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SHORT-RANGE WIDEBAND FMCW RADAR

FOR MILLIMETRIC DISPLACEMENT

MEASUREMENTS
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Abstract—The frequency modulated continuous wave (FMCW)
radar is an alternative to the pulse radar when the distance
to the target is short. Typical FMCW radar implementations
have a homodyne architecture transceiver which limits the
performances for short-range applications: the beat frequency
can be relatively small and placed in the frequency range affected
by the specific homodyne issues (DC offset, self-mixing and 1/f
noise). Additionally, one classical problem of a FMCW radar is
that the voltage controlled oscillator adds a certain degree of
nonlinearity which can cause a dramatic resolution degradation
for wideband sweeps. This paper proposes a short-range X-band
FMCW radar platform which solves these two problems by using
a heterodyne transceiver and a wideband nonlinearity correction
algorithm based on high-order ambiguity functions and time
resampling. The platform’s displacement measurement capability
was tested on range profiles and synthetic aperture radar (SAR)
images acquired for various targets. The displacements were
computed from the interferometric phase and the measurement
errors were situated below 0.1 mm for metal bar targets placed
at a few meters from the radar.

Index Terms—Frequency Modulated Continuous Wave
(FMCW), Interferometry, Synthetic Aperture Radar (SAR), Non-
linearity Correction, High-Order Ambiguity Function (HAF),
Time Resampling.

I. INTRODUCTION

THE frequency modulated continuous wave (FMCW)

radar is an alternative to the pulse radar when the target

range can be relatively small (below 100 m). In order to

measure such distances with a pulse radar the switching

time between transmission and reception should be at most

tens of nanoseconds. For a FMCW radar the range infor-

mation is provided by beat frequencies and each frequency

corresponds to a target placed at a certain distance. Typical

FMCW radar implementations have a homodyne architecture

transceiver [1], [2] which limits the performances for short-

range applications. In the case of targets positioned near the

radar, the beat frequency is small and can be situated in
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the frequency band affected by the classical problems of the

homodyne architecture (DC offset, self-mixing and 1/f noise)

[3]. Another problem of the FMCW transceiver is that the

voltage controlled oscillator (VCO) adds a certain degree

of nonlinearity which leads to a deteriorated resolution by

spreading the target energy through different frequencies [4].

This issue is usually solved either by hardware [5], [6] or

software [7], [8] approaches.

This paper presents a short-range FMCW X-band radar

based on a heterodyne architecture of the transceiver which

eliminates the low frequency self-mixing spectrum [9] and

reduces the noise bandwidth. In other works like [10], [11],

[12], [13] the heterodyne architecture is used for S-band and

X-band FMCW transceivers in order to build a hardware

range-gate based on narrow-band communication filters. The

range-gate is used either to eliminate from the beat signal some

powerful reflections that can reduce the receiver’s dynamic

range [10], [11] or just to increase the sensitivity in the range

swath of interest [12].

The VCO nonlinearity problem is solved using a correction

algorithm designed for wideband nonlinearities that can be

described by a polynomial expression. The presence of poly-

nomial nonlinearities leads to a multi-component polynomial-

phase beat signal. The coefficients of the polynomial-phase

signal (PPS) are estimated using the high-order ambiguity

function (HAF) [14] on a reference response which can

be either a delay line or a high reflectivity target whose

propagation delay should be roughly known. Afterwards, with

the estimated coefficients, the nonlinearity correction function

is built and applied through a time resampling procedure [15].

The nonlinearity correction algorithm we propose in this

paper differs from previous works in two ways. On one hand,

a typical nonlinearity estimation method (used for example

in Vossiek’s work [7]) based on the determination of the

instantaneous phase of a precision radar reference path is

valid only for a single component response, while the HAF-

based estimation can extract the nonlinearity coefficients from

a multi-component response if there is one highly reflective

target relative to other scatterers. On the other hand, the

correction method proposed in [4] by Meta et al. requires

a multiplication between the beat frequency signal and the

nonlinearity term from the transmitted waveform. This implies

an oversampling of the beat signal in order to satisfy the

Nyquist condition for the nonlinearity term bandwidth and

consequently this method is not well suited for large band-
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width nonlinearities (up to gigahertz). In our work, both the

estimation and the correction of the nonlinearity are made

using only the beat frequency signal, so the bandwidth of the

nonlinear term from the transmitted signal doesn’t impose the

sampling rate.

