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Abstract

We use game theory techniques to automatically compute improved lower bounds on the competitive ratio
for the bin stretching problem. Using these techniques, we improve the best lower bound for this problem
to 19/14. We explain the technique and show that it can be generalized to compute lower bounds for any
online or semi-online packing or scheduling problem. We also present a lower bound, with value 7/6, on the
expected competitive ratio of randomized algorithms for the bin stretching problem.
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1. Introduction

In the semi-online bin stretching problem, we are given a sequence of items defined by their weights
w; € [0;1]. They all have to be packed into m bins with infinite capacities. We know in advance that all
the items can be packed into m bins with unit size. The items become available and are packed in the
order of the sequence, without any knowledge on the number of remaining items and their processing times
except that all items fit into m bins with unit size. The value of a solution is equal to the size of the most
stretched bin, which is the maximum between 1 and the size of the largest bin. An algorithm with stretching
factor c for the semi-online bin stretching problem is an online algorithm which successfully packs into m
bins of size ¢, any sequence of items fitting into m unit sized bins. That is, for any instance I, the algorithm
outputs a solution with value at most ¢. The aim is to find an algorithm having a stretching factor as small
as possible.

This problem is equivalent to Py,|online — list|Cynqr where we additionally know that the optimal
makespan is smaller than or equal to a given value C. The parameter online — list means that, as soon as
a job is presented, all its characteristics are known (its processing time in our case) and this job has to be
scheduled before the next job is seen. The reader can refer to Borodin and El-Yaniv (1998) for more details
about online computation and to Pruhs et al. (2004) for online scheduling problems.

The bin stretching problem has been introduced by Azar and Regev (2001). They proposed an algorithm
of stretching factor 1.625 and proved that 4/3 is the optimal stretching factor with two bins. Other algorithms
with improved stretching factor have then been proposed by Kellerer and Kotov (2013) and recently by Gabay
et al. (2013) who respectively proposed algorithms with stretching factors 11/7 and 26,/17. The upper bound
on the competitive ratio (the stretching factor) for this problem has been improved while, in the meantime,
the best known lower bound remained the same: 4/3. In this paper, we present new lower bounds for this
problem, for both deterministic and randomized algorithms. In the following section, we define worst-case
competitive analysis and present the classical 4/3 lower bound.
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1.1. A lower bound

An online algorithm A is c-competitive if, for any instance I, A provides a solution with value at most
¢ times greater than the optimal value, i.e. for all instance I, we have A(I) < ¢ x OPT(I). For the bin
stretching problem, this yields A(I) < ¢ (we are guaranteed that OPT(I) = 1).

Our objective is to improve lower bounds on ¢ for a given problem. Ultimately, the aim is to find the small-
est competitive ratio ¢* among all online algorithms for the problem. This corresponds to finding the greatest
value ¢* such that for any online algorithm A, there exists an instance I for which A(I) > ¢* x OPT(I).

We now present the classical online scheduling lower bound for makespan minimization, adapted to the
bin stretching problem. Consider the problem with 2 bins (m = 2) and the two following sequences of items

in the input:
_ (1122 (L1
T™=\3333 T=\33

Obviously, both of these sequences of items can be packed into two unit sized bins. Consider a c-competitive
deterministic online algorithm A for the bin stretching problem. Algorithm A must pack both of these
sequences of items with stretching factor at most c.

FEither A packs both of the first two items, of size %, %, in the same bin or in different bins. In the first
case, with the sequence 7, the smallest bin is filled to at least 4/3, hence ¢ > 4. Otherwise, with sequence
7', the smallest bin is filled to at least 4/3, hence ¢ > %. In both case, ¢ > 3. Therefore, the stretching
factor of any online algorithm is greater than or equal to %.

Azar and Regev (2001) generalized this bound to any number of bins. This bound, however, has not
been improved ever since.

Our aim is to improve this lower bound. Obviously, we cannot work with all possible algorithms and
instances. Yet, in order to prove that a lower bound is valid, we need to prove that it is valid for all
deterministic algorithms. We remark that on a given input, considering all assignments for all items is the
same as considering all algorithms. In the following, we model the problem of finding lower bound as a game
and restrain the choices of the adversary (which corresponds to restraining the instances).

