Light Random Regression Forests for Automatic, Multi-Organ Localization in CT Images

Prasad Samarakoon 1 Emmanuel Promayon 1, 2 Céline Fouard 1, 3
2 TIMC-IMAG-GMCAO - Gestes Medico-chirurgicaux Assistés par Ordinateur
TIMC-IMAG - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble
3 GMCAO
TIMC-IMAG - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble
Abstract : Classic Random Regression Forests (RRFs) used for multi-organ localization describe the random process of multivari-ate regression by storing the histograms of offset vectors along each bounding wall direction per leaf node. On the one hand, the RAM and storage requirements of classic RRFs may become exorbitantly high when such a RRF consists of many leaf nodes, but on the other hand, a large number of leaf nodes are required for better localization. We introduce Light Random Regression Forests (LRRFs) which eliminate the need to describe the random process by formulating the localization prediction based on the random variables that describe the random process. Consequently, LRRFs with the same localization capabilities require less RAM and storage space compared to classic RRFs. LRRF comprising 4 trees with 17 decision levels is approximately 9 times faster, takes 10 times less RAM, and uses 30 times less storage space compared to a similar classic RRF.
Type de document :
Communication dans un congrès
IEEE International Symposium on Biomedical Imaging ISBI'17, Apr 2017, Melbourne, Australia. IEEE International Symposium on Biomedical Imaging ISBI'17. 〈https://biomedicalimaging.org/2017/〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01498629
Contributeur : Emmanuel Promayon <>
Soumis le : jeudi 30 mars 2017 - 12:27:19
Dernière modification le : jeudi 7 février 2019 - 17:56:10

Fichier

ISBI17_0031_FI.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01498629, version 1

Collections

Citation

Prasad Samarakoon, Emmanuel Promayon, Céline Fouard. Light Random Regression Forests for Automatic, Multi-Organ Localization in CT Images. IEEE International Symposium on Biomedical Imaging ISBI'17, Apr 2017, Melbourne, Australia. IEEE International Symposium on Biomedical Imaging ISBI'17. 〈https://biomedicalimaging.org/2017/〉. 〈hal-01498629〉

Partager

Métriques

Consultations de la notice

130

Téléchargements de fichiers

93