2L-CONVEX POLYOMINOES: GEOMETRICAL ASPECTS

Abstract : A polyomino P is called 2L-convex if for every two cells there exists a monotone path included in P with at most two changes of direction. This paper studies the geometrical aspects of a sub-class of 2L-convex polyominoes called I0,0 and states a characterization of 2L it in terms of monotone paths. In a second part, four geometries are introduced and the tomographical point of view is investigated using the switching components (that is, the elements of this sub-class that have the same projections). Finally, some unicity results are given for the reconstruction of these polyominoes according to their projections.
Type de document :
Article dans une revue
Contributions to Discrete Mathematics, University of Calgary, 2011, 6 (1), pp.1-25
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

http://hal.univ-grenoble-alpes.fr/hal-00944079
Contributeur : Laurent Vuillon <>
Soumis le : lundi 10 février 2014 - 10:15:30
Dernière modification le : jeudi 11 janvier 2018 - 06:12:26
Document(s) archivé(s) le : dimanche 11 mai 2014 - 01:20:11

Fichier

201-1134-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00944079, version 1

Collections

Citation

Khalil Tawbe, Laurent Vuillon. 2L-CONVEX POLYOMINOES: GEOMETRICAL ASPECTS. Contributions to Discrete Mathematics, University of Calgary, 2011, 6 (1), pp.1-25. 〈hal-00944079〉

Partager

Métriques

Consultations de la notice

131

Téléchargements de fichiers

107