1.2. Contribution

We derive a new worst-case lower bound, with value 19/14 ~ 1.3571. In order to obtain this bound, we
model the problem as a two-player, zero-sum game. Then, we use the so-called adversary method in which a
malicious, omnipotent, adversary is playing against the algorithm to derive improved lower bounds. Contrary
to traditional studies in online scheduling which often use layering techniques to derive lower bounds for
deterministic algorithms, see e.g. Bartal et al. (1994); Albers (1999); Rudin and Chandrasekaran (2003),
we use an automated approach based on the minimax algorithm (Neumann, 1928), with alpha-beta pruning
(Pearl, 1982) to solve the game where the adversary has restricted choices on items weights. Moreover, to
comply with the known feasibility of the corresponding bin packing problem with unit sized bins, we use
constraint programming to compute feasible decisions of the adversary.

The algorithm outputs a decision tree as a proof. All decisions of the adversary are provided in this tree,
for all decisions of any algorithm. The proof for the 19/14 lower bound is provided in Appendix A.

This computational approach can be generalized and applied to any online or semi-online problem and,
to the best of our knowledge, has not been applied yet in the online scheduling literature.

By applying Yao’s minimax principle (Yao, 1977), we also obtain a lower bound with value 7/6 for the
expected competitive ratio of any randomized algorithm on the bin stretching problem. The reader can refer
to Epstein and van Stee (2003) for several applications of Yao’s principle on scheduling problems.

1.8. Outline

In Section 2, we model the problem of finding lower bounds for bin stretching algorithms as a game. Then,
in Section 3, we present the algorithm and cuts we use to solve this game and compute lower bounds. Finally,
in Section 4, we present a first lower bound on randomized algorithms for the bin stretching problem.



2. The bin stretching game

We model the problem of finding lower bounds for the bin stretching problem as the following two-player,
zero-sum infinite game:

BIN STRETCHING GAME

Player 1 choses a positive integer m. Then, successively, until Player 1 choses Stop:

1. Player 1 (the adversary) choses a feasible weight defining an item or Stop.
2. Player 2 (the algorithm) selects an integer i € {1,...,m} and packs the item into the bin B;.

The payoff of Player 1 is equal to max(1, max;—1, ., w(B;)), where w(B;) = ZjeBi wj.

Let w; be the weight selected by Player 1 on iteration j. The weight w; is feasible if and only if the
bin packing problem with m bins of unit capacities and items with weights wy,...,w; is feasible. The
bin packing problem is strongly N"P-hard (Garey and Johnson, 1979). However, we can consider that the
adversary is an oracle and can easily compute this problem.

Additionally, this is a game with complete information which means that both players know all the
decisions taken and recall the history of the game.

The payoff of Player 1 is ¢, the stretching factor, while the payoff of Player 2 is —c. This game is a
minimax game where Player 1 aims at maximizing ¢ while Player 2 aims at minimizing ¢. An algorithm for
the bin stretching problem defines a behavior for Player 2. The worst-case competitive ratio of an algorithm
is equal to the supremum of ¢ when Player 2 acts according to the algorithm. The supremum on the payoff
of Player 1 in this game is equal to the value ¢*.

It is easy to see that this game is infinite since the adversary can provide the input w; = 1/27,
for j =1,...,00. Hence, we cannot explore all feasible choices of the adversary unless we restrain them. To
cope with this issue, we actually consider that Player 1 has the following behavior: at the beginning of a
game, Player 1 choses a positive integer C. Then, all the weights chosen by Player 1 are in {1/C,2/C,...,1}
(he can still chose Stop as well). Considering this subset of adversaries, the game is finite: Player 1 has at
most mC' choices before the game is over.