The X-band FMCW radar is tested with a number of range

profiles and SAR images of a few short-range metallic targets.

The displacements are computed from the interferometric

phase and their absolute errors are below 0.1 mm in all tests.

This paper is organized as follows. In Section II the short-

range FMCW radar architecture is described. Section III

presents the wideband nonlinearity correction algorithm. The

polynomial-phase signal model is introduced first. Then, the

HAF-based estimation method of the FMCW signal coeffi-

cients is discussed in Section III-A and the time resampling

correction procedure is exposed in Section III-B. Simulation

results prove the efficiency of the proposed correction algo-

rithm in Section III-C. Section IV presents the measurement

results: Section IV-A shows the validation of the nonlinearity

correction algorithm and in Section IV-B the displacement

measurements are presented. Finally, the conclusions are stated

in Section V.

II. SHORT-RANGE FMCW RADAR ARCHITECTURE

The block diagram of the X-band short-range FMCW radar

is shown in Fig. 1. The sweep signal is a linear tuning voltage

with 100 ms period obtained from the signal generator of an

USB oscilloscope. The discrete nature of the command signal

leads to a stepped frequency modulation with an unambiguous

beat frequency inversely proportional to the step duration [16],

[17]. The resolution of the signal generator is 12 bits which for

the maximum bandwidth of 4 GHz leads to an unambiguous

range of over 100 m (where the behavior is FMCW type).

The RF VCO block is a low-cost X-band VCO with 15%

linearity (defined as the ratio between the maximum frequency

deviation of the characteristic from linear and the total sweep

bandwidth [18], [19]) which provides the local oscillator (LO)

signal. The high nonlinearity of this VCO can be software

corrected and is no need of an expensive YIG-based VCO.

For a linear tuning voltage, the RF VCO signal in a sweep

period Tp can be written as:

sLO(t) = cos

[

2π

(

f0t +
1

2
α0t

2

)

+ Φnl(t)

]

, (1)

where Φnl(t) is the nonlinearity phase term. The interme-

diary frequency (IF) block is a direct digital synthesizer

with adjustable frequency (50-250kHz). The transmitted signal

consists of two different signals obtained by mixing the LO

signal with the IF signal:

sT (t) =
1

2
cos

[

2π

(

(f0 + fIF )t +
1

2
α0t

2

)

+ Φnl(t)

]

+

1

2
cos

[

2π

(

(f0 − fIF )t +
1

2
α0t

2

)

+ Φnl(t)

]

.

(2)

A part of the transmitted signal gets directly to the mixer

from the receiver section through the couplers (C1 and C2)

and the delay line. This reference path is used as power level

reference and for calibrating the radar with the nonlinearity

correction algorithm. In the receiver section, the reflected

signal that comes from N different targets is a sum of delayed

and attenuated versions of the transmitted signal sT (t):

sR(t) =
N
∑

i=1

AisT (t − τi), (3)

where τi and Ai are the propagation delay and amplitude

corresponding to target i. The received signal is mixed with

the LO and the resulting low frequency signal gets centered

around the IF:

sIF (t) =
1

4

N
∑

i=1

Ai

{

cos
[

2π
(

(fIF + α0τi)t+

(f0 − fIF )τi −
1

2
α0τ

2
i

)

+
(

Φnl(t) − Φnl(t − τi)
)

]

+

cos
[

2π
(

(fIF − α0τi)t − (f0 + fIF )τi +
1

2
α0τ

2
i

)

−

(

Φnl(t) − Φnl(t − τi)
)

]}

.

(4)

For short-range applications the delay is very small compared

to the sweep period. In consequence the residual video phase

(RVP) term [20] can be neglected and the nonlinearity phase

term difference can be approximated with the derivative mul-

tiplied with the delay. Under these assumptions, the IF signal

can be rewritten as:

sIF (t) ≈
1

4

N
∑

i=1

Ai

{

cos
[

2π
(

(fIF + α0τi)t+

(f0 − fIF )τi

)

+ τiΦ
′

nl(t)
)

]

+ cos
[

2π
(

(fIF − α0τi)t−

(f0 + fIF )τi

)

− τiΦ
′

nl(t)
)

]}

.

(5)
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Fig. 1. Block diagram of the X-band FMCW radar.

