D. P. Krabbenhoft and E. M. Sunderland, Global Change and Mercury. Science, vol.341, pp.1457-1458, 2013.

C. T. Driscoll, R. P. Mason, H. M. Chan, D. J. Jacob, and N. Pirrone, Mercury as a global pollutant: sources, pathways, and effects, Environ. Sci. Technol, vol.47, pp.4967-4983, 2013.

C. Temme, Trend, seasonal and multivariate analysis study of total gaseous mercury data from the Canadian atmospheric mercury measurement network (CAMNet), Atmos. Environ, vol.41, pp.5423-5441, 2007.

X. W. Fu, Observations of atmospheric mercury in China: a critical review, Atmos. Chem. Phys, vol.15, pp.9455-9476, 2015.

A. Weigelt, Analysis and interpretation of 18 years of mercury observations since 1996 at Mace Head, Ireland, Atmos. Environ, vol.100, pp.85-93, 2015.

F. Sprovieri, Atmospheric Mercury Concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmos. Chem. Phys. Atmos. Chem. Phys, vol.16, pp.11915-11935, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01836095

C. D. Holmes, Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys, vol.10, pp.12037-12057, 2010.

S. Song, Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling, Atmos. Chem. Phys, vol.15, pp.7103-7125, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01203657

H. M. Horowitz, A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget, Atmos. Chem. Phys, vol.17, pp.6353-6371, 2017.

N. E. Selin, Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, J. Geophys. Res.-Atmos, vol.112, 2007.
DOI : 10.1029/2006jd007450

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JD007450

F. Slemr, Comparison of mercury concentrations measured at several sites in the Southern Hemisphere, Atmos. Chem. Phys, vol.15, pp.3125-3133, 2015.

M. A. Khalil and R. A. Rasmussen, Sources, sinks, and seasonal cycles of atmospheric methane, J. Geophys. Res.- Oceans, vol.88, pp.5131-5144, 1983.
DOI : 10.1029/jc088ic09p05131

A. W. Rea, S. E. Lindberg, T. Scherbatskoy, and G. J. Keeler, Mercury accumulation in foliage over time in two northern mixed-hardwood forests, Water Air Soil Pollut, vol.133, pp.49-67, 2002.

V. L. St-louis, Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems, Environ. Sci. Technol, vol.35, pp.3089-3098, 2001.

S. Lindberg, A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition, Ambio, vol.36, pp.19-32, 2007.

N. V. Smith-downey, E. M. Sunderland, and D. J. Jacob, Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model, J. Geophys. Res.-Biogeosci, vol.115, 2010.

D. Obrist, Atmospheric mercury pollution due to losses of terrestrial carbon pools?, Biogeochemistry, vol.85, pp.119-123, 2007.

H. M. Amos, D. J. Jacob, D. G. Streets, and E. M. Sunderland, Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochem. Cycles, vol.27, pp.410-421, 2013.

L. Zhang, The estimated six-year mercury dry deposition across North America, Environ. Sci. Technol, vol.50, pp.12864-12873, 2016.
DOI : 10.1021/acs.est.6b04276

Y. Agnan, T. Le-dantec, C. W. Moore, G. C. Edwards, and D. Obrist, New constraints on terrestrial surface-atmosphere fluxes of gaseous elemental mercury using a global database, Environ. Sci. Technol, vol.50, pp.507-524, 2016.

A. Laacouri, E. A. Nater, and R. K. Kolka, Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A. Environ. Sci. Technol, vol.47, pp.10462-10470, 2013.

D. Obrist, Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution, Nature, vol.547, pp.201-204, 2017.
DOI : 10.1038/nature22997

URL : https://edoc.unibas.ch/68585/1/20190118132748_5c41c6448b055.pdf

J. A. Graydon, . St, V. L. Louis, S. E. Lindberg, H. Hintelmann et al., Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber, Environ. Sci. Technol, vol.40, pp.4680-4688, 2006.

X. Wang, Z. Bao, C. J. Lin, W. Yuan, and X. Feng, Assessment of global mercury deposition through litterfall, Environ. Sci. Technol, vol.50, pp.8548-8557, 2016.
DOI : 10.1021/acs.est.5b06351

Y. Zhang, Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions, Proc. Natl. Acad. Sci. USA, 2016.
DOI : 10.1073/pnas.1516312113

URL : https://www.pnas.org/content/pnas/113/3/526.full.pdf

J. D. Demers, J. D. Blum, and D. R. Zak, Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle, Global Biogeochem. Cycles, vol.27, pp.222-238, 2013.

M. Enrico, Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition, Environ. Sci. Technol, vol.50, pp.2405-2412, 2016.
DOI : 10.1021/acs.est.5b06058

URL : https://hal.archives-ouvertes.fr/hal-01435364

M. Jiskra, Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures, Environ. Sci. Technol, vol.49, pp.7188-7196, 2015.

C. D. Keeling, Atmospheric carbon dioxide variations at Manua-Lao observatory, Hawaii. Tellus, vol.28, pp.538-551, 1976.
DOI : 10.3402/tellusa.v28i6.11322

C. D. Keeling, J. F. Chin, and T. Whorf, Increased activity of northern vegetation inferred from atmospheric CO2 measurements, Nature, vol.382, pp.146-149, 1996.