In order to prove that a value c is a lower bound on c*, it is “sufficient” to show that for any algorithm,
there is an instance such that the stretching factor of the algorithm is greater than or equal to c¢. We
cannot consider all algorithms but, on a given instance, there is a finite number of decisions for Player 2 and
considering all decisions is actually the same as considering all algorithms. Hence, we only need to show
that, for any decision of Player 2, there is a sequence of decisions from Player 1 leading to a solution with
value at least c. Figure 1 illustrates this for the 4/3 lower bound. All decisions from Player 2 are considered
while only one decision for each branch is provided for Player 1.

3. Implementation

In order to solve the game, that is, find a strategy for Player 1 maximizing ¢, we implement the minimax
algorithm (depth-first search) for the game previously described. We apply the alpha-beta pruning with
several additional cuts. Remark that considering unit capacities and weights in {1/C,2/C,...,1} is the
same as counsidering the capacities of the bins to be C and weights in {1,...,C}. Hence, we represent an
item by an integer in {1,...,C} and a bin by a list of integers, corresponding to the items in the bin.

3.1. Decisions on items weights and assignments

In order to decide whether an item can be proposed by the adversary or not, we apply simple lower and
upper bounding results on the corresponding bin packing problem, including the additional new item. Some
of these are described in the following paragraphs. .

Let w1, ..., w; be the weights of the items, sorted in non-increasing order. We verify that >7_, w; < mC
and wy, +wmy1 < C. Let k = max{i|w; > C/2} (k = 0 if there are no such items) and | = max{i|w; = C/2}
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(0,0)

Next: 1/3
(1/3,0) (0,1/3)
Next: 1/3 Next: 1/3
(1/3,1/3) (2/3,0) (1/3,1/3) (0,2/3)
Next: 1 Next: 2/3 Next: 1 Next: 2/3

O O

(4/3,1/3) (1/3,4/3) (4/3,0) (2/3,2/3) (4/3,1/3) (1/3,4/3) (0,4/3) (2/3,2/3)

Next: 2/3 Next: 2/3
(4/3,2/3) (2/3,4/3) (4/3,2/3) (2/3,4/3)

Figure 1: 4/3 lower bound decision tree. Player 1 decisions are the “Next: w;”. The pairs (w1, ws) give the
space used in the bins.

(I = k if there are no such items), we also ensure that 2k + 1 < 2m. If any of the previous inequalities is
not verified, then the weight is infeasible. At this step, we can also compute refined lower bounds such
as Ly and L3 from Martello and Toth (1990). However, we chose to not compute these bounds since, in
our experiments, subproblems are small and it is computationally more efficient to immediately solve these
problems with an exact solver. With larger number of bins, one should consider computing these bounds
before computing the exact solution of the problem.

Then, if the problem was not proven infeasible, we compute the best fit decreasing heuristic on the input.
If it is feasible, then the new item is accepted. Otherwise, we need an exact approach to determine whether
current item is feasible or not.

In our case, we use constraint programming to solve the bin packing problem. This choice was motivated
by the small sizes of the problems that have to be solved. We did not implement a dedicated approach since
the time spent checking feasibility is strongly dominated by the time spent in the minimax algorithm.

In general, for a semi-online problem, one can use any approach, including integer programming, branch
and bound or any exact dedicated approach to determine whether a move for the adversary is feasible or
not. We can also use heuristic approaches with the risk of not being able to find a lower bound because of
a missed feasible move. However, when a move is validated, it has to be really feasible in order to ensure
the correctness of the results of the algorithm.

Eventually, it is not necessary to verify feasibility for all items: once an item is proven feasible, all smaller
items are feasible as well. Hence, by considering adversary choices by decreasing order of the weights of the
items, we only have to find the first feasible item ; then all remaining items are smaller, hence feasible.

3.2. Cuts

The size of the minimax tree is exponential in m and C. Hence, we have to find a way to cut branches in
order to be able to compute optimal solutions of the restricted game. The first step to reduce the minimax
tree is to break symmetries on the game: permutations on the bins are actually corresponding to identical
solutions. Moreover, from Player 2 point of view, the items in the bins do not matter. Only the bin sizes
matter. So, the configuration ((6,3),(4,5),0) is actually the same as ((7,1,1),0,(3,6)). However, these
two configuration are different from Player 1 point of view since he needs to ensure that the resulting bin
packing problem will be feasible. However, to both Player 1 and Player 2, the following configurations
are equivalent: ((6,5,1,2),(7,7),0), ((6,1,7),(5,2,7),0). These two nodes can actually be described as:
({(0,1), (14,2)},{(1,1),(2,1),(6,1),(7,2)}) which is the same node to both players. In the first set of pairs,
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the weights of the bins and their multiplicities are given, while the second set of pairs denotes the weights
of the items and their multiplicities. All nodes having the same encoding are equivalent.