This signal is filtered, amplified and afterwards sampled

with 1 MHz sampling rate. The IF signal spectrum consists

of two groups of spectral components placed symmetrically

around the intermediary frequency as presented in Fig. 2. The

analog band-pass filter (BPF: 25-500 kHz bandwidth) removes
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TABLE I
SPECIFICATIONS OF THE FMCW RADAR SYSTEM

Maximum bandwidth 8-12 GHz

Sweep period 100 ms

IF frequency 50 - 250 kHz

VCO linearity 15%

Tuning signal Triangular/Sawtooth

Transmitted power 2 dBm

Antenna gain 17 dBi

Beamwidth (azimuth/elevation) 25
o/25

o

Maximum range 100 m

the low-frequency components (resulted from self-mixing and

local oscillator leakage in the transmitted signal), improves the

signal to noise ratio by reducing the noise bandwidth and acts

as anti-aliasing filter. Additional digital filters can be applied

to select an imposed range interval before mixing to baseband.

The specifications of the wideband FMCW radar system are

summarized in Table I.

 fIF

Frequency

DC offset

fIF – fb,max fIF + fb,max

fb,max

1/f noise
Reference path

Analog BPF

Digital BPF

Fig. 2. Intermediary frequency signal spectrum. The analog filter removes
the low-frequency components, improves the signal to noise ratio and acts as
anti-aliasing filter.

In order to shift the spectrum in baseband, the signal in (5)

should be digitally multiplied with the sampled IF sinusoidal

signal. The resulting beat frequency signal is (neglecting the

0.5 factors resulted from cosine multiplication):

sb(t) =
N
∑

i=1

Ai cos
[

2π
(

f0 + α0t + Φ′

nl(t)
)

τi

]

. (6)

If the range profile is computed as the Fourier transform

of this beat signal, the nonlinearity terms spread the energy

of each target and the resolution gets deteriorated. In or-

der to avoid this shortcoming, the beat signal is processed

with the nonlinearity correction algorithm described in the

following section. Notice that the same beat signal as the

one in (6) would be obtained for a homodyne architecture

if we neglect the undesired low-frequency components, so the

proposed nonlinearity correction algorithm can be applied to

both heterodyne and homodyne architectures.

Note that in contrast to other implementations (like [13])

the proposed architecture has certain differences which start

with the main reason for using the intermediary frequency

(to avoid the homodyne problems, not to build a range-gate).

Using a relatively large sweep period leads to a smaller

frequency interval of the expected beat frequencies which

implies a reduced noise bandwidth after the weighting window

applied in computing the range profile (the equivalent noise

bandwidth is around 15 Hz for 100 ms sweep period). Another

observation is that both groups of spectral components around

the IF are mixed to baseband and cumulated (not only one

lateral sideband) which avoids using an image reject filter.

III. NONLINEARITY CORRECTION ALGORITHM

The slope of the frequency-voltage characteristic for some

radio frequency VCOs may be reasonably approximated by

a quadratic curve [19]. However, a more general approach is

to assume a polynomial frequency-voltage dependence. This

means that the nonlinearity phase term can be expressed as:

Φnl(t) = 2π

K
∑

k=2

βk

k + 1
tk+1. (7)

With this assumption, by introducing (7) in (6) the beat signal

becomes a PPS:

sb(t) =

N
∑

i=1

Ai exp

[

j2π

(

f0 + α0t +

K
∑

k=2

βktk

)

τi

]

. (8)

The correction algorithm proposed in this paper aims to

turn this multi-component PPS into a sum of N complex

sinusoids. In this way each target appears as a sinc function

in the range profile. The algorithm consists of two steps:

the estimation of the FMCW signal coefficients (linear chirp

rate α0 and nonlinearity coefficients βk) using the high-order

ambiguity function and the correction of the beat signal by

time resampling.

A. Estimation of the FMCW signal coefficients

The estimation is based on the presence of a reference target

response (with amplitude Aref and propagation delay τref )

in the FMCW signal. This particular PPS component can be

extracted by bandpass filtering the beat signal around the beat

frequency corresponding to τref . The filtered signal can be

written as:

sb,f (t) = sb,f (t, τref ) +

M
∑

m=1

sb,f (t, τm). (9)

where M is the number of significant PPS components located

near the reference response in the filter’s pass band which

cannot be eliminated. In the estimation, it is considered that the

reference target is highly reflective relative to the remaining M
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components. Although the filtered signal has other components

besides the reference response, the FMCW signal coefficients

can be estimated using the high-order ambiguity function due

to its ability to deal with multiple component PPS’s if the

highest order phase coefficients of the components are not the

same [21], [22]. This happens for the FMCW signal because

each component is linked to a target with a certain propagation

delay.