A. S. Denning, I. Y. Fung, and D. Randall, Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota, Nature, vol.376, pp.240-243, 1995.

, Sources, Emissions, Releases and Environmental Tramsport. (UNEP Chemicals Branch, 2013.

A. Steffen, A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmos. Chem. Phys, vol.8, pp.1445-1482, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00328572

M. C. Diéguez, Four years of atmospheric mercury records in Northwestern Patagonia (Argentina): potential sources, concentration patterns and influence of environmental variables observed at the GMOS EMMA station, Atmos. Chem. Phys. Discuss, vol.2017, pp.1-18, 2017.

J. Fritsche, Elemental mercury fluxes over a sub-alpine grassland determined with two micrometeorological methods, Atmos. Environ, vol.42, pp.2922-2933, 2008.

L. Poissant, M. Pilote, E. Yumvihoze, and D. Lean, Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Québec, Canada. J. Geophys. Res, vol.113, 2008.

X. Fu, Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China, Atmos. Chem. Phys, vol.16, pp.12861-12873, 2016.

S. C. Wofsy, Net exchange of CO2 in a midlatitude forest, Science, vol.260, pp.1314-1317, 1993.

R. Commane, Seasonal fluxes of carbonyl sulfide in a midlatitude forest, Proc. Natl. Acad. Sci. USA, vol.112, pp.14162-14167, 2015.

R. Wehr, Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake, Biogeosciences, vol.14, pp.389-401, 2017.

D. Obrist, A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity, Sci. Total. Environ, vol.568, pp.522-535, 2016.

T. J. Blasing, C. T. Broniak, and G. Marland, The annual cycle of fossil-fuel carbon dioxide emissions in the United States, Tellus B, vol.57, 2011.

X. Lan, R. Talbot, M. Castro, K. Perry, and W. Luke, Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data, Atmos. Chem. Phys, vol.12, pp.10569-10582, 2012.

X. H. Xu, U. Akhtar, K. Clark, and X. B. Wang, Temporal variability of atmospheric total gaseous mercury in Windsor, ON, Canada. Atmosphere, vol.5, pp.536-556, 2014.

S. Song, Constraints from observations and modeling on atmosphere-surface exchange of mercury in eastern North America, Elementa: Science of the Anthroposcene, vol.4, 2016.

J. Bieser, Air Pollution Modeling and its Application XXIII, pp.189-195, 2014.

J. Bieser, Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species, Atmos. Chem. Phys, vol.17, pp.6925-6955, 2017.

R. R. Nemani, Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, vol.300, pp.1560-1563, 2003.

M. Zhao and S. W. Running, Drought-induced reduction in global terrestrial net primary production from, Science, vol.329, p.940, 2000.

J. E. Campbell, Large historical growth in global terrestrial gross primary production, Nature, vol.544, pp.84-87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606012

A. Baccini, Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature Clim. Change, vol.2, pp.182-185, 2012.

A. D. Jb, . Jb, . Re, . Cml, . Kap et al., ACKNOWLEDGEMENTS: We thank those who are involved in the EMEP efforts and have contributed through operating sites, performing chemical analysis and by submissions of data to the data base EBAS. EMEP is funded through national contributions. We gratefully acknowledge the Air Quality Research Division of Environment Canada for the Total Gaseous Mercury data and the ESRL NOAA and WDCGG data centers for the CO2 data, CORRESPONDING AUTHOR: correspondence and requests for materials should be addressed to Martin Jiskra (martin.jiskra@unibas.ch)

K. Tørseth, Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972-2009, Atmos. Chem. Phys, vol.12, pp.5447-5481, 2012.

E. J. Dlugokencky, P. M. Lang, J. W. Mund, A. M. Crotwell, &. M. Crotwell et al., Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968.

Y. Jiang, J. V. Cizdziel, and D. Lu, Temporal patterns of atmospheric mercury species in northern Mississippi during 2011-2012: Influence of sudden population swings, Chemosphere, vol.93, pp.1694-1700, 2013.

X. Lan, Seasonal and Diurnal Variations of Total Gaseous Mercury, vol.5, pp.399-419, 2014.

A. Cole, A Survey of Mercury in Air and Precipitation across Canada: Patterns and Trends, vol.5, 2014.

G. R. Sheu, Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan, Atmos. Environ, vol.44, pp.2393-2400, 2010.

L. Zhang, S. X. Wang, L. Wang, and J. M. Hao, Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources, Atmos. Chem. and Phys, vol.13, pp.10505-10516, 2013.

K. A. Read, Four years (2011-2015) of total gaseous mercury measurements from the Cape Verde Atmospheric Observatory, Atmos. Chem. Phys, vol.17, pp.5393-5406, 2017.

B. Denzler, Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m), Environ. Sci. Technol, vol.51, pp.2846-2853, 2017.

D. Howard, Atmospheric mercury in the Southern Hemisphere tropics: seasonal and diurnal variations and influence of inter-hemispheric transport, Atmos. Chem. Phys, vol.17, pp.11623-11636, 2017.

, R: A Language and Environment for Statistical Computing, 2015.

F. Liu, High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys, vol.15, pp.13299-13317, 2015.

J. Zhu, T. Wang, J. Bieser, and V. Matthias, Source attribution and process analysis for atmospheric mercury in eastern China simulated by CMAQ-Hg, Atmos. Chem. Phys, vol.15, pp.8767-8779, 2015.