We use this encoding to represent a (partial) solution and we take advantage of it in two ways: when
Player 2 packs an item, the number of edges to explore is equal to the cardinality of the first set of the pair,
which is less than or equal to m. Moreover, we use memoization (Michie, 1968) (and compression) to store
and recall the results of the nodes we have already computed and bin packing problems which have already
been non-trivially solved. However, because of the pruning, we have to store the values of a and 3 as well
as the evaluation of the node to be able to determine whether the node value shall be recomputed or not
when it is recalled.

We apply an alpha-beta pruning to the minimax algorithm. The idea is to maintain a lower bound « and
an upper bound [ on the stretching factor. The pruning works as follows: on a maximizer node, once it is
known that the solution of this node will be better than the solution of another node having the same parent
(this parent is a minimizer), it is not necessary to explore any other choice. And similarly for minimizer
nodes.

Since the adversary is computing a solution against all algorithms, we can consider several particular
algorithms. Especially, we can consider the algorithm packing all remaining items into the currently smallest
bin. We do not know the remaining items, but we know that the sum of their weights cannot exceed
mC — Y7 _, w,. Let B; be the smallest bin, if w(B;) + mC — Y 7_; wi < « then we can immediately
proceed to a 3 cut-off.

Additionally, we are aiming at strictly improving known lower bounds and we know that some competitive
ratio can be achieved by some deterministic algorithms. So, we start the exploration with a lower bound
which is equal to the best known lower bound (o = |C¢|, where ¢ is the best known lower bound on c¢*)
and an upper bound which is equal to the competitive ratio of the best algorithm (8 = 26C/17).

For most values, the lower bound will not be increased, so we improve this approach by dividing it into
two steps: in the first step, we determine whether or not the lower bound can be improved. If so, in a second
step, we determine the new best lower bound. Otherwise, we go on to the next value. Thus, we start with
a = |C¢| and B = |C¢] + 1 ; such close values allow very early cut-offs. When the algorithm is over, the
value is either o or 8. In the first case, the lower bound cannot be improved for current values of m and C.
It is over, we can try a new set of parameters m, C. In the latter case, we know that % is a new, strictly
larger lower bound. We re-run the algorithm with 8 = 26C/17 to see if we can further improve this new
lower bound.

3.3. Results

We implemented the algorithm in Python and used Choco (Jussien et al., 2008) as a constraint program-
ming solver. The source code is available online!.

Running the program with parameters m = 3 and C = 14, we obtain the lower bound 19/14 ~ 1.357.
We backtracked the results and verified them manually. The proof is provided in Appendix A.

We used PyPy interpreter on a computer running Linux and equipped with an Intel Core i7-2600K
Processor (clock speed 3.40GHz) and 4GB of RAM to compute lower bounds with our algorithm. Some
experimental results are presented Table 2. Using our approach, we were able to compute the results for
m = 3 and C up to 20, and m = 4 and C up to 12. Using the two-step approach, we were able to prove
that neither m = 3, C = 21, nor m = 4, C = 13 allow to increase the lower bound. With larger values of
m, we are only able to compute results with small C' and we do not get improved lower bounds. For larger
values of C', the number of nodes is too large and we are facing time and memory issues. We did not put
much effort into optimizing the code since we are limited by the combinatorial explosion rather than any
algorithmic factor.

The results presented Table 2 (except the last column) concern the single step approach, with pruning
parameters initialized to a = |4C/3| and 8 = 26C/17. The last column gives the number of nodes in the
first stage of the two-steps approach, with o = |C¢] and g = |C¢] + 1.

