D. S. Mcnamara and J. P. Magliano, Self-explanation and metacognition Handbook of metacognition in education, Erlbaum, pp.60-81, 2009.

D. Mcnamara, SERT: Self-Explanation Reading Training, Discourse Proc, pp.1-30, 2004.
DOI : 10.1111/j.2044-8295.1989.tb02325.x

J. Nelson, C. Perfetti, D. Liben, and M. Liben, Measures of text difficulty, to the Gates Foundation, 2011.

I. Tapiero, Situation models and levels of coherence, Erlbaum, 2007.

D. S. Mcnamara, M. M. Louwerse, P. M. Mccarthy, and A. C. Graesser, Coh-Metrix: Capturing Linguistic Features of Cohesion, Discourse Proc, pp.292-330, 2010.
DOI : 10.1037/0033-2909.123.2.162

D. Mcnamara, C. Boonthum, and I. Levinstein, Evaluating Self-Explanations in iSTART, pp.227-241, 2007.
DOI : 10.4324/9780203936399.ch12

S. Trausan-matu, M. Dascalu, and T. Rebedea, A System for the Automatic Analysis of Computer-Supported Collaborative Learning Chats, 2012 IEEE 12th International Conference on Advanced Learning Technologies, pp.95-99, 2012.
DOI : 10.1109/ICALT.2012.101

M. Dascalu, S. Trausan-matu, and P. Dessus, Towards an integrated approach for evaluating textual complexity for learning purposes Advances in web-based learning, LNCS, vol.7558, pp.268-278, 2012.

Z. Wu and M. Palmer, Verbs semantics and lexical selection, Proceedings of the 32nd annual meeting on Association for Computational Linguistics -, pp.133-138, 1994.
DOI : 10.3115/981732.981751

C. Leacock and M. Chodorow, Combining local context and WordNet similarity for wordsense identification, WordNet: An electronic lexical database, pp.265-283, 1998.

T. K. Landauer and S. T. Dumais, A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge., Psychological Review, vol.104, issue.2, pp.211-240, 1997.
DOI : 10.1037/0033-295X.104.2.211

D. Blei, A. Ng, and M. Jordan, Latent Dirichlet Allocation, Journal of Machine Learning Research, vol.3, issue.4-5, pp.993-1022, 2003.

C. Manning and H. Schütze, Foundations of statistical Natural Language Processing, 1999.

G. A. Miller, WordNet: a lexical database for English, Communications of the ACM, vol.38, issue.11, pp.39-41, 1995.
DOI : 10.1145/219717.219748

G. Denhière, B. Lemaire, C. Bellissens, and S. Jhean-larose, A Semantic Space for Modeling Children???s Semantic Memory, Handbook of Latent Semantic Analysis, pp.143-165, 2007.
DOI : 10.4324/9780203936399.ch8

A. K. Mccallum, MALLET: A Machine Learning for Language Toolkit, 2002.

S. Trausan-matu, M. Dascalu, and P. Dessus, Considering textual complexity and comprehension in Computer-Supported Collaborative Learning, 11th Int. Conf. on Intelligent Tutoring Systems, pp.352-357, 2012.
DOI : 10.1007/978-3-642-30950-2_46

URL : http://www.upmf-grenoble.fr/sciedu/pdessus/conf/its12.pdf

A. C. Graesser, M. Singer, and T. Trabasso, Constructing inferences during narrative text comprehension., Psychological Review, vol.101, issue.3, pp.371-395, 1994.
DOI : 10.1037/0033-295X.101.3.371

T. François and E. Miltsakaki, Do NLP and machine learning improve traditional readability formulas?, Proc. First Workshop on Predicting and improving text readability for target reader populations (PITR2012), pp.49-57, 2012.

M. Galley and K. Mckeown, Improving word sense disambiguation in lexical chaining, 18th International Joint Conference on Artificial Intelligence (IJCAI'03), 2003.

H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu et al., Stanford's multi-pass sieve coreference resolution system at the CoNLL-2011 shared task, 15th Conference on Computational Natural Language Learning, pp.28-34, 2011.

D. S. Mcnamara, A. C. Graesser, and M. M. Louwerse, Sources of text difficulty: Across the ages and genres, Assessing reading in the 21st century. R&L Education