The starting point is the high-order instantaneous momen-

tum (HIM), which can be defined for a signal s(t) as [14]:

HIMk[s(t); τ ] =

k−1
∏

i=0

[

s(∗i)(t − iτ)
](k−1

i )
, (10)

where k is the HIM order, τ is the lag and s(∗i) is an operator

defined as:

s(∗i)(t) =

{

s(t) if i is even,

s∗(t) if i is odd,
(11)

where i is the number of conjugate operator ”*” applications.

The high-order ambiguity function (HAF) is defined as the

Fourier transform of the HIM.

If we assume a PPS model for the analyzed signal, i.e.:

sPPS(t) = A exp

[

j2π

k
∑

m=0

amtm

]

, (12)

the essential property of the HIM is that, the k-th order HIM

is reduced to a harmonic with amplitude A2k−1

, frequency f̃k

and phase Φk:

HIMk[sPPS(t); τ ] = A2k−1

exp
[

j
(

2πf̃kt + Φk

)]

, (13)

where

f̃k = k!τk−1ak. (14)

So the HAF of this HIM should have a spectral peak at the

frequency f̃k. Based on this result, an algorithm that estimates

sequentially the coefficients ak was proposed in [23]. Starting

with the highest order coefficient, at each step, the spectral

peak is determined, and an estimation value âk of ak is

computed from (14). With this value, the phase term of the

higher order is removed:

sPPS
(k−1)(t) = sPPS

(k)(t) exp
(

−j2πâktk
)

(15)

and the procedure repeats iteratively. A classical problem of

this nonlinear method is the propagation of the approximation

error from one higher order to the lower ones, but in the case

of typical frequency-voltage VCO characteristics this effect

is not critical because an approximation order of only 3 or

4 is required. Still, if a higher order is necessary a warped-

based polynomial order reduction as described in [24] could

be employed.

After applying this iterative algorithm to the FMCW refer-

ence signal and obtaining the polynomial phase coefficients,

the linear chirp rate and the nonlinearity coefficients can be

computed as:

α0 = â1

τref

βk = âk

τref
, k = 2, K.

(16)

B. Time Resampling

Due to the fact that the frequency-voltage characteristic

of a VCO is monotonous, for a linear voltage sweep the

resulting polynomial phases of the beat signal components

are monotonous functions for t ∈ [0, Tp]. Therefore, the beat

signal in (8) can be rewritten as:

sb(t) =
N
∑

i=1

Ai exp {j2π [f0 + α0θ(t)] τi} , t ∈ [0, Tp], (17)

where

θ(t) = t

(

1 +

K
∑

k=2

βk

α0
tk−1

)

(18)

is a monotonous function of time t, which can be interpreted

as a new time axis. Hence, if the time axis is changed to θ,

the beat signal becomes a sum of N complex sinusoids, which

was the purpose of the correction algorithm. Moreover, in the

context of radar detection, the highly correlated clutter from

a nonlinear range profile gets decorrelated in a range profile

computed for the new time axis.

Notice that in the definition of θ the nonlinearity coefficients

βk are normalized to the linear chirp rate α0 which means

that the exact value of the reference propagation delay is not

needed. However, a rough value is required for the estimation

part in order to extract the reference response.

From the implementation point of view, the beat signal is

a digital signal sb[n] uniformly sampled at the moments tn,

n = 0, Ns − 1, where Ns is the number of samples. However,

the samples sb[n] of the beat signal related to the moments

θn = θ(tn) of the θ time axis lead to a non-uniformly sampled

signal. It can be shown that the average sampling interval of

θ is:

θS =
α

α0
Ts, (19)

where α is the mean chirp rate and Ts the uniform sampling

interval. According to [25], for a nonuniformly sampled signal,

the average sampling rate must respect the Nyquist condition.