Thttps://github.com/mgabay /Bin-Stretching-Lower-Bounds
S



The column #calls corresponds to the number of times an item feasibility was verified. The column
#exact is the number of calls to the exact method (that is when the item was not proven to be feasible or
infeasible by a heuristic or a lower bound). The combinatorial explosion is very well illustrated in column
#nodes where we can see that even with many efficient cuts, we cannot tackle much larger problems. Table 2
also shows that the time spent verifying items feasibility is negligible compared to the whole time spent.
Time spent is approximately linear in the number of nodes, except for the largest instances (= 2 x 107 nodes)
since the computer is out of memory and swaps, making the algorithms very inefficient.

m C c feasibility check overall first step
#calls #exact  time #nodes time #nodes

3 10 — 4,687 37 0.4 49,055 1.4 41,753
11 — 14,802 141 1.2 168,380 34 141,176

12 — 9,125 63 0.5 118,925 2.2 98,186

13 — 32,538 209 1.1 458,183 5.8 384,052

14* 19/14 82,868 644 2.2 1,240,619 14.0 286,845

15 — 55,929 344 1.2 890,291 10.1 702,449

16 — 196,835 1142 3.3 3,384,144 35.5 2,901,483

17 23/17 207,133 1,804 4.0 3,728,386 40.8 1,620,468

18 — 303,725 1,646 4.3 5,692,383 57.2 4,652,427

19 — 1,045,692 4,958  21.0 21,262,246 1225.1 18,653,870

20 27/20 977,992 6,191 21.9 20,283,070 1046.7 11,446,232

4 7 — 6,622 50 0.4 50,642 1.6 39,946
8 — 28,099 182 1.1 254,344 4.5 193,474

9 — 30,991 98 0.8 331,112 4.8 266,926

10 — 127,063 721 2.6 1,442,281 19.5 1,106,147

11 — 503,560 3114 7.5 6,365,822 81.7 5,195,618

12 — 491,497 1974 5.8 6,718,232 89.7 5,158,805

13 — 1,540,000  >8000 >41.6 >22,900,000 >3600 19,956,339

Figure 2: Numerical results on some inputs. Column 3, ¢ is the best lower bound on the competitive ratio
obtained for the instance. “—” means that the 4/3 lower bound was not improved.

In order to improve this algorithm, the first step would be to reduce memory usage by restraining the
amount of memoized data. Then, we could use a breadth-first search and for each depth, use a heuristic
to select a sample of least promising nodes. Exploring these nodes in depth, will allow some early cut-offs.
Another approach is to set C = 1 and select random weights in ]0; 1]. Then, we can run the algorithm on
many random samples of items, hopefully resulting in an improved lower bound. We ran some tests using
this approach but did not obtain any improved lower bound.

4. Lower Bound on randomized algorithms

We are now interested in randomized algorithms for this problem. A randomized algorithm can take its
decisions at random, according to some probability distributions. While the previous worst case analysis
holds, when designing a random algorithm, the aim is to minimize the expected competitive ratio rather
than the worst case competitive ratio. In this section, we prove a lower bound on the expected competitive
ratio for any randomized algorithm for this problem.

Theorem 1. Any randomized algorithm for the semi-online bin stretching problem, has an expected com-
petitive ratio of at least 7/6, for any number of machines m > 2.



Proof. We use Yao’s minimax principle and consider a randomized adversary against a deterministic algo-
rithm. Yao’s principle states that a lower bound ¢ for the competitive ratio of deterministic algorithms on
a fixed distribution over inputs is also a lower bound for any randomized algorithms.

Let m be the number of machines. We consider the input from Azar and Regev (2001), with an additional
distribution of probabilities:

e with probability p, the input is m items of weight 1/3, followed by m item of weight 2/3.
e with probability 1 — p, the input is m items of weight 1/3, followed by an item of weight 1.

Both of these inputs are obviously feasible.

Any deterministic algorithm either packs the m first items in different bins or at least two of them are in
the same bin. In the first case, the first input yields solutions with value at least 1, while the second input
yields solutions with value at least 4/3. Otherwise, the first input yields solutions with value at least 4/3,
while the second input yields solutions with value at least 1.

