A. Sandryhaila and J. Moura, Discrete Signal Processing on Graphs, IEEE Transactions on Signal Processing, vol.61, issue.7, pp.1644-1656, 2013.
DOI : 10.1109/TSP.2013.2238935

URL : http://arxiv.org/pdf/1210.4752.pdf

D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine, vol.30, issue.3, pp.83-98, 2013.
DOI : 10.1109/MSP.2012.2235192

D. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis, vol.30, issue.2, pp.129-150, 2011.
DOI : 10.1016/j.acha.2010.04.005

URL : https://hal.archives-ouvertes.fr/inria-00541855

S. Narang and A. Ortega, Perfect Reconstruction Two-Channel Wavelet Filter Banks for Graph Structured Data, IEEE Transactions on Signal Processing, vol.60, issue.6, pp.2786-2799, 2012.
DOI : 10.1109/TSP.2012.2188718

F. Chung, Spectral graph theory, 1997.
DOI : 10.1090/cbms/092

L. Grady and J. R. Polimeni, Discrete Calculus: Applied Analysis on Graphs for Computational Science, 2010.
DOI : 10.1007/978-1-84996-290-2

A. Barrat, M. Barthlemy, and A. Vespignani, Dynamical processes on complex networks, 2008.
DOI : 10.1017/CBO9780511791383

S. Kar and J. M. Moura, Consensus + innovations distributed inference over networks: cooperation and sensing in networked systems, IEEE Signal Processing Magazine, vol.30, issue.3, pp.99-109, 2013.
DOI : 10.1109/MSP.2012.2235193

H. Rabiei, F. Richard, O. Coulon, and J. Lefevre, Local Spectral Analysis of the Cerebral Cortex: New Gyrification Indices, IEEE Transactions on Medical Imaging, vol.36, issue.3, pp.838-848, 2017.
DOI : 10.1109/TMI.2016.2633393

URL : https://hal.archives-ouvertes.fr/hal-01464151

R. Singh, A. Chakraborty, and B. S. Manoj, Graph Fourier transform based on directed Laplacian, 2016 International Conference on Signal Processing and Communications (SPCOM), pp.1-5, 2016.
DOI : 10.1109/SPCOM.2016.7746675

URL : http://arxiv.org/abs/1601.03204

H. Sevi, G. Rilling, and P. Borgnat, Multiresolution analysis of functions on directed networks, Wavelets and Sparsity XVII, 2017.
DOI : 10.1117/12.2274341.5581170158001

F. Chung, Laplacians and the Cheeger Inequality for Directed Graphs, Annals of Combinatorics, vol.9, issue.1, pp.1-19, 2005.
DOI : 10.1007/s00026-005-0237-z

URL : http://www.math.ucsd.edu/~fan/wp/dichee.pdf

G. Yu and H. Qu, Hermitian Laplacian matrix and positive of mixed graphs, Applied Mathematics and Computation, vol.269, pp.70-76, 2015.
DOI : 10.1016/j.amc.2015.07.045

S. Sardellitti, S. Barbarossa, and P. D. Lorenzo, On the Graph Fourier Transform for Directed Graphs, IEEE Journal of Selected Topics in Signal Processing, vol.11, issue.6, pp.796-811, 2017.
DOI : 10.1109/JSTSP.2017.2726979

R. Shafipour, A. Khodabakhsh, G. Mateos, and E. Nikolova, A digraph fourier transform with spread frequency components, Proc. of IEEE Global Conf. on Signal and Information Processing, 2017.

A. Sandryhaila and J. Moura, Discrete Signal Processing on Graphs: Frequency Analysis, IEEE Transactions on Signal Processing, vol.62, issue.12, pp.3042-3054, 2014.
DOI : 10.1109/TSP.2014.2321121

URL : http://arxiv.org/pdf/1307.0468.pdf

H. Sevi, G. Rilling, and P. Borgnat, Analyse fréquentielle et filtrage sur graphes dirigés, 26e Colloque sur le Traitement du Signal et des Images. GRETSI-2017, p.220, 2017.

S. Ben-alaya, P. Gonçalves, and P. Borgnat, Linear prediction on graphs based on autoregressive models, Graph Signal Processing Workshop, 2016.

B. Girault, P. Goncalves, and E. Fleury, Translation on Graphs: An Isometric Shift Operator, IEEE Signal Processing Letters, vol.22, issue.12, 2015.
DOI : 10.1109/LSP.2015.2488279

URL : https://hal.archives-ouvertes.fr/hal-01221562

A. Anis, A. Gadde, and A. Ortega, Efficient Sampling Set Selection for Bandlimited Graph Signals Using Graph Spectral Proxies, IEEE Transactions on Signal Processing, vol.64, issue.14, pp.3775-3789, 2016.
DOI : 10.1109/TSP.2016.2546233

W. Zachary, An Information Flow Model for Conflict and Fission in Small Groups, Journal of Anthropological Research, vol.33, issue.4, pp.452-473, 1977.
DOI : 10.1086/jar.33.4.3629752

L. Lemagoarou, R. Gribonval, and N. Tremblay, Approximate fast graph Fourier transforms via multi-layer sparse approximations, IEEE Transactions on Signal and Information Processing over Networks, pp.1-1, 2017.

