Zero-shot learning for multilingual discourse relation classification - Intelligence Artificielle
Poster De Conférence Année : 2024

Zero-shot learning for multilingual discourse relation classification

Résumé

Classifying discourse relations is a hard task: discourse-annotated data is scarce, especially for languages other than English, and there exist different theoretical frameworks that affect textual spans to be linked and the label set used. Thus, work on transfer between languages is very limited, especially between frameworks, while it could improve our understanding of some theoretical aspects and enhance many applications. In this paper, we propose the first experiments on zero-shot learning for discourse relation classification and investigate several paths in the way source data can be combined, either based on languages, frameworks, or similarity measures. We demonstrate how difficult transfer is for the task at hand, and that the most impactful factor is label set divergence, where the notion of underlying framework possibly conceals crucial disagreements.
Fichier principal
Vignette du fichier
CODI_2024_DOUBLE____Multilingual_discourse_relation_identification (1).pdf (241.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04483805 , version 1 (29-02-2024)
hal-04483805 , version 2 (06-06-2024)

Identifiants

  • HAL Id : hal-04483805 , version 1

Citer

Eleni Metheniti, Philippe Muller, Chloé Braud, Margarita Hernández-Casas. Zero-shot learning for multilingual discourse relation classification. 5th Workshop on Computational Approaches to Discourse (CODI 2024), Mar 2024, St Julians, Malta. à paraître. ⟨hal-04483805v1⟩
672 Consultations
205 Téléchargements

Partager

More