Hence, the performance of any deterministic algorithm packing the m first items in different bins is
at least p x 1 4+ (1 — p) x 4/3, while the other deterministic algorithms yield solutions with value at least
p x4/3+ (1 —p) x 1. The minimum of both of these values is maximized for p = 1/2. In such case, the
performance of any deterministic algorithm is at least 7/6 on this input.

Hence, by Yao’s principle, 7/6 is a lower bound on the competitive ratio of any randomized algorithm
for the semi-online bin stretching problem. O

5. Conclusion

We improved the best known lower bound for the bin stretching problem and proposed a first lower
bound for the performance of randomized algorithms on this problem. The 19/14 lower bound has been
proven for m = 3 only; so it is still open to know whether or not 19/14 is a lower bound for m > 4. The
7/6 lower bound for randomized algorithms is valid for all m > 2.

We represented the problem as a game and used an automated search to find lower bounds. This
approach differs from traditional approaches using layering techniques and can be generalized and applied
to many other packing or scheduling, online or semi-online problems. Compared to layering techniques, for
multiple machines problem, there is however a trade-off on the generality of the bound: the lower bound
cannot easily be generalized to any number of machines.
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Appendix A. Proof of the lower bound

The following tree proves the 19/14 lower bound for the bin stretching problem. This lower bound was
obtained using our algorithm with parameters m = 3 and C' = 14.

In the proof, a single decision of the adversary is provided for each decision of the algorithm. We do
not explore branches where the algorithm packs the item in a bin, making it larger than or equal to 19.
Moreover, we stop exploring a branch when there is a feasible item making all algorithms fail. We denote
these latter nodes by “cut: Wmin+w;>=UB".



:xt weight: 6
ins: [2, 1, 1]

:xt weight: 4
ins: [8, 1, 1]

Next weight: 14
bins: [8, 5, 1]

cut: Wmin + 14 >= UB
bins: [8, 5, 15]

cut: Wmin + 8 >= UB
bins: [12, 11, 11]

Next weight: 10
bins: [12, 11, 1]

Next weight: 10
bins: [2, 11, 1]

Next weight: 10
bins: [2, 11, 11]

cut: Wmin + 8 >= UB
bins: [12, 11, 11]

Next weight: 4
bins: [2, 7, 1]

Next weight: 14
bins: [6, 7, 1]

cut: Wmin + 14 >= UB
bins: [6, 7, 15]

Next weight: 14
bins: [2, 7, 5]

cut: Wmin + 14 >= UB
bins: [16, 7, 5]




Next weight: 5
bins: [2, 2, 0]

Next weight: 5
bins: [2, 2, 5]

Next weight: 3
bins: [7, 2, 0]

Next weight: 10
bins: [12, 1, 1]

Next weight: 14
bins: [7, 5, 0]

Next weight: 4
bins: [7, 2, 3]

Next weight: 10
bins: [2, 2, 10]

Next weight: 14
bins: [7, 2, 5]

cut: Wmin + 14 >= UB
bins: [7, 16, 5]

cut: Wmin + 14 >= UB
bins: [7, 5, 14]

Next weight: 10
bins: [12, 11, 1]

t: 10
, 111

Next weight: 9
bins: [12, 2, 10]

Next weight: 9
bins: [11, 2, 3]

Next weight: 14
bins: [7, 2, 7]

Next weight: 13
bins: [7, 6, 3]

_\
cut: Wmin + 8 >= UB
bins: [12, 11, 11]

cut: Wmin + 13 >= UB
bins: [7, 6, 16]

cut: Wmin + 9 >= UB
bins: [12, 11, 10]

cut: Wmin + 12 >= UB
bins: [7, 16, 71

n+9>=UB
10, 12, 11]

Next weight: 9
bins: [11, 2, 12]

Next weight: 9
bins: [11, 11, 3]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]



Next weight: 1
bins: [2, 1, 0]

Next weigh

Next weight: 2
bins: [10, 2

bins: [3, 5, 2]

Next weight: 10
bins: [10, 13, 0]