For α > α0, this condition can be fulfilled if the beat signal

is oversampled (the chirp rate in the origin and the average

chirp rate typically have the same order of magnitude, so an

oversampling of at most 10 is enough). If the signal is alias-

free, it can be resampled with an interpolation procedure (e.g.

with spline functions) in order to obtain a uniformly sampled

signal in relation with the θ time axis. Afterwards, the range

profile is computed by applying the discrete Fourier transform

to the resampled signal. The nonlinearity correction algorithm

is summarized in the block diagram from Fig. 3.
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Fig. 3. Wideband nonlinearity correction algorithm based on high-order
ambiguity functions and time resampling.

C. Nonlinearity Correction Algorithm Simulation

The range profiles of a FMCW radar based on an X-band

VCO with 15% linearity were simulated. The chirp bandwidth

was 4 GHz, the sweep rate 50 Hz and the sampling frequency

1 MHz. The responses of six stationary targets with different

amplitudes were considered. The reference target was the one

located at 50 m. The nonlinear and corrected range profiles are

shown in Fig. 4. In the nonlinear range profile the targets can’t

be distinguished due to the overlapping of the frequency spread

responses of each target. The correction algorithm enhances

the -3 dB resolution up to the theoretical limit (around 4.9

cm for a Hamming window), although in the filtered signal

used for estimating the FMCW coefficients there are four other

targets close to the reference response. This result is in keeping

with the capability of the HAF estimation method to extract

the maximum amplitude PPS component if the ratio to the

other components is above a certain threshold (around 10 dB).

Besides the dramatically enhanced resolution, the correction

algorithm improves the peak level of each target which leads

to an increase of the signal to noise ratio with over 20 dB.

IV. MEASUREMENT RESULTS

This section is divided in two parts: the first part validates

the wideband nonlinearity correction algorithm on real data

and the second one is concerned with displacement mea-

surements using the interferometric phase derived from range

profiles and SAR images.

A. Nonlinearity Correction Algorithm Validation

The nonlinearity correction algorithm was first tested using

only the transceiver of the implemented radar system and

having artificial targets obtained with delay lines and atten-

uators. The tuning voltage versus frequency calibration curve
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Fig. 4. Range profiles simulation results: (a) 0-100m range, (b) detailed
47-51m range. In the nonlinear profile five targets are completely indistin-
guishable. The corrected profile leads to a resolution near the theoretical limit
and improves the signal to noise ratio.

of the VCO was measured. The range profiles obtained with

a predistorted command signal based on the calibration curve

were considered as reference. A few data sets were collected

under the same external conditions as for the calibration curve

measurement. Two delay lines having air-equivalent lengths of

30 cm (short path) and respectively 240 cm (long path) were

used as targets. The chirp bandwidth was 4 GHz and the sweep

interval 100 ms. The correction was done using both lines in

order to analyze the influence of the reference response delay

on the algorithm’s performance. For a 4th order polynomial

approximation, the HAFs plots of the FMCW coefficients in

both cases are shown in Fig. 5. The estimated coefficients

were used to generate nonlinearity corrected beat signals by

employing the time resampling procedure. The range profiles

were obtained by applying a Hamming window before the

Fourier transform.

Fig. 6 shows a comparison between the range profiles

obtained for the two delay lines in different cases and the

range profile obtained for the predistorted sweep (in each

comparison the range profiles are normalized such that the

short path peak responses have the same level). The range
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Fig. 5. High-order ambiguity functions of the FMCW signal for two delay
lines. The continuous plots show the functions for a 30 cm air-equivalent
length delay line (short path) and the dotted ones for a 240 cm air-equivalent
delay line (long path).

profile for a linear sweep is presented in Fig. 6a. The energy

of both targets is highly spread in frequency and the main

lobe for the long path occupies more than 40 resolution

cells (expected in view of the high degree of nonlinearity of

the VCO). The range profile corrected using the short path

coefficients (shown in Fig. 6b) is similar to the predistorted

sweep range profile for the short path response, but the energy

of the long path is still spread and there are two main lobes

for the same target. This effect is linked with the HAFs

for the high-order nonlinearity terms (3 and 4) in the short

reference path case which are hardly noticeable and can’t be

estimated properly. However, the long path calibration range

profile from Fig. 6c is very similar to the one obtained with

the predistorted sweep, so this software nonlinearity correction

method provides good results if the calibration path is long

enough to emphasize the nonlinearities (the higher order terms

to be highlighted and properly estimated). A clear advantage of

the proposed correction algorithm compared to the predistorted

sweep technique is that the FMCW signal coefficients used

for correction can be computed for each sweep and can

include various frequency drifts (due to temperature, frequency

pushing, etc.). The results of the range profiles comparison

are summarized in Table II where the -10 dB resolutions

are computed for both targets. Although the resolution for

the long path corrected range profile is better than for the

predistorted sweep range profile there are still present some

residual nonlinearities (deterministic as well as random) which

have small bandwidths and whose effect increases with range.

