Light Random Regression Forests for Automatic, Multi-Organ Localization in CT Images - GMCAO : Geste Médico-Chirurgicaux Assistés par Ordinateur
Communication Dans Un Congrès Année : 2017

Light Random Regression Forests for Automatic, Multi-Organ Localization in CT Images

Résumé

Classic Random Regression Forests (RRFs) used for multi-organ localization describe the random process of multivari-ate regression by storing the histograms of offset vectors along each bounding wall direction per leaf node. On the one hand, the RAM and storage requirements of classic RRFs may become exorbitantly high when such a RRF consists of many leaf nodes, but on the other hand, a large number of leaf nodes are required for better localization. We introduce Light Random Regression Forests (LRRFs) which eliminate the need to describe the random process by formulating the localization prediction based on the random variables that describe the random process. Consequently, LRRFs with the same localization capabilities require less RAM and storage space compared to classic RRFs. LRRF comprising 4 trees with 17 decision levels is approximately 9 times faster, takes 10 times less RAM, and uses 30 times less storage space compared to a similar classic RRF.
Fichier principal
Vignette du fichier
ISBI17_0031_FI.pdf (331.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01498629 , version 1 (30-03-2017)

Identifiants

  • HAL Id : hal-01498629 , version 1

Citer

Prasad N Samarakoon, Emmanuel N Promayon, Celine Fouard. Light Random Regression Forests for Automatic, Multi-Organ Localization in CT Images. IEEE International Symposium on Biomedical Imaging ISBI'17, Apr 2017, Melbourne, Australia. ⟨hal-01498629⟩
1873 Consultations
246 Téléchargements

Partager

More