Next weigh
bins: [10, 2

Next weight: 2
bins: [3, 5, 4]

Next weight: 14
bins: [5, 5, 2]

Next weight: 4
bins: [3, 7, 2]

cut: Wmi
bins: [:

cut: Wmin + 9 >= UB
bins: [10, 13, 10]

Next weight: 14
bins: [5, 5, 4]

Next weight: 14
bins: [3, 5, 6]

cut: Wmin + 14 >= UB Next weight: 4

Next weight: 13

\ext weight: 14

bins: [7, 7, 2] bins: [3, 7, 6] bins: [5, 5, 16] bins: [3, 7, 4]

Y
in+ 12 >=UB cut: Wmin + 13 >= UB Next weight: 8 Next weight: 12 Next weight: 12 cut: Wmin + 14 >= UB cut: Wmin + 14 >= UB
:[7, 7, 16] bins: [16, 7, 6] bins: [3, 11, 4] bins: [3, 7, 8] bins: [7, 7, 4] bins: [17, 5, 6] bins: [5, 5, 18]

cut: Wmin + 12 >= UB
bins: [7, 7, 16]

cut: Wmin + 12 >= UB
bins: [15, 7, 8]

Next weight: 8
bins: [11, 11, 4]

Next weight: 8
bins: [3, 11, 12]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]




Next weight: 4
bins: [3, 1, 2]

Next weight: 5
bins: [7, 1, 2]

weight: 14 Next weight: 14

2 [7,1, 7] bins: [7, 6, 2]

+ 13 >=UB cut: Wmin + 13 >= UB
', 15, 7] bins: [7, 6, 16]

cut: Wmin + 9 >= UB
bins: [12, 10, 11]

cut: Wmin + 8 >= UB
bins: [12, 11, 11]

Next weight: 10
bins: [12, 1, 11]

Next weight: 5
bins: [3, 1, 6]

Next weight: 14
bins: [3, 6, 6]

Next weight: 9
bins: [3, 1, 11]

Next weight: 14
bins: [8, 1, 6]

cut: Wmin + 13 >= UB
bins: [17, 6, 6]

Next weight: 9
bins: [3, 11, 2]

cut: Wmin + 13 >= UB
bins: [8, 15, 6]

Next weight: 9
bins: [3, 10, 11]

cut: Wm
bins

Next weight: 9
bins: [12, 11, 2]

Next weight: 9
bins: [3, 11, 11]

cut: Wmin + 9 >= UB
bins: [12, 10, 11]

cut: Wmin + 8 >= UB
bins: [12, 11, 11]

cut: Wmin + 8 >= UB
bins: [12, 11, 11]



Next weight: 2
bins: [3, 1, 0]

Next weight: 4
bins: [3, 3, 0]

A 4

Next weight: 4
bins: [3, 3, 4]

Next weight: 4
bins: [3, 3, 8]

Next weight: 4
bins: [7, 3, 4]

Next weight: 9

bins: [12, 1, 2] bins

cut: Wmin -
bins: [7

Next weight: 8
bins: [3, 3, 12]

Next weight: 12
bins: [7, 3, 8]

Next weight: 8
bins: [11, 3, 4]

Next weight: 12
bins: [7, 3, 8]

Next weight: 12
bins: [7, 7, 4]

Next weight: 10
bins: [12, 1, 11]

Next weight: 9
bins: [12, 10, 2]

cut: Wmin + 12 >= UB
bins: [7, 15, 8]

lext weight: 8
ins: [11, 3, 12]

Next weight: 8
bins: [11, 3, 12]

cut: Wmin + 12 >= UB
bins: [7, 15, 8]

Next weight: 8
bins: [11, 11, 4]

cut: Wmin + 12 >= UB
bins: [7, 7, 16]

cut: Wmin + 8 >= UB
bins: [12, 11, 11]

Wmin + 8 >= UB
ns: [11, 11, 12]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]



Name: Root
Next weight: 2

Next weight: 1
bins: [2, 0, 0]

Next weight: 6
bins: [5, 1, 0]