However, they can be further mitigated with methods like those

presented in [4], [7], [26].

In order to validate the HAF-based nonlinearity estima-

tion method for a multi-component response, a data set was

acquired for a scene containing three main scatterers: one

highly reflective metal disc and two vertical metal bars. The

range profiles obtained in this case are shown in Fig. 7. The

nonlinearity coefficients are computed on the 1.2-5.2 m range

TABLE II
NONLINEARITY CORRECTION ALGORITHM -10 DB RESOLUTION

Short Path Long Path

Resolution (cm) Resolution (cm)

Predistorted sweep 8.18 8.47

Short path correction 8.23 19.87

Long path correction 8.17 8.45

interval taking as reference target the metal disc. While on the

initial nonlinear range profile obtained for the linear voltage

sweep appears only a large continuous target, on the corrected

profile the three targets are clearly highlighted. Notice that the

power reflected by the metal disc is more than 10 dB higher

in comparison to the other scatterers which is in agreement

with the HAF method applicability threshold.

In the following part we show the results of the software

nonlinearity correction algorithm applied to FMCW radar data

acquired for a frequency sweep from 8 to 11 GHz. In Fig. 8 are

shown the range profiles obtained before and after applying the

correction algorithm for a scene containing a corner reflector

(situated at 2.5 m from the radar) which was used as reference

target for the nonlinearity estimation. In the corrected range

profile the main lobe of the corner reflector target reaches

the theoretical -3 dB resolution for a 3 GHz bandwidth and

Hamming window (around 6.5 cm).

Fig. 9 presents the results obtained from applying the

nonlinearity correction for a synthetic aperture image acquired

by moving the FMCW radar on a 30 cm rail. The scene in the

synthesized image contained some metal bars and one highly-

reflective metal disc. The software nonlinearity correction

was employed by resampling each line of the initial image

before applying the matched filter algorithm [27] to obtain

the synthetic aperture radar (SAR) image. Notice that in the

image from Fig. 9a the targets can’t be distinguished while in

the corrected version they are clearly range focused (Fig. 9b).

B. Displacement Measurements

A set of simulations based on the FMCW platform’s pa-

rameters was carried out in order to determine the expected

theoretical accuracy of the displacement measurements. In

each simulation were generated two noisy and nonlinearity

corrected range profiles containing one and the same target

with a given radar cross section. The target’s distance from

the radar in the two range profiles differed with 1 mm. The

measured displacement was the one obtained from the phase

difference of the target’s complex amplitudes in the two range

profiles. The error was computed as the difference between the

1 mm real value and the measured one. For each simulation

the signal to noise ratio (SNR) was computed as the ratio

between the target’s peak response and the noise floor value

(which for a range profile is the noise power computed in

the equivalent noise bandwidth of the weighing window used

before the Fourier transform). For each SNR value, the error’s

dispersion was computed over 1000 realizations of the two

range profiles. The relationship between the displacement error
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Fig. 6. Range profiles for two delay lines. The profiles obtained with a linear sweep and software nonlinearity correction are compared with the profile
resulted for a predistorted sweep (shown with dotted line) computed from the measured frequency-voltage calibration curve. There are three cases considered:
(a) no correction, (b) short path correction, (c) long path correction.
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Fig. 7. Experimental range profiles for a scene containing two metal bars
and one highly reflective metal disc. On the corrected range profile the three
targets are clearly separated, while in the nonlinear range profile the scatterers
can’t be distinguished.

dispersion and the SNR for targets placed at 2 m and 50 m is

plotted in Fig. 10. Notice that for SNRs greater than 25 dB the

displacement measurement error should stay below 0.1 mm.

The displacement measurements with the FMCW radar

were made using both range profiles and synthetic aperture

images for the 3 GHz bandwidth. The results are presented in

the following sections.

