journal of Educational Data Mining, vol.5, issue.1, pp.1-8, 2013.

D. Bouhineau, V. Luengo, N. Mandran, B. M. Toussaint, M. Ortega et al., Open platform to model and capture experimental data in Technology Enhanced Learning systems. Workshop Data Analysis and Interpretation for Learning Environments. Alpine Rendez-Vous, p.Villard-de-Lans, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00948795