Next weight: 11
bins: [11, 1, 0]

Next weight: 14
bins: [5, 7, 0]

Next weight: 14
bins: [5, 1, 6]

Next weight: 3
bins: [7, 3, 0]

Next weight: 11
bins: [11, 12, 0]

Next weight: 11
bins: [11, 1, 11]

cut: Wmin + 14 >= UB
bins: [5, 7, 14]

cut: Wmin + 14 >= UB
bins: [5, 15, 6]

Next weight: 10
bins: [10, 3, 0]

Next weight: 14
bins: [7, 6, 0]

Next weight: 5
bins: [7, 3, 3]

IS
cut: Wmin + 8 >= UB
bins: [11, 12, 11]

cut: Wmin + 8 >= UB
bins: [11, 12, 11]

Next weight: 10
bins: [10, 13, 0]

Next weight: 10
bins: [10, 3, 10]

cut: Wmin + 14 >= UB
bins: [7, 6, 14]

Next weight: 8
bins: [12, 3, 3]

Next weight:
bins: [7, 8, 3

cut: Wmin + 9 >= UB cut: Wmin + 9 >= UB Next weight: 8 cut: Wmin + 12 >= UB \
bins: [10, 13, 10] bins: [10, 13, 10] bins: [12, 11, 3] bins: [7, 8, 15] b

A 4
cut: Wmin + 8 >= UB cut:

bins: [12, 11, 11] bil



I

Next weight: 2
bins: [3, 3, 4]

Next weight: 2

Next weight: 2
bins: [3, 3, 6]

bins: [5, 3, 4]

xt weight: 4
1s: [3, 3, 8]

Next weight: 14

Next weight: 4
bins: [5, 3, 6]

bins: [7, 3, 4]

Next weight: 14
bins: [5, 3, 6]

Next weight: 14
bins: [5, 5, 4]

't weight: 12
1s: (7, 3, 8]

cut: Wmin + 14 >= UB
bins: [5, 17, 6]

Next weight: 8
bins: [11, 3, 4]

Next weight: 12
bins: [7, 3, 8]

Next weight: 12
bins: [7, 7, 4]

cut: Wmin + 14 >= UB
bins: [5, 17, 6]

cut: Wmin + 14 >= UB
bins: [5, 5, 18]

min + 12 >= UB
1s: [7, 15, 8]

Next weight: 8
bins: [11, 3, 12]

Next weight: 8
bins: [11, 11, 4]

cut: Wmin + 12 >= UB
bins: [7, 15, 8]

cut: Wmin + 12 >= UB
bins: [7, 7, 16]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]



Next weight: 3
bins: [3, 0, 0]

y

4

Next weight: 4

Next weight: 6
bins: [3, 3, 0]

bins: [6, 0, 0]

Next weight: 3
bins: [7, 3, 0]

Next weight: 11
bins: [12, 0, 0]

Next weight: 14
bins: [6, 6, 0]

Next weight: 4
bins: [7, 3, 3]

Next weight: 14
bins: [7, 6, 0]

cut: Wmin + 14 >= UB
bins: [6, 6, 14]

Next weight: 10
bins: [10, 3, 0]

Next weight: 11
bins: [12, 11, 0]

Next weight: 13
bins: [7, 7, 3]

cut: Wmin + 14 >= UB
bins: [7, 6, 14]

Next weight: 9
bins: [11, 3, 3]

Next weight: 10
bins: [10, 3, 10]

cut: Wmin + 8 >= UB
bins: [12, 11, 11]

Next weight: 10
bins: [10, 13, 0]

cut: Wmin + 12 >= UB
bins: [7, 7, 16]

Next weight: 8
bins: [3, 3, 12]

Next weight: 8
bins: [11, 12, 3]

cut: Wmin + 9 >= UB
bins: [10, 13, 10]

cut: Wmin + 9 >= UB
bins: [10, 13, 10]

bir

cut: W
bir

Next weight: 8
bins: [11, 3, 12]

cut: Wmin + 8 >= UB
bins: [11, 12, 11]

cut: Wmin + 8 >= UB
bins: [11, 11, 12]
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