1) Range profiles based displacements: Different targets

such as metal bars and corner reflectors were placed in front

of the radar at various ranges (1-6 m). The displacement

measurements were conducted as follows. One target was

placed at a certain distance from the radar and the range

profile was computed after cumulating the received signal

over 10 sweep periods. Afterwards, the target was displaced

with a few millimeters using a caliper based device (with

0.02 mm accuracy) bonded to the target and another range

profile was obtained. Due to the very small displacement in

range, the target will most likely be in the same range bin

in both measurements, but the phase from that bin differs

proportionally with the displacement. If the range bin is not the

same and the displacement is unambiguous (e.g. is lower than

half the wavelength corresponding to the central frequency),

the displacement is still obtained as a phase difference, but

between the phases of the corresponding range bins from

2 3 4 5 6
−40

−35

−30

−25

−20

−15

−10

−5

0

Range [m]

N
o

rm
a

liz
e

d
 p

o
w

e
r 

[d
B

]

 

 

no correction

software corrected

Fig. 8. Range profile for an indoor scene containing a corner reflector (at 2.5
m) used as reference target for the software nonlinearity correction method.
The chirp bandwidth was 3 GHz and the sweep interval 100 ms.

the two acquired range profiles. Anyway, the displacement

is evaluated using the interferometric phase φ of the FMCW

complex range profile:

δr =
c0

4πfc

φ, (20)

where δr is the displacement, fc the central frequency and

c0 the speed of light in air. The measured displacements and

their corresponding absolute errors in a few measurements are

summarized in Fig. 11. The displacements errors are below

0.1 mm which is in keeping with the SNR of over 30 dB (as

resulted from the range profiles).

2) SAR Images based displacements: The measurement

procedure for the SAR images based displacements was sim-

ilar to the one described in the previous subsection, but the

experimental setup was the one used to obtain the nonlinearity

corrected SAR image from Fig. 9b. In turn, one of the targets

was moved on different directions between image acquisitions

and the displacement was projected on the local line of sight
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Fig. 9. Results of the software nonlinearity correction applied to the FMCW image before focusing. In the SAR image affected by the VCO nonlinearity
(a) the targets are almost indistinguishable, while in the corrected image (b) the targets are clearly separated.
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Fig. 10. Simulated displacement error dispersion vs. SNR for targets placed
at 2 m and 50 m. The expected measurement error should get below 0.1 mm
for SNRs higher than 25 dB.

(LOS) direction. Due to the short range the projection angle

was different from one target to another.

The complex correlation coefficient c = ρ exp (jφ) was

computed for each pair of SAR images as [28]:

c =

L
∑

i=1

z1iz
∗

2i

√

L
∑

i=1

|z1i|2

√

L
∑

i=1

|z2i|2

, (21)

where L is the number of samples used for spatial averaging

and z1i, z2i are the complex numbers (pixels) corresponding

to sample i. The magnitude ρ of the correlation coefficient is

the interferometric coherence and describes the phase stability

within the estimation neighborhood [29]. The LOS displace-

ments between two SAR images were computed from the

phase of the correlation coefficient (the interferometric phase)
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Fig. 11. Range profile displacement measurements results.

using (20). The coherence and interferogram computed for

two SAR images with a 3x3 pixels boxcar are shown in

Fig. 12. Notice that in the proximity of the metal targets the

coherence is around unity and the phase has approximatively

constant value. This is linked to the fact that for the considered

experimental setup, there are actually a few scatterers in a

resolution cell located in the vicinity of the metal targets

which leads to a less perceptible clutter. Fig. 13 shows a few

measured LOS displacements and the corresponding absolute

errors.

V. CONCLUSIONS

In this paper was presented an X-band FMCW radar used

for displacements measurement of short-range targets. The

radar’s transceiver is based on an intermediary frequency
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Fig. 12. Coherence (a) and interferogram (b) of two acquired SAR images computed with a 3x3 boxcar. The coherence is almost 1 and the phase has
approximatively constant value in the proximity of the metal targets (marked by the dotted ellipses).
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Fig. 13. SAR Image line of sight displacement measurements results.

architecture in order to avoid the specific homodyne problems

and enhance the system’s sensitivity. The nonlinearity of the

VCO was mitigated using a wideband nonlinearity correction

algorithm that uses HAF-based estimation and time resampling

of the beat signal. The improvements due to the nonlinearity

correction are clearly highlighted in the range profiles and

the SAR images obtained with the FMCW radar system. The

radar’s measurement capabilities were validated on the data

sets acquired for various targets. The displacements errors

were less than 0.1 mm for metallic targets placed at a few

meters from the radar.
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