L. Lemagoarou, N. Tremblay, and R. Gribonval, Analyzing the approximation error of the fast graph fourier transform, proceedings of the Asilomar Conference on Signals, Systems, and Computers, 2017.

E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive Moving Average Graph Filtering, IEEE Transactions on Signal Processing, vol.65, issue.2, pp.274-288, 2017.
DOI : 10.1109/TSP.2016.2614793

A. Loukas, A. Simonetto, and G. Leus, Distributed Autoregressive Moving Average Graph Filters, IEEE Signal Processing Letters, vol.22, issue.11, pp.1931-1935, 2015.
DOI : 10.1109/LSP.2015.2448655

URL : http://ens.ewi.tudelft.nl/pubs/leus15spl.pdf

X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, Infinite Impulse Response Graph Filters in Wireless Sensor Networks, Signal Processing Letters IEEE, vol.22, issue.8, pp.1113-1117, 2015.

J. Liu, E. Isufi, and G. Leus, Autoregressive moving average graph filter design, 6th Joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, 2016.

N. Perraudin and P. Vandergheynst, Stationary Signal Processing on Graphs, IEEE Transactions on Signal Processing, vol.65, issue.13, pp.3462-3477, 2017.
DOI : 10.1109/TSP.2017.2690388

URL : https://infoscience.epfl.ch/record/214903/files/stationarity-paper.pdf

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, Stationary Graph Processes and Spectral Estimation, IEEE Transactions on Signal Processing, vol.65, issue.22, pp.5911-5926, 2017.
DOI : 10.1109/TSP.2017.2739099

D. Shuman, P. Vandergheynst, and P. Frossard, Chebyshev polynomial approximation for distributed signal processing, 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), pp.1-8, 2011.
DOI : 10.1109/DCOSS.2011.5982158

URL : http://arxiv.org/pdf/1105.1891.pdf

N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, Compressive spectral clustering, Proceedings of the 33 rd International Conference on Machine Learning (ICML) JMLR: W&CP, 2016, pp.1002-1011
URL : https://hal.archives-ouvertes.fr/hal-01320214

A. Susnjara, N. Perraudin, D. Kressner, and P. Vandergheynst, Accelerated filtering on graphs using Lanczos method Available: https://arxiv, p.4537, 1509.

E. Gallopoulos and Y. Saad, Efficient Solution of Parabolic Equations by Krylov Approximation Methods, SIAM Journal on Scientific and Statistical Computing, vol.13, issue.5, pp.1236-1264, 1992.
DOI : 10.1137/0913071

Y. Saad, Numerical Methods for Large Eigenvalue Problems, 2011.
DOI : 10.1137/1.9781611970739

M. Crovella and E. Kolaczyk, Graph wavelets for spatial traffic analysis, INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, pp.1848-1857, 2003.
DOI : 10.21236/ada442573

R. Coifman and M. Maggioni, Diffusion wavelets, Applied and Computational Harmonic Analysis, vol.21, issue.1, pp.53-94, 2006.
DOI : 10.1016/j.acha.2006.04.004

URL : https://doi.org/10.1016/j.acha.2006.04.004

M. Gavish, B. Nadler, and R. R. Coifman, Multiscale wavelets on trees, graphs and high dimensional data: Theory and applications to semi supervised learning, Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.367-374, 2010.

G. Strang and T. Nguyen, Wavelets and filter banks, SIAM, 1996.

M. Maggioni and H. Mhaskar, Diffusion polynomial frames on metric measure spaces Applied and Computational Harmonic Analysis, pp.329-353, 2008.
DOI : 10.1016/j.acha.2007.07.001

URL : https://doi.org/10.1016/j.acha.2007.07.001

N. Leonardi and D. Van-de-ville, Tight Wavelet Frames on Multislice Graphs, IEEE Transactions on Signal Processing, vol.61, issue.13, pp.3357-3367, 2013.
DOI : 10.1109/TSP.2013.2259825

URL : http://miplab.unige.ch/pub/leonardi1302p.pdf

D. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst, Spectrum-Adapted Tight Graph Wavelet and Vertex-Frequency Frames, IEEE Transactions on Signal Processing, vol.63, issue.16, pp.1-1, 2015.
DOI : 10.1109/TSP.2015.2424203

URL : http://arxiv.org/pdf/1311.0897.pdf

O. Teke and P. P. Vaidyanathan, Extending Classical Multirate Signal Processing Theory to Graphs???Part I: Fundamentals, IEEE Transactions on Signal Processing, vol.65, issue.2, pp.409-422, 2017.
DOI : 10.1109/TSP.2016.2617833

V. N. Ekambaram, G. C. Fanti, B. Ayazifar, and K. Ramchandran, Circulant structures and graph signal processing, 2013 IEEE International Conference on Image Processing, pp.834-838, 2013.
DOI : 10.1109/ICIP.2013.6738172

