Mining texts, learners productions and strategies with ReaderBench

Abstract : The chapter introduces ReaderBench, a multi-lingual and flexible environment that integrates text mining technologies for assessing a wide range of learners' productions and for supporting teachers in several ways. ReaderBench offers three main functionalities in terms of text analysis: cohesion-based assessment, reading strategies identification and textual complexity evaluation. All of these have been subject to empirical validations. ReaderBench may be used throughout an entire educational scenario, starting from the initial complexity assessment of the reading materials, the assignment of texts to learners, the detection of reading strategies reflected in one's self-explanations, and comprehension evaluation fostering learner's self-regulation process.
Type de document :
Chapitre d'ouvrage
Alejandro Pena-Ayala. Educational Data Mining: Applications and Trends, Springer, pp.345-377, 2014, 〈10.1007/978-3-319-02738-8_13〉
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00979702
Contributeur : Gwenaelle Joet <>
Soumis le : vendredi 22 juin 2018 - 07:40:24
Dernière modification le : lundi 2 juillet 2018 - 16:20:13
Document(s) archivé(s) le : mardi 25 septembre 2018 - 07:08:58

Fichier

EDM_04_full_chapter.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mihai Dascalu, Philippe Dessus, Maryse Bianco, Stefan Trausan-Matu, Aurélie Nardy. Mining texts, learners productions and strategies with ReaderBench. Alejandro Pena-Ayala. Educational Data Mining: Applications and Trends, Springer, pp.345-377, 2014, 〈10.1007/978-3-319-02738-8_13〉. 〈hal-00979702〉

Partager

Métriques

Consultations de la notice

250

Téléchargements de fichiers

9