URL : http://www.eecs.berkeley.edu/~venkyne/Publications_files/SPGraphs_v15.pdf

M. S. Kotzagiannidis and P. L. Dragotti, Splines and wavelets on circulant graphs, Applied and Computational Harmonic Analysis
DOI : 10.1016/j.acha.2017.10.002

D. I. Shuman, M. J. Faraji, and P. Vandergheynst, A Multiscale Pyramid Transform for Graph Signals, IEEE Transactions on Signal Processing, vol.64, issue.8, pp.2119-2134, 2016.
DOI : 10.1109/TSP.2015.2512529

URL : http://infoscience.epfl.ch/record/210599/files/Shuman_et_al_Multiscale_Pyramid_Transform_Graph_Signals_v3.pdf

A. Sakiyama and Y. Tanaka, Oversampled Graph Laplacian Matrix for Graph Filter Banks, IEEE Transactions on Signal Processing, vol.62, issue.24, pp.6425-6437, 2014.
DOI : 10.1109/TSP.2014.2365761

URL : http://doi.org/10.1109/tsp.2014.2365761

H. Nguyen and M. Do, Downsampling of Signals on Graphs Via Maximum Spanning Trees, IEEE Transactions on Signal Processing, vol.63, issue.1, pp.182-191, 2015.
DOI : 10.1109/TSP.2014.2369013

S. Narang and A. Ortega, Local two-channel critically sampled filter-banks on graphs, 2010 IEEE International Conference on Image Processing, pp.333-336, 2010.
DOI : 10.1109/ICIP.2010.5651072

L. Avena, F. Castell, A. Gaudillì, and C. Mélot, Intertwining wavelets or Multiresolution analysis on graphs through random forests, 2017.

S. Lafon and A. B. Lee, Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.9, pp.1393-1403, 2006.
DOI : 10.1109/TPAMI.2006.184

URL : http://www.cs.cmu.edu/~eairoldi/nets/public/lafo.lee.2006.pdf

O. E. Livne and A. Brandt, Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver, SIAM Journal on Scientific Computing, vol.34, issue.4, pp.499-522, 2012.
DOI : 10.1137/110843563

URL : http://www.wisdom.weizmann.ac.il/~achi/LOP168.pdf

D. Ron, I. Safro, and A. Brandt, Relaxation-Based Coarsening and Multiscale Graph Organization, Multiscale Modeling & Simulation, vol.9, issue.1, pp.407-423, 2011.
DOI : 10.1137/100791142

URL : http://www.mcs.anl.gov/uploads/cels/papers/P1741.pdf

I. Dhillon, Y. Guan, and B. Kulis, Weighted Graph Cuts without Eigenvectors A Multilevel Approach Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.29, issue.11, pp.1944-1957, 2007.
DOI : 10.1109/tpami.2007.1115

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1998.
DOI : 10.1137/S1064827595287997

F. Murtagh and P. Contreras, Algorithms for hierarchical clustering: an overview Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, pp.86-97, 2012.
DOI : 10.1002/widm.1219

M. E. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, vol.68, issue.6804, pp.8577-8582, 2006.
DOI : 10.1073/pnas.021544898

URL : http://www.pnas.org/content/103/23/8577.full.pdf

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, issue.3-5, pp.75-174, 2010.
DOI : 10.1016/j.physrep.2009.11.002

URL : http://arxiv.org/pdf/0906.0612v1.pdf

J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Physical Review E, vol.5, issue.1, p.16110, 2006.
DOI : 10.1088/0305-4470/20/11/001

M. Schaub, J. Delvenne, S. Yaliraki, and M. Barahona, Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit, PLoS ONE, vol.84, issue.2, p.32210, 2012.
DOI : 10.1371/journal.pone.0032210.g006

N. Tremblay and P. Borgnat, Graph Wavelets for Multiscale Community Mining, IEEE Transactions on Signal Processing, vol.62, issue.20, pp.5227-5239, 2014.
DOI : 10.1109/TSP.2014.2345355

J. Irion and N. Saito, Applied and computational harmonic analysis on graphs and networks, Wavelets and Sparsity XVI, pp.95-971, 2015.
DOI : 10.1117/12.2186921

A. B. Lee, B. Nadler, and L. Wasserman, Treelets???An adaptive multi-scale basis for sparse unordered data, The Annals of Applied Statistics, vol.2, issue.2, pp.435-471, 2008.
DOI : 10.1214/07-AOAS137

G. Mishne, R. Talmon, I. Cohen, R. R. Coifman, and Y. Kluger, Data-Driven Tree Transforms and Metrics, IEEE Transactions on Signal and Information Processing over Networks, pp.1-1, 2017.
DOI : 10.1109/TSIPN.2017.2743561

A. D. Szlam, M. Maggioni, R. R. Coifman, J. C. Bremer, and . Jr, Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions, Wavelets XI, p.59141, 2005.
DOI : 10.1117/12.616931

D. A. Spielman and N. Srivastava, Graph Sparsification by Effective Resistances, SIAM Journal on Computing, vol.40, issue.6, pp.1913-1926, 2011.
DOI : 10.1137/080734029

URL : http://arxiv.org/pdf/0803.0929v1.pdf